JPS62103587A - Laser radar - Google Patents

Laser radar

Info

Publication number
JPS62103587A
JPS62103587A JP60243575A JP24357585A JPS62103587A JP S62103587 A JPS62103587 A JP S62103587A JP 60243575 A JP60243575 A JP 60243575A JP 24357585 A JP24357585 A JP 24357585A JP S62103587 A JPS62103587 A JP S62103587A
Authority
JP
Japan
Prior art keywords
angle
interference filter
oscillation wavelength
laser
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60243575A
Other languages
Japanese (ja)
Inventor
Hiroyasu Otani
大谷 博康
Sho Yasuda
升 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60243575A priority Critical patent/JPS62103587A/en
Publication of JPS62103587A publication Critical patent/JPS62103587A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mechanical Light Control Or Optical Switches (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To enable the use of a narrow transmission band filter without controlling the temperature of a semiconductor laser by changing the angle of inclination of an interference filter when the oscillation wavelength of a semiconductor laser changes by temperature so that the oscillation wavelength enters a center wavelength area. CONSTITUTION:At the start of operation of a semiconductor laser 1, the angle theta0 of inclination of an incident surface is determined to ensure that the center wavelength of an interference filter 5 will equal the initial oscillation wavelength lambda0. The angle theta0 is initialized. Then, the angle of incidence of the incident plane is tilted 8 by so that center wavelength of the filter 5 shifts by + or -DELTAtheta from the oscillation wavelength lambda0 and a reference light 11 is received 6. The output value of a detector 6 at + or -DELTAthetais discriminated 7 to be large or small and according to the judgement, which direction the oscillation wavelength is determined. Angle information which can provide the angle of inclination of incident surface to make both output values equal is outputted to an adjustor 8. The center wavelength of the filter 5 after the change should be matched. AS a result, a light receiving section 9 can a reflected laser light 13 with the optimum intensity regardless of changes in the oscillation wavelength of the laser 1.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体レーザを用いたレーザレーダ装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a laser radar device using a semiconductor laser.

(従来の技術) 従来の半導体レーザを用いたレーザレーダ装置において
は、半導体レーザの発振波長が温度により変化し、その
波長変化範囲は例えば500八にもなり広いため、背景
除去用のフィルタとしてはその変化波長範囲を含んだ透
過帯域をもつフィルタを用いるようにしている。
(Prior Art) In a laser radar device using a conventional semiconductor laser, the oscillation wavelength of the semiconductor laser changes depending on the temperature, and the wavelength change range is as wide as, for example, 500. A filter with a transmission band that includes the changing wavelength range is used.

(発明が解決しようとする問題点) ところが、従来のレーザレーダ装置では、背景光除去用
のフィルタの透過帯域を広くする必要があるため、背景
光除去の効果があまり期待できず、有効な測定が行なえ
るのは、背景光の少ない夜間のみになるという問題点が
ある。
(Problem to be solved by the invention) However, in conventional laser radar devices, it is necessary to widen the transmission band of the filter for removing background light, so the effect of removing background light cannot be expected to be very high, and effective measurement is difficult. The problem is that this can only be done at night when there is little background light.

この問題を解決するには透過帯域の狭いフィルタを用い
れば良いが、そのためには半導体レーザの使用温度が所
要値となるように半導体レーザの温度制御を行ない発振
波長の温度による変化を抑制する必要がある。しかし、
このようにすると装置が大型化複雑化しコストアップに
なるという問題点がある。本発明の目的は、半導体レー
ザの温度制御を行なわずとも狭透過帯域のフィルタを用
いることができるようにすることにある。
To solve this problem, it is possible to use a filter with a narrow transmission band, but to do so, it is necessary to control the temperature of the semiconductor laser so that the operating temperature of the semiconductor laser is at the required value, and to suppress changes in the oscillation wavelength due to temperature. There is. but,
This poses a problem in that the device becomes larger and more complex, leading to increased costs. An object of the present invention is to enable the use of a narrow transmission band filter without temperature control of a semiconductor laser.

(問題点を解決するための手段) 上記目的を達成するために本発明に係るレーザレーダ装
置は次の如き構成を有する。
(Means for Solving the Problems) In order to achieve the above object, a laser radar device according to the present invention has the following configuration.

即ち、レーザ光を発生する半導体レーザと:前記半導体
レーザからの投光レーザ光の一部が参照光として透過す
るとともに、前記投光レーザ光の反射レーザ光が前記参
照光の透過光路と平行に透過する干渉フィルタと; 前
記干渉フィルタへのレーザ光の入射角度を変えるため該
干渉フィルタの傾斜角を変化させる角度調節手段と; 
前記干渉フィルタの透過参照光を受けて該透過参照光の
透過量が該干渉フィルタの最大透過量となるように前記
角度調節手段を制御する制御手段と;を備えたことを特
徴とする。
That is, a semiconductor laser that generates a laser beam: A part of the projected laser beam from the semiconductor laser is transmitted as a reference beam, and the reflected laser beam of the projected laser beam is parallel to the transmitted optical path of the reference beam. an interference filter that transmits the laser beam; angle adjusting means that changes the inclination angle of the interference filter to change the angle of incidence of the laser beam on the interference filter;
A control means for receiving the transmitted reference light of the interference filter and controlling the angle adjusting means so that the amount of transmission of the transmitted reference light becomes the maximum amount of transmission of the interference filter.

(作 用) 次に、上述の如く構成される本発明のレーザレーダ装置
の作用を説明する。半導体レーザが発生したレーザ光は
目標物に投射され、目標物からの反射レーザ光は受光部
に導入される。
(Function) Next, the function of the laser radar device of the present invention configured as described above will be explained. Laser light generated by the semiconductor laser is projected onto a target, and reflected laser light from the target is introduced into a light receiving section.

このとき、干渉フィルタは前記半導体レーザからの投光
レーザ光の一部が参照光として透過するとともに、投光
レーザ光の反射レーザ光が前記参照光の透過光路と平行
に透過するように配設されるので、反射レーザ光は干渉
フィルタを介して受光部に導入されることになる。一方
、干渉フィルタの透過参照光は制御手段に入力される。
At this time, the interference filter is arranged so that a part of the projected laser light from the semiconductor laser is transmitted as a reference light, and the reflected laser light of the projected laser light is transmitted parallel to the transmitted optical path of the reference light. Therefore, the reflected laser light is introduced into the light receiving section via the interference filter. On the other hand, the transmitted reference light of the interference filter is input to the control means.

制御手段はこの透過参照光を受けて該透過参照光の透過
量が干渉フィルタの最大透過量となるように角度調節手
段を制御する。これにより角度調節手段は干渉フィルタ
の傾斜角を変化させ、参照光および反射レーザ光の入射
角を変化させる。
The control means receives the transmitted reference light and controls the angle adjustment means so that the amount of transmission of the transmitted reference light becomes the maximum amount of transmission of the interference filter. Thereby, the angle adjusting means changes the inclination angle of the interference filter, and changes the incident angle of the reference beam and the reflected laser beam.

干渉フィルタの最大透過量を与える中心波長は入射角に
応じて変化し、かつ入射角が例えば大きくなれば中心波
長は短波長側に移動することが知られており、本発明は
これを利用するのである。
It is known that the center wavelength that provides the maximum transmission amount of an interference filter changes depending on the angle of incidence, and that as the angle of incidence increases, for example, the center wavelength shifts to the shorter wavelength side, and the present invention utilizes this. It is.

つまり、半導体レーザの発振波長が変化し干渉フィルタ
の中心波長とずれた場合には、制御手段および角度調節
手段により、干渉フィルタの傾斜角を変えて中心波長領
域に半導体レーザの発振波長が来るようにし、受光部に
は常に最大付近の透過量が得られるように調節するので
ある。
In other words, when the oscillation wavelength of the semiconductor laser changes and deviates from the center wavelength of the interference filter, the control means and angle adjustment means change the inclination angle of the interference filter so that the oscillation wavelength of the semiconductor laser is in the center wavelength region. The light receiving section is adjusted so that the amount of transmission always near the maximum is obtained.

干渉フィルタは狭透過帯域のフィルタであるから、受光
部には背景光が除去された反射レーザ光が受光されるこ
とになる。
Since the interference filter is a filter with a narrow transmission band, the light receiving section receives reflected laser light from which background light has been removed.

このように、本発明によれば、半導体レーザの発振波長
が温度により変化したときは干渉フィルタの傾斜角を変
えて中心波長領域に発振波長が来るようにしたので、半
導体レーザの温度制御をしなくとも狭透過帯域フィルタ
を使用することができ、背景光除去効果の大きいレーザ
レーダ装置を安価に提供できる。
As described above, according to the present invention, when the oscillation wavelength of the semiconductor laser changes due to temperature, the inclination angle of the interference filter is changed so that the oscillation wavelength is in the center wavelength region, so the temperature of the semiconductor laser can be controlled. At least a narrow transmission band filter can be used, and a laser radar device with a large background light removal effect can be provided at low cost.

(実 施 例) 以下、本発明の実施例を図面を参照して説明する。第1
図は本発明の一実施例に係るレーザレーダ装置を示し、
このレーザレーダ装置は半導体レーザ1が発生するレー
ザ光を送信光学系2により図外の目標物に投射し、該目
標物からの反射レーザ光を受信光学系10により受光部
9に導入するようにしたものにおいて、送信光学系2を
介して投光されるレーザ光の一部を参照光11として取
り出すビームスブリタ3と、ビームスブリタ3で取り出
した参照光11を受信光学系1oの受信光軸12に平行
化して反射する反射鏡4と、反射鏡4で反射された参照
光11が入力される検知器6と、検知器6の検知出力を
受ける判別器7と、反射鏡4と検知器6の間および受信
光学系10と受光部9の間に各光路を塞ぎ、かつその中
心を支点に入射面が傾斜回動可能に介在する干渉フィル
タ5と、判別器7からの制御信号(角度情報)を受けて
干渉フィルタ5の入射面の傾斜角を変化させる角度調節
器8とを基本的に備えたものである。
(Embodiments) Hereinafter, embodiments of the present invention will be described with reference to the drawings. 1st
The figure shows a laser radar device according to an embodiment of the present invention,
This laser radar device projects a laser beam generated by a semiconductor laser 1 onto a target (not shown) by a transmitting optical system 2, and introduces the reflected laser beam from the target into a light receiving section 9 by a receiving optical system 10. In this system, a beam sublitter 3 extracts a part of the laser beam projected through the transmitting optical system 2 as a reference beam 11, and a beam subritter 3 extracts a part of the laser beam projected through the transmitting optical system 2 as a reference beam 11, and a receiving optical axis 12 of the receiving optical system 1o transfers the reference beam 11 extracted by the beam sublitter 3. a reflector 4 that parallelizes and reflects the light, a detector 6 into which the reference light 11 reflected by the reflector 4 is input, a discriminator 7 that receives the detection output of the detector 6, and a reflector 4 and the detector 6. and between the receiving optical system 10 and the light-receiving section 9, there is an interference filter 5 that blocks each optical path and is interposed so that its incident surface can tilt and rotate around its center as a fulcrum, and a control signal (angle information) from the discriminator 7. ) and an angle adjuster 8 that changes the angle of inclination of the incident surface of the interference filter 5 in response to the angle of incidence.

干渉フィルタ5には反射鏡4で反射された参照光11と
受信光学系10を通過収束された反射レーザ光13が平
行に透過するので、入射面の傾斜角が変化しても参照光
11の入射角と反射レーザ光13の入射角とは等しい角
度で変化する。
Since the reference light 11 reflected by the reflecting mirror 4 and the reflected laser light 13 passed through the receiving optical system 10 and converged are transmitted in parallel to the interference filter 5, even if the inclination angle of the incident surface changes, the reference light 11 will not change. The incident angle and the incident angle of the reflected laser beam 13 change at the same angle.

入射面の傾斜制御は判別器7の指令を受けた角度調節器
8が後述する如く行なうが、入射面の傾斜角を変化させ
ることは入射光の入射角を変化させることである。入射
光の入射角と干渉フィルタ5の中心波長とは次の式(1
)により関係付けられる。
The angle adjuster 8 receives a command from the discriminator 7 to control the inclination of the incident surface as described later, and changing the inclination angle of the incident surface means changing the incident angle of the incident light. The angle of incidence of the incident light and the center wavelength of the interference filter 5 are expressed by the following formula (1
).

ここで、λ0は入射角θがθ=O°、即ち垂直入射の場
合での中心波長、λ0は入射角θでの中心波長、n、は
干渉フィルタ5の屈折率である。
Here, λ0 is the center wavelength when the incident angle θ is θ=O°, that is, normal incidence, λ0 is the center wavelength at the incident angle θ, and n is the refractive index of the interference filter 5.

即ち、干渉フィルタ5の中心波長は入射角を変えること
により変化させ得るのである0例えば、第2図に示す如
く、干渉フィルタ5の入射角θを大きくすると中心波長
が短波長側に移動する。
That is, the center wavelength of the interference filter 5 can be changed by changing the angle of incidence. For example, as shown in FIG. 2, when the angle of incidence θ of the interference filter 5 is increased, the center wavelength shifts to the shorter wavelength side.

なお、第2図から明らかな通り、透過特性は狭帯域特性
であり、中心波長λ。における透過特性と中心波長λθ
における透過特性とは等しく単に平行移動した関係にな
る。このことから、干渉フィルタ5への入射角を変える
ことによりその中心波長を半導体レーザ1の発振波長に
合わせることができることが解る。具体的には最大透過
量が得られるようにするのである。
As is clear from FIG. 2, the transmission characteristic is a narrow band characteristic, with the center wavelength λ. Transmission characteristics and center wavelength λθ
The transmittance characteristics in are the same and have a simple parallel displacement relationship. From this, it can be seen that by changing the angle of incidence on the interference filter 5, the center wavelength can be matched to the oscillation wavelength of the semiconductor laser 1. Specifically, the aim is to obtain the maximum amount of transmission.

検知器6および判別器7は制御手段を構成するものであ
る。検知器6は干渉フィルタ5を透過した参照光11を
受光し、その受光強度値を判別器7に出力する0判別器
7は入力された受光強度値から干渉フィルタ5の中心波
長と半導体レーザ1の発振波長とのずれを検出し、その
ずれ量に応じた角度情報を角度調節器8に出力する。角
度調節器8はこの角度情報に基づき干渉フィルタ5の入
射面を適宜傾斜させる。
The detector 6 and the discriminator 7 constitute a control means. The detector 6 receives the reference light 11 that has passed through the interference filter 5, and outputs the received light intensity value to the discriminator 7. The discriminator 7 determines the center wavelength of the interference filter 5 and the semiconductor laser 1 from the input received light intensity value. detects the deviation from the oscillation wavelength, and outputs angle information to the angle adjuster 8 according to the amount of deviation. The angle adjuster 8 appropriately tilts the entrance surface of the interference filter 5 based on this angle information.

その結果、受光部9は半導体レーザ1の発振波長が変化
しても常に最適強度値の反射レーザ光13が安定的に受
光できることになる。干渉フィルタ5は狭透過帯域特性
であるから、背景光除去効果が優れ白昼においても有効
な測定を可能にする。
As a result, the light receiving section 9 can always stably receive the reflected laser light 13 having an optimum intensity value even if the oscillation wavelength of the semiconductor laser 1 changes. Since the interference filter 5 has narrow transmission band characteristics, it has an excellent background light removal effect and enables effective measurement even in broad daylight.

次に、第3図は入射角制御の原理を示すもので、以下同
図を参照して説明する。
Next, FIG. 3 shows the principle of incident angle control, which will be explained below with reference to the same figure.

まず、半導体レーザ1の動作開始初期において、その初
期発振波長λ。に干渉フィルタ5の中心波長が等しくな
る入射角を与える入射面の傾斜角θ0を求め、角度θ。
First, at the beginning of the operation of the semiconductor laser 1, its initial oscillation wavelength λ. Find the angle θ0 of the inclination of the plane of incidence that gives the angle of incidence at which the center wavelength of the interference filter 5 is equal to the angle θ.

に初期設定する。Initialize to .

次いで、角度調節器8により発振波長λ0から±Δ^だ
け干渉フィルタ5の中心波長がずれるように(第3図(
a))入射面の傾斜角を±Δθだけ傾け(第3図(イ)
)、参照光11を検知器6に受光させる。
Next, the angle adjuster 8 is used to shift the center wavelength of the interference filter 5 by ±Δ^ from the oscillation wavelength λ0 (see Fig. 3).
a)) Tilt the inclination angle of the incident surface by ±Δθ (Figure 3 (a)
), the reference light 11 is received by the detector 6.

そして、判別器7は検知器6のθ0+Δθにおける出力
値とθ0−Δθにおける出力値の大小関係を判別し、両
者が等しければ(第3図(b))入射面の傾斜角がθ。
Then, the discriminator 7 determines the magnitude relationship between the output value of the detector 6 at θ0+Δθ and the output value at θ0−Δθ, and if they are equal (FIG. 3(b)), the inclination angle of the incident surface is θ.

+Δθとθ。−Δθとなるような角度情報を角度調節器
8に出力し、入射面の傾斜角をθ0+Δθとθ0−Δθ
に繰り返し設定する(第3図(イ))、一方、判別器7
は検知器6の前出力値が等しくなければ、その大小関係
に応じて発振波長の変化方向を判定し、前出力値が等し
くなる入射面の傾斜角を与える角度情報を角度検出器8
に出力し、変化後の発振波長に干渉フィルタ5の中心波
長を合わせるようにする。
+Δθ and θ. -Δθ is output to the angle adjuster 8, and the inclination angle of the incident plane is set to θ0+Δθ and θ0−Δθ.
(Fig. 3 (a)), while the discriminator 7
If the front output values of the detector 6 are not equal, the direction of change of the oscillation wavelength is determined according to the magnitude relationship, and the angle information that gives the inclination angle of the incidence plane where the front output values are equal is sent to the angle detector 8.
The center wavelength of the interference filter 5 is made to match the changed oscillation wavelength.

例えば入射面の傾斜角がθ0+Δθとθ。−Δθとに繰
り返し設定されていたときく第3図(ハ))、半導体レ
ーザ1の発振波長がλ。がら長波長側の^lに変化した
とするとく第3図(C))、検知器6の出力値は傾斜角
θ0−Δθの時の方が傾斜角θ。+Δθよりも大きくな
る。
For example, the inclination angle of the plane of incidence is θ0+Δθ and θ. When the oscillation wavelength of the semiconductor laser 1 is repeatedly set to -Δθ (FIG. 3 (c)), the oscillation wavelength of the semiconductor laser 1 becomes λ. 3(C)), the output value of the detector 6 is the inclination angle θ when the inclination angle is θ0−Δθ. It becomes larger than +Δθ.

その結果、判別器7は発振波長が一Δθ側にずれたと判
定し、角度調節器8にさらに−Δθ傾けるように指示す
るので、干渉フィルタ5は傾斜角θ0と傾斜角θ。−2
Δθとに設定される(第3図(ハ)および(e))、そ
して、検知器6の傾斜角θ0における出力値と傾斜角θ
o2Δθにおける出力値とが等しければ(第3図(f)
)、干渉フィルタ5はθ0とθO−2Δθの傾斜角で設
定を続ける(第3図(ハ))、一方、検知器6の前出力
値のうち傾斜角θo2Δθにおける出力値が大きい場合
には、判別器7は干渉フィルタ5をさらに−Δθ傾ける
ような指示を角度調節器8に与え、傾斜角をθ0−Δθ
とθ−3Δθに設定させ、上述した動作を繰り返す。
As a result, the discriminator 7 determines that the oscillation wavelength has shifted to the one Δθ side and instructs the angle adjuster 8 to further tilt -Δθ, so the interference filter 5 adjusts the tilt angle θ0 and the tilt angle θ. -2
Δθ (Fig. 3 (c) and (e)), and the output value at the inclination angle θ0 of the detector 6 and the inclination angle θ
If the output values at o2Δθ are equal (Fig. 3 (f)
), the interference filter 5 continues to be set at the inclination angle of θ0 and θO−2Δθ (Fig. 3 (c)). On the other hand, if the output value at the inclination angle θo2Δθ is large among the previous output values of the detector 6, The discriminator 7 gives an instruction to the angle adjuster 8 to further tilt the interference filter 5 by −Δθ, and sets the tilt angle to θ0−Δθ.
and θ-3Δθ, and repeat the above-mentioned operation.

以上の調節動作は所定の時間間隔で行なわれ、判別器7
は再入力値が等しくなる両傾斜角度値が求まると、これ
から最大透過量を与える傾斜角を求め、干渉フィルタ5
をその角度に設定して通常の計測に備える。
The above adjustment operation is performed at predetermined time intervals, and the discriminator 7
Once the values of both inclination angles at which the re-input values are equal are determined, the inclination angle that gives the maximum amount of transmission is determined, and the interference filter 5
Set to that angle and prepare for normal measurement.

(発明の効果) 以上詳述したように、本発明によれば、半導体レーザの
発振波長が温度により変化したときは干渉フィルタの傾
斜角を変えて中心波長領域に発振波長が来るようにした
ので、半導体レーザの温度制御をしなくとも狭透過帯域
フィルタを使用することができ、背景光除去効果の大き
いレーザレーダ装置を安価に提供できる。
(Effects of the Invention) As detailed above, according to the present invention, when the oscillation wavelength of the semiconductor laser changes due to temperature, the inclination angle of the interference filter is changed so that the oscillation wavelength is in the center wavelength region. , a narrow transmission band filter can be used without temperature control of the semiconductor laser, and a laser radar device with a large background light removal effect can be provided at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係るレーザレーダ装置の構
成を示すブロック図、第2図は干渉フィルタの入射角と
透過特性の関係を示す特性図、第3図は干渉フィルタの
入射角制御の原理を説明する説明図である。 1・・・・・半導体レーザ、 2・・・・・・送信光学
系、3・・・・・・ビームスプリタ、 4・・・・・・
反射鏡、5・・・・・・干渉フィルタ、 6・・・・・
・検知器、 7・・・・・・判別器、 8・−・・・・
角度調節器、 9・・・・・・受光部、10・・・・・
・受信光学系、 11・・・・・・参照光、12・・・
・・・受信光軸、 13・・・・・・反射レーザ光。 代理人 弁理士  八 幡  義 博 木を明のレーサ゛レーサ′ヲ1萱の講仄第1図 ガ近畏側  λQ  λ0     畏炙畏側筑長 干渉スルフ0入射Aと欲全シ峙ノ)! 第 2 図
Fig. 1 is a block diagram showing the configuration of a laser radar device according to an embodiment of the present invention, Fig. 2 is a characteristic diagram showing the relationship between the incident angle and transmission characteristics of the interference filter, and Fig. 3 is the incident angle of the interference filter. It is an explanatory diagram explaining the principle of control. 1...Semiconductor laser, 2...Transmission optical system, 3...Beam splitter, 4...
Reflector, 5...Interference filter, 6...
・Detector, 7... Discriminator, 8...
Angle adjuster, 9... Light receiving section, 10...
・Reception optical system, 11...Reference light, 12...
...Receiving optical axis, 13...Reflected laser beam. Agent Patent Attorney Yoshi Yahata Hiroki Akira's Laser Laser 1. Figure 1 λQ λ0 Awesome Side Chikucho Interference Sulf 0 Incident A and Desire Full Situation)! Figure 2

Claims (1)

【特許請求の範囲】[Claims] レーザ光を発生する半導体レーザと;前記半導体レーザ
からの投光レーザ光の一部が参照光として透過するとと
もに、前記投光レーザ光の反射レーザ光が前記参照光の
透過光路と平行に透過する干渉フィルタと;前記干渉フ
ィルタへのレーザ光の入射角度を変えるため該干渉フィ
ルタの傾斜角を変化させる角度調節手段と;前記干渉フ
ィルタの透過参照光を受けて該透過参照光の透過量が該
干渉フィルタの最大透過量となるように前記角度調節手
段を制御する制御手段と;を備えたことを特徴とするレ
ーザレーダ装置。
a semiconductor laser that generates a laser beam; a portion of the projected laser beam from the semiconductor laser is transmitted as a reference beam, and a reflected laser beam of the projected laser beam is transmitted parallel to the transmission optical path of the reference beam; an interference filter; an angle adjusting means for changing the inclination angle of the interference filter in order to change the angle of incidence of the laser beam on the interference filter; A laser radar device comprising: control means for controlling the angle adjustment means so that the amount of transmission through the interference filter is the maximum.
JP60243575A 1985-10-30 1985-10-30 Laser radar Pending JPS62103587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60243575A JPS62103587A (en) 1985-10-30 1985-10-30 Laser radar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60243575A JPS62103587A (en) 1985-10-30 1985-10-30 Laser radar

Publications (1)

Publication Number Publication Date
JPS62103587A true JPS62103587A (en) 1987-05-14

Family

ID=17105867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60243575A Pending JPS62103587A (en) 1985-10-30 1985-10-30 Laser radar

Country Status (1)

Country Link
JP (1) JPS62103587A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01116617A (en) * 1987-10-30 1989-05-09 Meisei Electric Co Ltd Passing wavelength band controller for optical filter
JPH04249413A (en) * 1991-02-06 1992-09-04 Matsushita Electric Ind Co Ltd Electronic tuning type tuner
JPH04107221U (en) * 1991-02-22 1992-09-16 株式会社リコー optical filter device
JPH055805A (en) * 1991-06-27 1993-01-14 Mitsubishi Cable Ind Ltd Wavelength variable filter module
US5214494A (en) * 1990-09-04 1993-05-25 Minolta Camera Kabushiki Kaisha Light sensor with an adjustable spectral characteristic
US5646399A (en) * 1995-08-28 1997-07-08 Fujitsu Limited Tunable optical filter having beam splitter and movable film filter
JPH10311875A (en) * 1997-05-13 1998-11-24 Nec Corp Light transmitter-receiver
JP2007085832A (en) * 2005-09-21 2007-04-05 Omron Corp Optical radar system
WO2010058667A1 (en) * 2008-11-21 2010-05-27 三洋電機株式会社 Object detecting device and information acquiring device
JP2013068582A (en) * 2011-09-26 2013-04-18 Denso Wave Inc Laser radar device
JP2017122673A (en) * 2016-01-08 2017-07-13 富士通株式会社 Laser distance measurement device, measurement method, and measurement program
JP2019113376A (en) * 2017-12-22 2019-07-11 パイオニア株式会社 Optical device
JPWO2019031328A1 (en) * 2017-08-07 2020-08-06 パイオニア株式会社 Optical device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01116617A (en) * 1987-10-30 1989-05-09 Meisei Electric Co Ltd Passing wavelength band controller for optical filter
US5214494A (en) * 1990-09-04 1993-05-25 Minolta Camera Kabushiki Kaisha Light sensor with an adjustable spectral characteristic
JPH04249413A (en) * 1991-02-06 1992-09-04 Matsushita Electric Ind Co Ltd Electronic tuning type tuner
JPH04107221U (en) * 1991-02-22 1992-09-16 株式会社リコー optical filter device
JPH055805A (en) * 1991-06-27 1993-01-14 Mitsubishi Cable Ind Ltd Wavelength variable filter module
US5646399A (en) * 1995-08-28 1997-07-08 Fujitsu Limited Tunable optical filter having beam splitter and movable film filter
JPH10311875A (en) * 1997-05-13 1998-11-24 Nec Corp Light transmitter-receiver
US6295151B1 (en) 1997-05-13 2001-09-25 Nec Corporation Optical transmission and receiving equipment
JP2007085832A (en) * 2005-09-21 2007-04-05 Omron Corp Optical radar system
WO2010058667A1 (en) * 2008-11-21 2010-05-27 三洋電機株式会社 Object detecting device and information acquiring device
US20110222064A1 (en) * 2008-11-21 2011-09-15 Sanyo Electric Co., Ltd. Object detecting device and information acquiring device
CN102224431A (en) * 2008-11-21 2011-10-19 三洋电机株式会社 Object detecting device and information acquiring device
US8218149B2 (en) 2008-11-21 2012-07-10 Sanyo Electric Co., Ltd. Object detecting device and information acquiring device
JP2013068582A (en) * 2011-09-26 2013-04-18 Denso Wave Inc Laser radar device
JP2017122673A (en) * 2016-01-08 2017-07-13 富士通株式会社 Laser distance measurement device, measurement method, and measurement program
JPWO2019031328A1 (en) * 2017-08-07 2020-08-06 パイオニア株式会社 Optical device
JP2023029347A (en) * 2017-08-07 2023-03-03 パイオニア株式会社 optical device
JP2019113376A (en) * 2017-12-22 2019-07-11 パイオニア株式会社 Optical device
JP2022093723A (en) * 2017-12-22 2022-06-23 パイオニア株式会社 Optical device

Similar Documents

Publication Publication Date Title
JPS62103587A (en) Laser radar
JP6199923B2 (en) Frequency adjustable laser device
US5373515A (en) Laser wavelength controlling apparatus
US5930045A (en) Optical apparatus which uses a virtually imaged phased array to produce chromatic dispersion
US5420416A (en) Light wavelength selection device and method using diffraction grating with peak detection
JPH11289118A (en) Wavelength-variable laser light source
US7259914B2 (en) Attenuator for high-power unpolarized laser beams
EP1128507B1 (en) Tunable laser source apparatus
JPS5887886A (en) Device and method of mimizing beam lock-in in ring laser gyroscope
JPS6313015A (en) Controller for beam position of optical deflector
JPS5842637B2 (en) laser beam angler
JP3507739B2 (en) Spatial optical transmission equipment
JPH0745890A (en) External cavity semiconductor laser
CA2248501C (en) External resonator light source
JPH0218977A (en) Leser optical axis adjusting device
JPH09146020A (en) Polarization-nondependent variable wavelength device and polarization axis rotary mirror
JPH02264528A (en) Transmitter-receiver for optical communication between satellites
JP2500196Y2 (en) Laser annealing device
JPH0339712A (en) Light beam coupler
JPS6354235B2 (en)
JP3192359B2 (en) Space optical communication equipment
JP2005529497A (en) Tunable ring resonator
JP4333458B2 (en) Optical signal processor
JPH02234114A (en) Laser beam attenuator
JPH0621549A (en) Semiconductor laser capable of changing wavelength and external resonance unit