JPS62103371A - Plasma chemical vapor deposition method - Google Patents

Plasma chemical vapor deposition method

Info

Publication number
JPS62103371A
JPS62103371A JP24149085A JP24149085A JPS62103371A JP S62103371 A JPS62103371 A JP S62103371A JP 24149085 A JP24149085 A JP 24149085A JP 24149085 A JP24149085 A JP 24149085A JP S62103371 A JPS62103371 A JP S62103371A
Authority
JP
Japan
Prior art keywords
power
film
frequency
amplifier
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24149085A
Other languages
Japanese (ja)
Inventor
Masayasu Nihei
二瓶 正恭
Mitsuo Chikazaki
充夫 近崎
Masateru Suwa
正輝 諏訪
Kunihiro Tamahashi
邦裕 玉橋
Noritoshi Ishikawa
文紀 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24149085A priority Critical patent/JPS62103371A/en
Publication of JPS62103371A publication Critical patent/JPS62103371A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To form a laminar film, composite film and alloy film and to obtain a composite effect having optional characteristics by changing supply electric power impulsively, etc. thereby depositing films having different characteristics. CONSTITUTION:A continuous high-frequency signal is supplied from a high-frequency oscillator 14 to an initial stage high-frequency amplifier 9 and the signal programmed in a setting circuit is compared and amplified with the detection signal from a power detector 7 by a differential amplifier 10 in order to convert the above-mentioned signal to the impulsive low-frequency power or the high-frequency changing with time. The differential signal is supplied to the amplifier 9 which drives a high-frequency power amplifier 8 so as to obtain always the set power. The high-frequency is supplied via a matching circuit 2 to electrodes 4, 5 to generate glow discharge. More specifically, the peak power is changed periodically or with time to change the reaction and cracking of the gaseous raw material by plasma, by which the films having the different characteristics are successively deposited and the laminar film, composite film and alloy film are formed.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はプラズマCVD法に関するものである。。[Detailed description of the invention] [Field of application of the invention] The present invention relates to a plasma CVD method. .

〔発明の背景〕[Background of the invention]

プラズマCVD法はエレクトロ二ソクス、光学装飾、謂
密機械などに利用されている。また、合金化、複合化、
積層薄膜化により新材料1機能素子への期待が多く、内
外の研究機関で研究が盛んに進められている。第8図は
一般的に用いられている容量結合方式のプラズマCVD
法の原理を示したものである。電極5に基板6をのせ、
ガス状の原料をチャンバー3内に導入し、両電極間に電
界を加え第1図(b)のように一定の電力を与えグロー
放電させ原料をプラズマ中で分解あるいは反応させ基板
上に膜を形成させるものである。したがって、時間と共
に堆積される膜は同一特性の膜が形成されるだけであり
複合化あるいは異なる特性の膜を層状に堆積させ特異な
効果を持った膜を作成することはできない。しかし、こ
の方式でも数種の原料ガスをチャンバー内に導入すれば
複合薄膜を形成することは可能である。しかし、層状に
異なった組成の膜全堆積させることは困難である。
The plasma CVD method is used in electronics, optical decoration, so-called secret machinery, etc. In addition, alloying, compounding,
There are many expectations for the creation of single-function devices made from new materials by thinning the laminated film, and research is actively progressing at domestic and overseas research institutions. Figure 8 shows a commonly used capacitively coupled plasma CVD method.
It shows the principle of law. Place the substrate 6 on the electrode 5,
A gaseous raw material is introduced into the chamber 3, an electric field is applied between both electrodes, and a constant power is applied as shown in Fig. 1(b) to cause a glow discharge, causing the raw material to decompose or react in the plasma and form a film on the substrate. It is something that is made to form. Therefore, the films that are deposited over time only have the same characteristics, and it is not possible to create a film with a unique effect by combining or depositing layers of films with different characteristics. However, even with this method, it is possible to form a composite thin film by introducing several types of raw material gases into the chamber. However, it is difficult to deposit all layers of films with different compositions.

尚、関連するものとしてCVD法に特開昭50−102
582号公報が知られている。
In addition, as a related matter, Japanese Patent Application Laid-Open No. 50-102
No. 582 is known.

〔発明の目的〕[Purpose of the invention]

本発明の目的は同一チャンバー内で原料ガスを変えるこ
となく複合薄膜を形成できるプラズマCVD法を提供す
るにある。
An object of the present invention is to provide a plasma CVD method that can form a composite thin film within the same chamber without changing the raw material gas.

〔発明の概要〕[Summary of the invention]

第1の発明は複合薄膜を形成できるプラズマCVD法で
[F]って、その特徴はグロー放電底力ヲハルス化ある
いは時間と共に電力を変化させることである。すなわち
、ある種の原料ガスがプラズマ中で分解あるいは反応し
換金形成する時、電力を変えると全く異なる物質あるい
は特性の異なる膜が形成されることがちる。すなわち、
ピーク電力を周期的あるいは時間と共に変化させると異
なる物質、特性のもの(il一層状に堆積複合化薄膜を
形成することができる。第2の発明は上記方式’に!施
する方式に係シ、グロー放1!電力をパルス的あるいは
時間と共に任意にプログラムできる印加装置を備えたこ
とを特徴とする。
The first invention is a plasma CVD method [F] that can form a composite thin film, and its feature is that the glow discharge power is halved or the power is changed over time. That is, when a certain kind of raw material gas decomposes or reacts in plasma to form money, completely different substances or films with different properties are likely to be formed when the electric power is changed. That is,
By changing the peak power periodically or over time, it is possible to form a composite thin film deposited in a single layer with different materials and properties.The second invention relates to a method for applying the above method. Glow emission 1! It is characterized by being equipped with an application device that can arbitrarily program the power in pulses or over time.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例について詳細に説明する。 Examples of the present invention will be described in detail below.

実施例1 第1[iiNは本発明のプラズマCVD装置の一例を示
す説明構成図である。図においてチャンバー3内に相対
向する2つの電極4と5が設置されている。電極5には
基板6が置かれておシ、また電極4のノズルから原料ガ
スが導入されている。可変電力供給部は可変電力を供給
する高周波電力増幅器8、これを駆動するための初段高
周波増幅器9とからなる。この増幅器9のトランジスタ
12のベースには高周波発振器14から13.56MH
zの信号が供給されている。また、この13.56M 
l(zの連続高周波を低周波のパルス状(13,56M
Hzの高周波k 13.56 MHzの周期よりも長い
時間で継続する)あるいは時間と共に変化する高周波電
力にするために、マイクロコンピュータからなる設定値
回路13でプログラム設定された信号を、電力検出器7
で検出された電力信号と差動増幅器10とで比較増幅さ
れる5、この偏差信号は初段高周波増幅器9の電力制御
トランジスタ110ペースに供給し常に設定された電力
になるよう高周波電力増幅器8を駆動している。フィー
ドバックされた高周波電力はマツチング回路2を通シ電
極4゜5に供給されグロー放電する。このようにフィー
ドバック制@を行なっているため、プログラム設定され
た値を忠実に再現することができる。
Embodiment 1 1 [iiN] is an explanatory configuration diagram showing an example of a plasma CVD apparatus of the present invention. In the figure, two electrodes 4 and 5 facing each other are installed in a chamber 3. A substrate 6 is placed on the electrode 5, and a source gas is introduced from the nozzle of the electrode 4. The variable power supply section includes a high frequency power amplifier 8 for supplying variable power and a first stage high frequency amplifier 9 for driving the high frequency power amplifier 8. The base of the transistor 12 of this amplifier 9 is connected to a high frequency oscillator 14 of 13.56 MHz.
z signal is supplied. Also, this 13.56M
l(z continuous high frequency wave to low frequency pulse form (13,56M
In order to generate high-frequency power (continuing for a period longer than the period of 13.56 MHz) or high-frequency power that changes over time, a signal programmed by a set value circuit 13 consisting of a microcomputer is sent to a power detector 7.
The detected power signal is compared and amplified by the differential amplifier 10 (5), and this deviation signal is supplied to the power control transistor 110 pace of the first stage high frequency amplifier 9 and drives the high frequency power amplifier 8 so that the power is always set. are doing. The fed back high frequency power is supplied to the electrodes 4.degree. 5 through the matching circuit 2, causing a glow discharge. Since the feedback system is implemented in this way, the values set in the program can be faithfully reproduced.

以下、木製fl用いて実施した例を詳細に説明する。保
護膜や絶縁膜として利用されている窒化/リコン膜の形
成例を示す。電力を変えた場合の窒化シリコンの膜特性
は第2図になることが知られている。絶縁膜一般にいえ
ることであるが、膜厚を厚くして行くとクラックが発生
し目的とする膜厚を形成することができなくなる場合が
ある。
Hereinafter, an example implemented using wooden fl will be described in detail. An example of forming a nitride/recon film used as a protective film or an insulating film is shown. It is known that the film characteristics of silicon nitride when changing the electric power are as shown in FIG. As with any insulating film in general, as the film thickness increases, cracks may occur and it may become impossible to form the desired film thickness.

原料ガスN2 : 400 sccM+ NH,: 1
50secM。
Raw material gas N2: 400 sccM+ NH,: 1
50secM.

5i)(4: 50SCCM 1雰囲気圧カニQ、2’
forr。
5i) (4: 50SCCM 1 atmospheric pressure crab Q, 2'
forr.

基板温度:200℃、基板:At、高周波電力は150
Wと350Wの2条件で窒化シリコン膜を形成した。そ
の結果、電力が150Wでは膜厚が1.1μm、電力3
50Wでは1.3μmでクラックが発生した。次に第3
図に示すように高周波電力全150W5分、350W3
分の周期で積層しクラックが発生する限界膜厚を測定し
た。その結果、クラック発生限界膜厚は26μmで従来
法の2倍の膜厚が得られた。これは第2図から明らかな
ように電力が低い場合は膜中には引張応力が、一方電力
が大きい場合は圧縮応力が発生するためである。したが
って交互に引張、圧縮の膜が形成されるため応力が緩和
されクランク発生限界値が向上したものである。したが
って本方式を用いれば歩留シが良くなり信頼性も大幅に
向上する。
Substrate temperature: 200℃, substrate: At, high frequency power: 150℃
A silicon nitride film was formed under two conditions: W and 350W. As a result, when the power was 150W, the film thickness was 1.1μm, and when the power was 3
At 50 W, cracks occurred at 1.3 μm. Then the third
As shown in the figure, high frequency power total 150W 5 minutes, 350W3
The critical film thickness at which cracks occur when laminated at a cycle of 1 minute was measured. As a result, the film thickness at the crack generation limit was 26 μm, which was twice the thickness of the conventional method. This is because, as is clear from FIG. 2, when the electric power is low, tensile stress is generated in the film, whereas when the electric power is high, compressive stress is generated in the film. Therefore, since tension and compression films are formed alternately, stress is relaxed and the crank generation limit value is improved. Therefore, if this method is used, the yield will be improved and the reliability will be greatly improved.

実施例2 電力300W、他の条件は実施例1と同じ条件で約1μ
mの膜を形成した後、2μm間隔でレジストマスク全村
けCF4:80壬、02: 20係の混合ガスを用いプ
ラズマエツチングし、パターンを形成した。その結果第
5図(a)に示すように大きなアンダーカットが生じた
。この現象はアンダーカットの大小はあるが、薄膜パタ
ーン形成で一般的に見られる。しかし、第4図に示すよ
うに高周波電力f 2 W 7m i nの勾配で電力
を増加させ、約1μmの膜を形成し上記と同じ条件でパ
ターニングした結果、第5図(b)に示すように従来法
と比べ大幅にアンダーカットの少ないパターンが形成で
きた。これは電力の変化と共にエツチング速度の異なる
窒化シリコンが堆積したことを示しており、第2図の電
力とエツチング速度の関係からも明らかである。この結
果はパターニングの歩留りや信頼性の向上に役だつげか
りでなく、ますます高密度化するLSIなどに応用でき
る。また、第4回出)に示す高周波電力を高、低とパル
ス状にし、時間と共に高パルスを長く、低パルスを短か
くするようにプログラムし放電した結果、高周波電力を
連続に変化させたものとほぼ同じようにアンダーカット
の少ないパターンが形成できた。なお、プラズマCVD
で形成できる8102などの絶縁膜にもほぼ同じような
効果が認められた。
Example 2 Power: 300W, other conditions are the same as Example 1, about 1μ
After forming a film of 2 μm, a pattern was formed by plasma etching using a mixed gas of CF4:80 and 02:20 using a resist mask at intervals of 2 μm. As a result, a large undercut occurred as shown in FIG. 5(a). This phenomenon is commonly observed in thin film pattern formation, although the size of the undercut varies. However, as shown in Fig. 4, when the power was increased with a gradient of high-frequency power f 2 W 7 min to form a film of about 1 μm and patterned under the same conditions as above, the result was as shown in Fig. 5 (b). It was possible to form a pattern with significantly less undercut compared to the conventional method. This indicates that silicon nitride was deposited at different etching rates as the power changed, and this is also clear from the relationship between power and etching rate shown in FIG. This result is not only useful for improving patterning yield and reliability, but can also be applied to LSIs, etc., which are becoming increasingly dense. In addition, as shown in Part 4), the high-frequency power is pulsed high and low, and the high-frequency power is programmed to lengthen and the low pulses shorten over time. A pattern with less undercuts could be formed in almost the same way. In addition, plasma CVD
Almost the same effect was observed in insulating films such as 8102, which can be formed using

実施例3 次に電子写真への応用研究が進められているa−8i:
)(での実施例を示す。電子写真に要求される特性は種
々あるが、その中でも高抵抗で光感度の高いものが要求
される。第6図は原料ガス5i)(、:20チ、H2:
80%の混合ガス250secM、雰囲気圧力+ 0.
2 T” ’ * 電力200〜1200Wの条件で高
周波電力と暗導電率および光感度について調べたもので
ある。図から明らかなように暗抵抗率は電力の増加と共
に大きくなるが、光感度(ここでの光感度とは表面電位
の光減衰速度から推定した光電光密度Jpと入射光束e
F。
Example 3 Next, the a-8i, which is being studied for application to electrophotography:
)().There are various characteristics required for electrophotography, but among them, high resistance and high photosensitivity are required.Figure 6 shows the raw material gas 5i)(, :20chi, H2:
80% mixed gas 250secM, atmospheric pressure +0.
2 T"' * Radio frequency power, dark conductivity, and photosensitivity were investigated under the conditions of power of 200 to 1200W.As is clear from the figure, the dark resistivity increases as the power increases, but the photosensitivity (here The photosensitivity is the photoelectric density Jp estimated from the light attenuation rate of the surface potential and the incident luminous flux e.
F.

との比G ” J p / e F o )は低下し相
反する現象を示している。そこで、第7図を示すように
高周波電力200Wと100OWで交互に放電し膜特性
を調べた結果、暗導電率4 X 10−130−13(
n’、光感度量0.5であり、従来法の単層膜では得る
ことができない高抵抗で光感度の高い膜特性が得られた
The ratio G '' J p / e F o ) decreases, indicating a contradictory phenomenon.Then, as shown in Fig. 7, the film characteristics were examined by alternately discharging with high frequency power of 200 W and 100 OW. Conductivity 4 x 10-130-13 (
n' and photosensitivity of 0.5, and film characteristics of high resistance and photosensitivity, which cannot be obtained with a single layer film using the conventional method, were obtained.

このように電力を周期的あるいは時間と共に可変するこ
とにより膜特性の異なる膜を積層あるいは複合化するこ
とにより複合効果を得ることができる。またa−8i:
)(や絶縁体ばかりでなくプラズマCVDで形成できる
金属9合金などにも応用すれば新しい効果が期待できる
ことは明らかである。
By varying the power periodically or over time in this way, a composite effect can be obtained by stacking or combining membranes with different membrane characteristics. Also a-8i:
) (It is clear that new effects can be expected if applied not only to insulators but also to metal 9 alloys that can be formed by plasma CVD.

以上、実施例1〜3は容量結合方式で高周波を用いたが
電源は高周波、直流いずれでもほぼ同じ効果が得られる
。また、本発明は無電極の誘導結合方式にも適用できる
As described above, in Examples 1 to 3, high frequency was used in the capacitive coupling method, but substantially the same effect can be obtained with either high frequency or direct current as the power source. Further, the present invention can also be applied to an electrodeless inductive coupling method.

なお、プラズマエツチング法にパルス制御技術を応用す
れば微細なパターン形成に効果があると考えられる。
It is believed that applying pulse control technology to the plasma etching method will be effective in forming fine patterns.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば電力をパルス的あるいは時
間と共に任意に変えることにより特性の異なる膜を堆積
させて層状薄膜、複合薄膜を形成し、複合効果全書ると
いう顕著な効果を有する。
As described above, the present invention has the remarkable effect of depositing films with different characteristics by arbitrarily changing the power in a pulsed manner or over time to form a layered thin film or a composite thin film, thereby producing a complete composite effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のプラズマCVD法を実施する装置の説
明図、第2図は従来の方法で裏腹した窒化シリコン膜特
性図、第3図、第4図(b)、第7図は第1図の方法実
施のプラズマ放1!電力波形の模式図、第4図(a)は
第4図(b)の電力増加説明図、第5図(a)は第4図
のプラズマ放電電力波形の模式図。 (b)は従来法の模式図、第6図はa−8i:H膜を従
来法で形成した場合の膜特性説明図、第8図(a)は従
来法のプラズマCVD装置の説明図、(b)は(a)の
プラズマ放電電力波形説明図である。 7・・・電力検出器、8・・・高周波電力増幅器。
Fig. 1 is an explanatory diagram of an apparatus for carrying out the plasma CVD method of the present invention, Fig. 2 is a silicon nitride film characteristic diagram that differs from the conventional method, Figs. 3, 4 (b), and 7 are Plasma emission 1 using the method shown in Figure 1! FIG. 4(a) is a schematic diagram of the power waveform of FIG. 4(b), and FIG. 5(a) is a schematic diagram of the plasma discharge power waveform of FIG. 4. (b) is a schematic diagram of the conventional method, FIG. 6 is an explanatory diagram of film characteristics when an a-8i:H film is formed by the conventional method, and FIG. 8 (a) is an explanatory diagram of a plasma CVD apparatus of the conventional method. (b) is an explanatory diagram of the plasma discharge power waveform in (a). 7...Power detector, 8...High frequency power amplifier.

Claims (1)

【特許請求の範囲】[Claims] 1、プラズマにより原料ガスを反応、分解させ基板に付
着させ膜を形成するプラズマCVD法において、供給電
力をパルス的あるいは時間と共に任意に変えることによ
り、プラズマによる反応、分解を変化させて特性の異な
る膜を順次堆積させて層状膜、複合膜、合金膜を形成す
ることを特徴とするプラズマ化学蒸着法。
1. In the plasma CVD method, in which a raw material gas is reacted and decomposed by plasma and attached to a substrate to form a film, by changing the supplied power in pulses or arbitrarily over time, the reaction and decomposition by the plasma can be changed, resulting in different characteristics. A plasma chemical vapor deposition method characterized by sequentially depositing films to form layered films, composite films, and alloy films.
JP24149085A 1985-10-30 1985-10-30 Plasma chemical vapor deposition method Pending JPS62103371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24149085A JPS62103371A (en) 1985-10-30 1985-10-30 Plasma chemical vapor deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24149085A JPS62103371A (en) 1985-10-30 1985-10-30 Plasma chemical vapor deposition method

Publications (1)

Publication Number Publication Date
JPS62103371A true JPS62103371A (en) 1987-05-13

Family

ID=17075093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24149085A Pending JPS62103371A (en) 1985-10-30 1985-10-30 Plasma chemical vapor deposition method

Country Status (1)

Country Link
JP (1) JPS62103371A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62216637A (en) * 1986-03-19 1987-09-24 Anelva Corp Device for plasma treatment
JP2008240156A (en) * 1994-12-20 2008-10-09 Schott Ag Plasma cvd method
JP2012134541A (en) * 2009-02-17 2012-07-12 Korea Inst Of Industrial Technology Solar cell manufacturing method making use of inductive coupling plasma chemical vapor deposition method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62216637A (en) * 1986-03-19 1987-09-24 Anelva Corp Device for plasma treatment
JPH0525536B2 (en) * 1986-03-19 1993-04-13 Anelva Corp
JP2008240156A (en) * 1994-12-20 2008-10-09 Schott Ag Plasma cvd method
JP2012134541A (en) * 2009-02-17 2012-07-12 Korea Inst Of Industrial Technology Solar cell manufacturing method making use of inductive coupling plasma chemical vapor deposition method

Similar Documents

Publication Publication Date Title
JP3402972B2 (en) Method for manufacturing semiconductor device
US5643838A (en) Low temperature deposition of silicon oxides for device fabrication
JP2802642B2 (en) Chemical Vapor Deposition Method on Semiconductor Substrate and Apparatus Suitable for Use Thereof
JPS60215777A (en) Surface treatment method
EP0230788A1 (en) Method for preparation of multi-layer structure film
JPH0676664B2 (en) Apparatus for forming functional deposited film by microwave plasma CVD method
JP3469761B2 (en) Method for manufacturing semiconductor device
JP3429171B2 (en) Plasma processing method and semiconductor device manufacturing method
TW307027B (en) Process for reducing circuit damage during pecvd in single wafer pecvd system
JPS62103371A (en) Plasma chemical vapor deposition method
JPH06326026A (en) Formation method for thin film in semiconductor device
JP2850834B2 (en) Method for manufacturing amorphous carbon film and semiconductor device
JPH01298725A (en) Thin film formation, apparatus therefor, and semiconductor element
DE4234101A1 (en) METHOD FOR FORMING AN ELECTRODE ON DIAMOND FOR ELECTRONIC COMPONENTS
JPS60137898A (en) Production of thin diamond film
JPH11162960A (en) Plasma film forming method
JPH05335244A (en) Forming method for amorphous silicon thin film
JP3002494B2 (en) Method for manufacturing semiconductor device
JPH098033A (en) Formation of insulation film
JPH01123071A (en) Method and apparatus for producing thin film
JPS63129099A (en) Production of diamond thin film or diamondlike thin film
JP2002261096A (en) Manufacturing method of glass film using plasma cvd device
JPS62209831A (en) Manufacture of silicon oxide film
JPH05279859A (en) Plasma treating device
JPS6057613A (en) Device for plasma chemical vapor deposition