JPS62103619A - Optical modulator - Google Patents

Optical modulator

Info

Publication number
JPS62103619A
JPS62103619A JP24284785A JP24284785A JPS62103619A JP S62103619 A JPS62103619 A JP S62103619A JP 24284785 A JP24284785 A JP 24284785A JP 24284785 A JP24284785 A JP 24284785A JP S62103619 A JPS62103619 A JP S62103619A
Authority
JP
Japan
Prior art keywords
light
reflected light
optical path
light source
reflected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24284785A
Other languages
Japanese (ja)
Inventor
Toshikazu Umeda
梅田 敏和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP24284785A priority Critical patent/JPS62103619A/en
Publication of JPS62103619A publication Critical patent/JPS62103619A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To separate effectively a first-order diffracted light as a used modulating light from zero-order diffracted light of the reflected light to prevent the degradation in extinction ratio by changing the optical path of the reflected light in an ultrasonic optical modulator to such direction by an optical path changing member that this optical path is deviated from a reflecting mirror provided in the emitting part of a laser light source. CONSTITUTION:A reflected light B reflected on an AOM 3 is made incident on a peripheral non-lens part 21b of a condenser lens 21. The reflected light B incident on the condenser lens 21 goes toward a laser light source 1 as a light approximately parallel with or coaxial to the reflected light B. Consequently, the reflected light B goes off a reflecting mirror 1s unless the length between the condenser lens 21 and the laser light source 1 is made extremely short. Thus, the reflected light of the reflected light B is not made incident on the AOM 3 again in coaxial relations to the reflected light and a first-order light A1 an the zero-order light of the reflected light made incident on the AOM 3 again do not overlap. That is, the degradation in the extinction ratio is prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、消光比が劣化しないようにした光変調装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical modulation device whose extinction ratio does not deteriorate.

〔発明の背景〕[Background of the invention]

レーザビームを使用した記録装置として、第6図に示す
ように構成された装置がある。この図において、レーザ
光源1から射出されたビームは、集光レンズ2により超
音波光変調器(以下、AOMと称する。)に集光して入
射し、ここで情報電気信号に応じて強度を変調され、更
に集光レンズ4、ミラー5を経由し、回転多面鏡6によ
って水平方向に走査され(振られ)、fθレンズ7を介
して結像面8に配置された感光材料等の記録媒体に入射
して、その記録媒体に対する記録が行われるのである。
As a recording device using a laser beam, there is a device configured as shown in FIG. In this figure, a beam emitted from a laser light source 1 is focused by a condensing lens 2 and enters an ultrasonic optical modulator (hereinafter referred to as AOM), where the intensity is adjusted according to an information electrical signal. A recording medium such as a photosensitive material is modulated, further scanned (swinged) in the horizontal direction by a rotating polygon mirror 6 via a condensing lens 4 and a mirror 5, and placed on an imaging plane 8 via an fθ lens 7. The light is incident on the recording medium and recording is performed on the recording medium.

ところで、上記したAOM3は、集光レンズ2からほぼ
その焦点距離だけ離れた位置に配置され、その集光レン
ズ2から出射したビームが、そのAOM3付近でビーム
ウェストとなるようになっている。
By the way, the above-mentioned AOM 3 is arranged at a position separated from the condenser lens 2 by approximately its focal length, and the beam emitted from the condenser lens 2 forms a beam waist near the AOM 3.

AOM3の変調帯域Δfは、 Δ f = 0.54 X v/d         
        −(11V:超音波の伝搬速度 d:入射ビーム径 で表され、変調帯域Δfをある程度高くするためには、
AOM3に入射するビームの径dを絞り込む必要があり
、そこでこのAOM3の入射側に集光レンズ2が配置さ
れているのである。
The modulation band Δf of AOM3 is Δ f = 0.54 x v/d
-(11V: Ultrasonic propagation speed d: Expressed by incident beam diameter. In order to increase the modulation band Δf to some extent,
It is necessary to narrow down the diameter d of the beam incident on the AOM 3, which is why the condenser lens 2 is placed on the incident side of the AOM 3.

第7図はこのAOM3付近をより詳細に表した図である
。AOM3はレーザ光源1からのレーザビームAの光軸
に対する直角からブラッグ角θ5たけ傾斜して配置され
、0次回折光A0と分離した1次回折光AI  (最終
的に得る変調光)を得るために、そのAOM3の出射側
にピンホール板31が配置されている。
FIG. 7 is a diagram showing the vicinity of this AOM3 in more detail. The AOM 3 is arranged at an angle of Bragg angle θ5 from the right angle to the optical axis of the laser beam A from the laser light source 1, and in order to obtain the 1st-order diffracted light AI (the modulated light finally obtained) separated from the 0th-order diffracted light A0, A pinhole plate 31 is arranged on the output side of the AOM 3.

1次回折光AIと0次回折光A0との分離角度は、ブラ
ッグ角θ、の2倍の208となり、2θ、=f・λ/V
          ・・・(2)f:音波のキャリア
周波数 λ:レーザビームの波長 で表される。
The separation angle between the 1st-order diffracted light AI and the 0th-order diffracted light A0 is 208, which is twice the Bragg angle θ, and 2θ, = f・λ/V
(2) f: Carrier frequency of sound wave λ: Represented by wavelength of laser beam.

ところが、A OM 3の入射側端面では反射が生じ、
この反射光Bが集光レンズ2に逆入射してビームAの光
軸にほぼ平行な光となる。これは、集光レンズ2がAO
M3からほぼその集光レンズ2の焦点距離だけ離れた位
置に置かれているためである。
However, reflection occurs at the incident side end face of A OM 3,
This reflected light B enters the condensing lens 2 in the reverse direction and becomes light substantially parallel to the optical axis of the beam A. This means that the condenser lens 2 is AO
This is because it is placed at a position approximately equal to the focal length of the condenser lens 2 from M3.

このように平行となった反射光Bはレーザ光源1の出射
鏡1aによってほとんど反射されて、やはりビームAの
光軸に平行な光となって、再度集光レンズ2に入射する
。そして、この集光レンズ2で光軸を曲げられて角度2
θ8でAOM3に入射する。
Most of the reflected light B that has become parallel in this way is reflected by the output mirror 1a of the laser light source 1, becomes light parallel to the optical axis of the beam A, and enters the condenser lens 2 again. The optical axis is bent by this condensing lens 2 to an angle of 2
It enters AOM3 at θ8.

この結果、レーザ光源1を出射し、AOM3によって変
調を受けた1次回折光A+ と、一旦AOM3で反射し
更にレーザの反射鏡」aで反射して再度AOM3に戻り
そこを通過する反射光Bの内のO次回折光成分との分離
ができなくなり、結果的にAOM3の消光比が劣化する
As a result, the first-order diffracted light A+ that is emitted from the laser light source 1 and modulated by the AOM3, and the reflected light B that is once reflected by the AOM3, further reflected by the laser reflector "a," and returned to the AOM3 and passes through it. It becomes impossible to separate the light from the O-order diffraction light component within, and as a result, the extinction ratio of the AOM 3 deteriorates.

例えば、AOM3での反射が1%であったとすれば、A
OM3をオフさせているにも拘わらず、1%の光量が1
次回折光A、に重畳されることになり、消光比は100
 : 1となってしまう。
For example, if the reflection at AOM3 is 1%, then
Even though OM3 is turned off, the light intensity of 1% is 1
It will be superimposed on the next diffracted light A, and the extinction ratio will be 100.
: It becomes 1.

また、AOMをオンしている時でも、1%の光量が1次
回折光A、に重畳されていることになり、特に階調画像
の記録のような高精度の変調が必要とされる場合におい
ては、正確な階調表現ができなくなってしまう。
Furthermore, even when the AOM is turned on, 1% of the light intensity is superimposed on the first-order diffracted light A, especially when high-precision modulation is required such as recording gradation images. In this case, accurate gradation cannot be expressed.

なお、前述の説明はAOMの入射側端面での反射につい
てであったが、当然、出射側端面においても同様な現象
が生じる。しかし、変調を受けた後なので、光量的には
全く問題とならない。
Note that although the above explanation was about reflection at the incident side end face of the AOM, a similar phenomenon naturally occurs at the output side end face as well. However, since it is after being modulated, there is no problem in terms of the amount of light.

〔発明の目的〕[Purpose of the invention]

本発明は上記した点に鑑みてなされたもので、その目的
は、1次回折光と上記した反射経路から再度AOMに入
射する光のO次回折光とが重ならないようにして、AO
Mの消光比を劣化させないようにした光変調装置を提供
することである。
The present invention has been made in view of the above points, and its purpose is to prevent the first-order diffracted light and the O-th diffracted light of the light that re-enters the AOM from the above-mentioned reflection path from overlapping, so that the AO
An object of the present invention is to provide an optical modulation device that does not deteriorate the extinction ratio of M.

〔発明の構成〕[Structure of the invention]

このために本発明では、レーザ光源から出射され艦音波
光変調器に向かうビームの光路外に、光路変更部材を設
け、該光路変更部材により超音波光変調器での反射光の
光路をレーザ光源の出射部に設けた反射鏡から外れる方
向に変更させるように構成している。
For this purpose, in the present invention, an optical path changing member is provided outside the optical path of the beam emitted from the laser light source and directed toward the ultrasonic optical modulator, and the optical path changing member changes the optical path of the reflected light from the ultrasonic optical modulator to the laser light source. The beam is configured to be changed in a direction away from the reflecting mirror provided at the emission part of the beam.

〔実施例〕〔Example〕

以下、本発明の実施例について説明する。第1図はその
一実施例を示すものであり、前記した第6図及び第7図
に示したものと同一のものには同一の符号を附した。本
実施例では、レーザ光源1とAOM3の間に配置される
集光レンズに、中央レンズ部21aとその中央レンズ部
21aの周囲に一体形成された光透過性の周囲非レンズ
21bを有するレンズ21を配置して、中央レンズ部2
1aによりビームAのAOM3におけるビームウェスト
を達成している。そして、AOM3で反射された反射光
Bが、この集光レンズ21の周囲非レンズ部21bに入
射するようにしている。
Examples of the present invention will be described below. FIG. 1 shows one embodiment of the present invention, and the same components as those shown in FIGS. 6 and 7 described above are given the same reference numerals. In this embodiment, a lens 21 has a central lens part 21a and a light-transmissive peripheral non-lens 21b integrally formed around the central lens part 21a, as a condensing lens disposed between the laser light source 1 and the AOM 3. and center lens part 2.
1a achieves the beam waist of beam A at AOM3. The reflected light B reflected by the AOM 3 is made to enter the peripheral non-lens portion 21b of the condenser lens 21.

従って、その集光レンズ21に入射した反射光Bは、第
1図に示すように、その反射先日にほぼ平行或いは同軸
な光として、レーザ光源1の方向に向かうようになる。
Therefore, as shown in FIG. 1, the reflected light B that has entered the condenser lens 21 is directed toward the laser light source 1 as substantially parallel or coaxial light.

よって、集光レンズ21とレーザ光源lとの間の距離を
極端に短くしない限り、反射光Bは反射鏡1aから外れ
た方向に向かうようになる。
Therefore, unless the distance between the condensing lens 21 and the laser light source 1 is extremely shortened, the reflected light B will be directed away from the reflecting mirror 1a.

このため、この反射光Bの再反射光が反射光Bと同軸の
関係をもってAOM3に再入射することはなく、−次光
A1と再度AOM3に入射する反射光の0次光とが重な
ることはない。つまり、消光比が劣化することが防止さ
れる。
Therefore, the re-reflected light of this reflected light B will not re-enter the AOM3 in a coaxial relationship with the reflected light B, and the -th order light A1 will not overlap with the 0th-order light of the reflected light that enters the AOM3 again. do not have. In other words, deterioration of the extinction ratio is prevented.

第2図は第1図に示した実施例の変形例を示すものであ
る。この実施例では、レーザ光源1とAOM3の間に配
置される集光レンズを、レーザ光#lから出射されるビ
ームをAOM3でビームウェストにするための中央レン
ズ部22aと、そのレンズ部22aの周囲に一体形成し
た周囲レンズ部22bとで構成した集光レンズ22とし
、周囲レンズ部22bの屈折方向が中央レンズ部22a
の屈折方向と逆となるようにしている。そして、反射光
Bがこの周囲レンズ部22bに入射するようにしている
FIG. 2 shows a modification of the embodiment shown in FIG. In this embodiment, the condensing lens disposed between the laser light source 1 and the AOM 3 includes a central lens portion 22a for making the beam emitted from the laser beam #l into a beam waist at the AOM 3, and a central lens portion 22a for making the beam emitted from the laser beam #l into a beam waist. The condenser lens 22 is configured with a peripheral lens part 22b integrally formed around the periphery, and the refraction direction of the peripheral lens part 22b is the central lens part 22a.
The direction of refraction is opposite to the direction of refraction. Then, the reflected light B is made to enter this peripheral lens portion 22b.

このため、第2図に示すように、その周囲レンズ部22
bに入射した反射光Bは、そこで大きく曲げられのるで
、レーザ光源1の反射鏡1aから大きく外れた方向に向
かわせることができる。
Therefore, as shown in FIG.
Since the reflected light B incident on b is largely bent there, it can be directed in a direction largely away from the reflecting mirror 1a of the laser light source 1.

第3図は別の実施例を示すものであり、従来と同様の位
置に同様の集光レンズ2を配置した上に、その集光レン
ズ2とレーザ光源1との間でビームAから外れた位置に
光路変更部材23を配置して、AOM3からその集光レ
ンズ2に入射してビームAと平行光となった反射光Bを
、その光路変更部材23により、レーザ光源1の反射鏡
1aから大きく外れた方向に向かわせるようにしたもの
である。
FIG. 3 shows another embodiment, in which a similar condensing lens 2 is arranged at the same position as in the conventional case, and a beam A that deviates from the beam A is placed between the condensing lens 2 and the laser light source 1. An optical path changing member 23 is arranged at the position, and the reflected light B, which is incident on the condenser lens 2 from the AOM 3 and becomes parallel to the beam A, is changed from the reflecting mirror 1a of the laser light source 1 by the optical path changing member 23. It is designed to point in a direction that is far off.

第4図は第3図の実施例の変形例を示すものであり、光
路変更部材23に代えて、凸レンズ24を同様な位置に
配置したものである。
FIG. 4 shows a modification of the embodiment shown in FIG. 3, in which a convex lens 24 is placed in place of the optical path changing member 23 at the same position.

第5図も第3図の実施例の変形例を示すものであり、光
路変更部材25を集光レンズ2のAOM3側に配置して
そこで反射光Bをより外側に曲げて、集光レンズ2に入
射する反射光Bが、第7図に示した角度よりもより小さ
な角度で入射するようにして、その集光レンズ2から出
射する反射光Bがレーザ光源lの反射鏡1aから大きく
外れた方向に向かうようにしたものである。
FIG. 5 also shows a modified example of the embodiment shown in FIG. By making the reflected light B incident on the laser light source I enter at a smaller angle than the angle shown in FIG. It was designed to point in the direction.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明は、レーザ光源から出射され超音波
光変調器に向かうビームの光路°外にレーザ光源と超音
波変調器の間に配置される集光レンズに一体的に或いは
分離して光路変更部材を設け゛、この光路変更部材によ
り超音波光変調器での反射光の光路をレーザ光源の出射
部に設けた反射鏡から外れる方向に変更させるように構
成したので、反射光がレーザ光源の反射鏡で反射され再
度同一光路を通過して超音波変調器に入射するというこ
とは起らず、よって使用する変調光としての1次回折光
を反射光の0次回折光から効果的に分離することができ
、消光比の劣化を防止することが可能となる。
As described above, the present invention provides a condensing lens that is placed between the laser light source and the ultrasonic modulator outside the optical path of the beam emitted from the laser light source and directed toward the ultrasonic optical modulator, either integrally or separately. An optical path changing member is provided, and the optical path changing member is configured to change the optical path of the reflected light from the ultrasonic optical modulator in a direction away from the reflecting mirror provided at the emission part of the laser light source. It does not occur that the light is reflected by the reflector of the light source and passes through the same optical path again to enter the ultrasonic modulator, so the 1st-order diffracted light as the modulated light to be used is effectively separated from the 0th-order diffracted light of the reflected light. This makes it possible to prevent deterioration of the extinction ratio.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の説明のためのA0M付近の
光学系の説明図、第2図は第1図の実施例の集光レンズ
部分の変形例を示す説明図、第3図は別の実施例を示す
集光レンズ付近を示す説明図、第4図と第5図は第3図
の実施例の変形例を示す説明図、第6図は従来の一般的
な記録装置の光学系の説明図、第7図は従来のAOM付
近の光学系の説明図である。 1・・・レーザ光源、2・・・集光レンズ、3・・・A
OM(超音波光変調器)、21.22・・・集光レンズ
、231,25・・・光路変更部材、24・・・凸レン
ズ。 代理人 弁理士 長 尾 常 明 第1図 第2図   第3図 第4図  第5図 第6図 第7図 θB
FIG. 1 is an explanatory diagram of an optical system near A0M for explaining an embodiment of the present invention, FIG. 2 is an explanatory diagram showing a modification of the condenser lens portion of the embodiment of FIG. 1, and FIG. is an explanatory diagram showing the vicinity of the condenser lens showing another embodiment, FIGS. 4 and 5 are explanatory diagrams showing a modified example of the embodiment of FIG. 3, and FIG. 6 is an explanatory diagram showing a conventional general recording device. FIG. 7 is an explanatory diagram of an optical system near a conventional AOM. 1... Laser light source, 2... Condensing lens, 3... A
OM (ultrasonic optical modulator), 21.22... Condensing lens, 231, 25... Optical path changing member, 24... Convex lens. Agent Patent Attorney Tsuneaki Nagao Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 θB

Claims (2)

【特許請求の範囲】[Claims] (1)、レーザ光源と、該レーザ光源から出射されたレ
ーザビームを変調するための超音波光変調器と、該超音
波光変調器に入射するレーザビームを集束させる集光レ
ンズとを備えた光変調装置において、 上記レーザ光源から出射され上記超音波光変調器に向か
うビームの光路外に光路変更部材を設け、該光路変更部
材により上記超音波光変調器での反射光の光路をレーザ
光源の出射部に設けた反射鏡から外れる方向に変更させ
るように構成したことを特徴とする光変調装置。
(1) A laser light source, an ultrasonic light modulator for modulating the laser beam emitted from the laser light source, and a condenser lens for focusing the laser beam incident on the ultrasonic light modulator. In the light modulation device, an optical path changing member is provided outside the optical path of the beam emitted from the laser light source and directed toward the ultrasonic optical modulator, and the optical path changing member changes the optical path of the reflected light from the ultrasonic optical modulator to the laser light source. 1. A light modulation device, characterized in that the light modulation device is configured to change the direction away from a reflecting mirror provided at an output portion of the light modulation device.
(2)、上記光路変更部材が、上記集光レンズに一体的
に或いは分離して設けられていることを特徴とする特許
請求の範囲第1項記載の光変調装置。
(2) The light modulation device according to claim 1, wherein the optical path changing member is provided integrally with or separately from the condenser lens.
JP24284785A 1985-10-31 1985-10-31 Optical modulator Pending JPS62103619A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24284785A JPS62103619A (en) 1985-10-31 1985-10-31 Optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24284785A JPS62103619A (en) 1985-10-31 1985-10-31 Optical modulator

Publications (1)

Publication Number Publication Date
JPS62103619A true JPS62103619A (en) 1987-05-14

Family

ID=17095175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24284785A Pending JPS62103619A (en) 1985-10-31 1985-10-31 Optical modulator

Country Status (1)

Country Link
JP (1) JPS62103619A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212405A (en) * 2008-03-06 2009-09-17 Ihi Corp Laser resonator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009212405A (en) * 2008-03-06 2009-09-17 Ihi Corp Laser resonator

Similar Documents

Publication Publication Date Title
AU597971B2 (en) Scanning apparatus
EP0547205B1 (en) Single-beam, multicolor hologon scanner
KR880004338A (en) Optical system with diffraction grating lens assembly
GB1198655A (en) Entrant Beam Optical Scanner.
US4756585A (en) Optical beam scanning system
JPH10227992A (en) Bessel beam generating method and optical scanning device using the same
KR20020059779A (en) Optical scanning device
JPS62103619A (en) Optical modulator
JP2810281B2 (en) Polarization detector
JPH1058743A (en) Scanner apparatus with array-shaped light source and image-recording apparatus
US6639698B2 (en) Optical scanning unit with rotatable hologram disc
US4687283A (en) Scanning optical system
US5223957A (en) Optical scanning device
JPS59178635A (en) Optical recording device
JPS63165815A (en) Optical scanner
KR930011828B1 (en) Optical scanner
JPH06324280A (en) Hologram scanning optical system
JP2653009B2 (en) Optical head device
JPS6234127A (en) Optical modulation system
JPH03185639A (en) Optical pickup
JPH08136861A (en) Super-resolution scanning optical system
JPS59202409A (en) Scanner
KR970000083Y1 (en) Scanning apparatus
JPS6234128A (en) Optical modulating device
JPH08146333A (en) Laser scanning optical device