JPH03102775A - Fuel cell device - Google Patents

Fuel cell device

Info

Publication number
JPH03102775A
JPH03102775A JP1240215A JP24021589A JPH03102775A JP H03102775 A JPH03102775 A JP H03102775A JP 1240215 A JP1240215 A JP 1240215A JP 24021589 A JP24021589 A JP 24021589A JP H03102775 A JPH03102775 A JP H03102775A
Authority
JP
Japan
Prior art keywords
fuel cell
refrigerant
throttle mechanism
curve
cooling system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1240215A
Other languages
Japanese (ja)
Inventor
Takamasa Mitsuzuka
三塚 隆正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1240215A priority Critical patent/JPH03102775A/en
Publication of JPH03102775A publication Critical patent/JPH03102775A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To stabilize the whole cooling system by furnishing a throttle mechanism at the inlet pipe of the body of each fuel cell. CONSTITUTION:In a cooling system, a throttle mechanism 5, whose characteristic about the pressure loss relative to the rate of flow in the body 1 of each fuel cell including the throttle mechanism 5 follows a monotonously incremental curve, is equipped at the inlet pipe 5 of the body 1 of fuel cell. Accordingly the pressure loss curve of the cooling system exhibits a monotonously incremental curve, and meantime the discharge pressure characteristic curve of a refrigerant circulating pump 2 decreases monotonously relative to the rate of flow, so that the two characteristic curves intersect at one point. Thereby the operation points of the refrigerant circulating pump 2 as intersection of the two characteristic curves is determined at one point, and the rate of flow is decided to the value of this intersecting point, and the refrigerant in a constant rate of flow is stably supplied to the body 1 of each fuel cell.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、電池本体の冷却系に改良を施した燃料電池装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a fuel cell device in which a cooling system for a battery body is improved.

(従来の技術) 燃料電池は、燃料の持つ化学エネルギーを電気化学反応
で酸化させることにより、酸化反応に伴って放出される
エネルギーを直接電気エネルギーに変換する装置である
。この燃料電池を使用した発電システムは、比較的小さ
な規模でも発電の熱効率が40〜50%にも達し、新鋭
火力発電をはるかに凌ぐと期待されている。また、近年
大きな社会問題となっている公害要因であるSOx,N
Oxの排出が極めて少い、発電装置内に燃焼サイクルを
含まないので多量の冷却水を必要としない、振動音が少
い等の利点も有している。この様に燃料電池は、原理的
に高いエネルギー変換効率が期待できる上に、騒音・排
ガス等の環境問題が少く、さらに負荷変動に対して応答
性が良い等の特徴が有ることから、その開発、実用化の
研究に期待と関心が寄せられている。
(Prior Art) A fuel cell is a device that directly converts the energy released due to the oxidation reaction into electrical energy by oxidizing the chemical energy of fuel through an electrochemical reaction. A power generation system using this fuel cell has a thermal efficiency of 40 to 50% even on a relatively small scale, and is expected to far exceed new thermal power generation. In addition, SOx, N, which is a pollution factor that has become a major social problem in recent years,
It also has advantages such as extremely low Ox emissions, no combustion cycle in the power generation device and therefore no need for a large amount of cooling water, and little vibration noise. In this way, fuel cells can be expected to have high energy conversion efficiency in principle, have few environmental problems such as noise and exhaust gas, and have good responsiveness to load fluctuations. There are high expectations and interest in research into practical application.

この燃料電池の本体部分は、発電のためのセルと、セル
で発生する熱を排出するための冷却板等によって構成さ
れ、セルには燃料ガスと空気、冷却板には冷却水等の冷
媒が外部から供給される。
The main body of this fuel cell consists of a cell for power generation and a cooling plate for discharging the heat generated by the cell.The cell contains fuel gas and air, and the cooling plate contains a coolant such as cooling water. Supplied externally.

第5図は、この様な燃料電池本体とこれに冷媒を供給循
環させる冷却系とから構戊された燃料電池装置として、
従来から知られているものの一例である。燃料電池本体
1に供給される冷媒は、循環ボンブ2で昇圧され、調節
弁3と流量計4で流量を調整される。その後、各電池本
体1に入るように分岐され、入口管5を通って燃料電池
本体1に入る。燃料電池本体1で加熱され、二相流とな
った冷媒は配管」二で合流された後、気水分離器7に入
り気液に分離され、液体は再び循環ボンプ2に贈られる
。また、分離された水蒸気等の気相の冷媒は、蒸気管8
を通って図示しないリフォーマ等へ送られる。この冷却
系から外部に排出される気相の冷媒量に相当する冷媒は
、補給管9から系内に補給される。
FIG. 5 shows a fuel cell device constructed from such a fuel cell body and a cooling system that supplies and circulates a coolant to the fuel cell body.
This is an example of what has been known in the past. The refrigerant supplied to the fuel cell main body 1 is pressurized by a circulation bomb 2, and its flow rate is adjusted by a control valve 3 and a flow meter 4. Thereafter, it is branched to enter each cell main body 1, and enters the fuel cell main body 1 through an inlet pipe 5. The refrigerant heated in the fuel cell main body 1 and turned into a two-phase flow is combined in a pipe 2, enters a steam separator 7, and is separated into gas and liquid, and the liquid is sent to the circulation pump 2 again. In addition, the separated vapor phase refrigerant such as water vapor is transferred to the steam pipe 8
It is sent to a reformer, etc. (not shown). The refrigerant corresponding to the amount of gas phase refrigerant discharged from the cooling system to the outside is replenished into the system through the replenishment pipe 9.

(発明が解決しようとする課題) ところで、小流量の冷媒でセルを効率良く冷却する方法
として、冷媒の蒸発潜熱を利用する方法が従来から用い
られている。即ち、冷却板に液体の冷媒を供給し、それ
が冷却板内で加熱され、その一部が蒸発することにより
、セルを冷却する二相流冷却の方法がそれである。
(Problems to be Solved by the Invention) By the way, as a method for efficiently cooling cells with a small flow rate of refrigerant, a method that utilizes the latent heat of vaporization of the refrigerant has been conventionally used. That is, this is a two-phase flow cooling method in which a liquid refrigerant is supplied to a cooling plate, the liquid refrigerant is heated within the cooling plate, and a portion of the refrigerant evaporates to cool the cell.

一般に、この二相流冷却を行う燃料電池装置において出
力を大きくすると、出力と共に発熱量が増加するので、
冷却板入日付近の単相流領域が小さくなると共に二相流
領域のボイド率が大きくなる。最近開発された出力が大
きい燃料電池本体1の圧力損失と流量の関係は、第6図
の10で示すように、上に凸の曲線となる。一方、通常
の燃料電池装置で用いられる遠心式の冷媒循環ポンプの
吐出圧力特性は、第6図の12に示すように、流量に対
して単調に減少する。
Generally, when the output is increased in a fuel cell device that uses two-phase flow cooling, the amount of heat generated increases along with the output.
As the single-phase flow region near the entrance of the cooling plate becomes smaller, the void fraction in the two-phase flow region increases. The relationship between pressure loss and flow rate of the recently developed fuel cell main body 1 with high output is an upwardly convex curve, as shown by 10 in FIG. On the other hand, the discharge pressure characteristic of a centrifugal refrigerant circulation pump used in a normal fuel cell device monotonically decreases with respect to the flow rate, as shown at 12 in FIG.

冷媒循環ボンブの運転点はこれらの萌線10と12との
交点14となるが、従来の燃料電池装置では、交点14
付近の特性が両者とも単調減少のため交点が定まり難<
、燃料電池本体1のわずかな差異や負荷変動等の小さな
外乱によって交点14が移動する。即ち、冷媒の流量が
不安定となり、その結果、流量が小さくなったとき冷却
が十分行われず、セルが加熱するという不都合が生じる
恐れがある。
The operating point of the refrigerant circulation bomb is the intersection 14 of these ridge lines 10 and 12, but in the conventional fuel cell device, the operating point is the intersection 14
It is difficult to determine the intersection point because the characteristics in the vicinity are both monotonically decreasing.
, the intersection point 14 moves due to small disturbances such as slight differences in the fuel cell main body 1 or load fluctuations. That is, the flow rate of the refrigerant becomes unstable, and as a result, when the flow rate becomes small, sufficient cooling may not be performed and the cell may be heated.

本発明は、上記のような従来の燃料電池装置の問題点を
解決し、燃料電池本体の圧力損失特性を改良することに
より、冷媒流量の不安定をなくし、セルの過熱を防止し
た燃料電池装置を提供することを目的とする。
The present invention solves the problems of conventional fuel cell devices as described above, and provides a fuel cell device that eliminates instability of the refrigerant flow rate and prevents cell overheating by improving the pressure loss characteristics of the fuel cell main body. The purpose is to provide

[発明の構成] (課題を解決するための手段) 本発明による燃料電池装置は、その冷却系における各燃
料電池本体の入口管に、絞り機構を含む燃料電池本体の
流量と圧力損失の特性が単調増加の曲線となるような絞
り機構を設けたことを構成上の特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) The fuel cell device according to the present invention has a cooling system in which the inlet pipe of each fuel cell main body has flow rate and pressure loss characteristics of the fuel cell main body including a throttle mechanism. The configuration is characterized by the provision of an aperture mechanism that forms a monotonically increasing curve.

(作用) 上記のような構成を有する本発明の燃料電池装置におい
ては、絞り機構の存在により冷却系の圧力損失助線が単
調増加曲線となり、一方冷媒循環ポンプの吐出圧力特性
曲線は従来と同様に流量に対して単調に減少するため、
両特性曲線が一点で交わることになる。その結果、両特
性曲線の交点である冷媒循環ポンプの運転点が一点に定
まり、流量がこの交点の値に定まるので、各燃料電池本
体には一定流量の冷媒を安定して供給できる。
(Function) In the fuel cell device of the present invention having the above-described configuration, the pressure loss supplementary line of the cooling system becomes a monotonically increasing curve due to the existence of the throttling mechanism, while the discharge pressure characteristic curve of the refrigerant circulation pump is the same as the conventional one. Since it decreases monotonically with respect to the flow rate,
Both characteristic curves intersect at one point. As a result, the operating point of the refrigerant circulation pump, which is the intersection of both characteristic curves, is determined to be one point, and the flow rate is determined to the value of this intersection, so that a constant flow rate of refrigerant can be stably supplied to each fuel cell main body.

(実施例) 以下、本発明の一実施例を図面に従って具体的に説明す
る。なお、第5図に示した従来の燃料電池装置と同一の
部材については、同一の符号を付し説明は省略する。
(Example) Hereinafter, an example of the present invention will be specifically described with reference to the drawings. Note that the same members as those in the conventional fuel cell device shown in FIG. 5 are designated by the same reference numerals, and the description thereof will be omitted.

第1図において、循環ボンプ2から伸びる配管から分岐
して1本なった各燃料電池本体1の入口管5には、それ
ぞれ絞り機構6が設けられている。
In FIG. 1, a throttle mechanism 6 is provided in each inlet pipe 5 of each fuel cell main body 1, which is branched from a pipe extending from a circulation pump 2.

この絞り機構6としては、第3図に示すような、入口管
5の内径よりも小さな開口を有する円筒状の部材15が
使用される。この絞り機構6は、その流徂と圧力損失の
特性が、第2図の11に示すように単調増加の曲線とな
るものが使用される。
As this throttle mechanism 6, a cylindrical member 15 having an opening smaller than the inner diameter of the inlet pipe 5 is used, as shown in FIG. The throttle mechanism 6 used is one whose flow range and pressure loss characteristics form a monotonically increasing curve as shown at 11 in FIG.

この様な構成を有する本発明の燃料電池装置においては
、絞り機構6の流量と圧力損失の特性が第2図の11に
示すように単調増加の曲線となるのに対して、燃料電池
本体1の圧力損失特性は第2図の10に示すように上に
凸の曲線であるので、これらを合成した絞り機構6を含
む燃料電池本体1の冷却系の圧力損失は、第2図の13
に示すように流量に対して単調に増加する特性となる。
In the fuel cell device of the present invention having such a configuration, the flow rate and pressure loss characteristics of the throttle mechanism 6 form a monotonically increasing curve as shown at 11 in FIG. The pressure loss characteristic of is an upwardly convex curve as shown in 10 in FIG.
As shown in , it has a characteristic that increases monotonically with the flow rate.

方、冷媒循環ポンプ2の吐出圧力特性曲線は、第2図の
12に示すように流量と共に減少するため、冷却系圧力
損失を示す曲線13と一点で交わる。
On the other hand, the discharge pressure characteristic curve of the refrigerant circulation pump 2 decreases with the flow rate as shown at 12 in FIG. 2, so it intersects at one point with the curve 13 indicating the cooling system pressure loss.

この交点14は、傾向の異なる2つの曲線が交わる点で
あるから、各燃料電池本体1のわずかな差異や負荷変動
等の外乱によって不安定′に変動することがない。その
為、冷却系全体が安定となり、燃料電池本体1の冷媒が
不足してセルが加熱するという不都合は解消される。
Since this intersection point 14 is a point where two curves with different trends intersect, it will not fluctuate unstablely due to slight differences in each fuel cell main body 1 or disturbances such as load fluctuations. Therefore, the entire cooling system becomes stable, and the inconvenience that the cell heats up due to insufficient refrigerant in the fuel cell main body 1 is eliminated.

なお、本発明は前記実施例に限定されるものではなく、
例えば絞り機構として第4図に示すようなオリフィス板
16を使用することも可能である。
Note that the present invention is not limited to the above embodiments,
For example, it is also possible to use an orifice plate 16 as shown in FIG. 4 as the throttle mechanism.

また、その場合、オリフィス板16の前後に脈動緩和用
の溝20.20を形成し、その部分に圧力測定タップ1
7.17を設け、そこに取付けたパイプ18.18を差
圧計19に接続することにより、絞り機構部分の圧力を
測定し、各燃料電池本体1の冷媒流量を求めることもで
きる。この様にすると、絞り機構を流量計として兼用す
ることができるので、配管上に設けた流量計4を省略す
ることができる。
In that case, pulsation mitigation grooves 20, 20 are formed before and after the orifice plate 16, and the pressure measuring tap 1 is placed in that part.
7.17 and by connecting the pipe 18.18 attached thereto to the differential pressure gauge 19, the pressure in the throttling mechanism portion can be measured and the refrigerant flow rate in each fuel cell main body 1 can also be determined. In this way, the throttle mechanism can also be used as a flowmeter, so the flowmeter 4 provided on the pipe can be omitted.

[発明の効果] 以一ヒの通り、本発明によれば、各燃料電池本体の入口
管部分に絞り機構を設けるという極めて簡単な構成によ
り、冷却系全体を安定化させることが可能となり、セル
の加熱等の不都合が生じない安定した燃料電池装置を提
供することができる。
[Effects of the Invention] As described above, according to the present invention, the entire cooling system can be stabilized by providing an extremely simple configuration in which a throttle mechanism is provided in the inlet pipe portion of each fuel cell main body, and the cell It is possible to provide a stable fuel cell device that does not cause problems such as heating.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の燃料電池装置の一実施例を示す配管図
、第2図は本発明における冷却系の圧力損失特性と、冷
媒循環ポンプの吐出圧力特性を示すグラフ、第3図は本
発明における絞り機構の一例を示す断面図、第4図は他
の絞り機構の例を示す断面図、第5図は従来の燃料電池
装置の冷却系を示す配管図、第6図は従来の冷却系の圧
力損失特性と冷媒循環ポンプの吐出特性を示すグラフで
ある。 1・・・燃料電池本体、2・・・冷媒循環ポンプ、3・
・・調節弁、4・・・流量系、5・・・入口管、6・・
・絞り機構、7・・・気液分離器、8・・・蒸気管、9
・・・補給管、10・・・燃料電池本体1の圧力損失特
性曲線、11・・・絞り機構の圧力損失特性曲線、12
・・・冷媒循環ポンプの吐出圧力聞線、13・・・冷却
系の圧力損失特性曲線、14・・・運転点、15・・・
円筒状絞り機構、16・・・オリフィス板、17・・・
圧力測定タップ、18・・・パイプ、19・・・差圧計
。 O 1 2    3   4 二令去“P永三糺j1 5 第 2 図 −437−
Fig. 1 is a piping diagram showing one embodiment of the fuel cell device of the present invention, Fig. 2 is a graph showing the pressure loss characteristics of the cooling system and the discharge pressure characteristics of the refrigerant circulation pump in the present invention, and Fig. 3 is a graph showing the present invention. 4 is a sectional view showing an example of the throttle mechanism in the invention, FIG. 4 is a sectional view showing another example of the throttle mechanism, FIG. 5 is a piping diagram showing the cooling system of a conventional fuel cell device, and FIG. 6 is a conventional cooling system. It is a graph showing the pressure loss characteristics of the system and the discharge characteristics of the refrigerant circulation pump. 1... Fuel cell main body, 2... Refrigerant circulation pump, 3...
...Control valve, 4...Flow rate system, 5...Inlet pipe, 6...
- Throttle mechanism, 7... Gas-liquid separator, 8... Steam pipe, 9
... Supply pipe, 10 ... Pressure loss characteristic curve of fuel cell main body 1, 11 ... Pressure loss characteristic curve of throttle mechanism, 12
...Discharge pressure curve of refrigerant circulation pump, 13...Pressure loss characteristic curve of cooling system, 14...Operating point, 15...
Cylindrical throttle mechanism, 16... orifice plate, 17...
Pressure measurement tap, 18...pipe, 19...differential pressure gauge. O 1 2 3 4 2nd generation "P Ei Santadaj1 5 2nd figure -437-

Claims (1)

【特許請求の範囲】[Claims] (1)冷媒循環ポンプと、この冷媒循環ポンプによって
冷媒を供給循環する複数の燃料電池本体を備えた燃料電
池装置において、各燃料電池本体に冷媒を供給する冷媒
の入口管に、絞り機構を含む燃料電池本体の流量と圧力
損失の特性が単調増加曲線となるような絞り機構を設け
たことを特徴とする燃料電池装置。
(1) In a fuel cell device equipped with a refrigerant circulation pump and a plurality of fuel cell bodies that supply and circulate refrigerant using the refrigerant circulation pump, the refrigerant inlet pipe that supplies the refrigerant to each fuel cell body includes a throttle mechanism. A fuel cell device characterized by being provided with a throttle mechanism so that the flow rate and pressure loss characteristics of the fuel cell main body form a monotonically increasing curve.
JP1240215A 1989-09-18 1989-09-18 Fuel cell device Pending JPH03102775A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1240215A JPH03102775A (en) 1989-09-18 1989-09-18 Fuel cell device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1240215A JPH03102775A (en) 1989-09-18 1989-09-18 Fuel cell device

Publications (1)

Publication Number Publication Date
JPH03102775A true JPH03102775A (en) 1991-04-30

Family

ID=17056164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1240215A Pending JPH03102775A (en) 1989-09-18 1989-09-18 Fuel cell device

Country Status (1)

Country Link
JP (1) JPH03102775A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147467A (en) * 1984-12-14 1986-07-05 Fuji Electric Corp Res & Dev Ltd Cooling device for fuel cell
JPS62103983A (en) * 1985-10-30 1987-05-14 Tokyo Electric Power Co Inc:The Fuel cell power generation system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61147467A (en) * 1984-12-14 1986-07-05 Fuji Electric Corp Res & Dev Ltd Cooling device for fuel cell
JPS62103983A (en) * 1985-10-30 1987-05-14 Tokyo Electric Power Co Inc:The Fuel cell power generation system

Similar Documents

Publication Publication Date Title
Kim et al. Parametric study on interaction of blower and back pressure control valve for a 80-kW class PEM fuel cell vehicle
JPS6119806B2 (en)
JP2004179149A (en) Fuel cell system
US20050145371A1 (en) Thermal solution for electronics cooling using a heat pipe in combination with active loop solution
JP2002121001A (en) Hydrogen supply device
JP2018163874A (en) Fuel battery system
Liu et al. Modeling and control of cathode air humidity for pem fuel cell systems
Le et al. An experimental study for optimizing the energy efficiency of a proton exchange membrane fuel cell with an open-cathode
Chen et al. Thermal analysis and optimization of combined cold and power system with integrated phosphoric acid fuel cell and two-stage compression–absorption refrigerator at low evaporation temperature
US20090075135A1 (en) Fuel cell system
JPH03102775A (en) Fuel cell device
JPS58195765A (en) Solar heat utilizing absorption type cold and hot water machine
JP3263129B2 (en) Fuel cell system
JPH0541231A (en) Fuel cell
CN217361672U (en) Constant temperature humidification system for direct mixing quantitative evaporation gas in fuel cell test
Chang et al. Research on Parasitic Power of Cooling Balance of Plant System for Proton Exchange Membrane Fuel Cell
CN115863707B (en) Temperature and humidity regulating system of fuel cell and control method thereof
JP3199276B2 (en) Fuel cell generator
CN217134425U (en) Heat sink and electrochemical cell cooling system
JPH02187594A (en) Heat pipe type heat exchanger
JP2002056867A (en) Fuel cell generating system
KR102347322B1 (en) Thermal Management Method and Device For PEFMC
JP3202292B2 (en) Fuel cell power generation system
JPH0311504B2 (en)
JPS60177566A (en) Fuel cell power generating system