JPS6210262A - Manufacture of molten galvanized steel sheet which is one surface alloyed in different thickness - Google Patents

Manufacture of molten galvanized steel sheet which is one surface alloyed in different thickness

Info

Publication number
JPS6210262A
JPS6210262A JP14971185A JP14971185A JPS6210262A JP S6210262 A JPS6210262 A JP S6210262A JP 14971185 A JP14971185 A JP 14971185A JP 14971185 A JP14971185 A JP 14971185A JP S6210262 A JPS6210262 A JP S6210262A
Authority
JP
Japan
Prior art keywords
steel sheet
alloyed
zinc
heating
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14971185A
Other languages
Japanese (ja)
Inventor
Akira Yasuda
安田 顕
Shigeru Kobayashi
繁 小林
Toshiro Ichida
市田 敏郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14971185A priority Critical patent/JPS6210262A/en
Publication of JPS6210262A publication Critical patent/JPS6210262A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled steel sheet superior in plating adhesiveness, by dipping steel sheet in which oxide film on surface is removed in molten zinc bath, adhered with zinc, and heated to alloy completely only surface having a little adhered zinc quantity. CONSTITUTION:Inorganic compd. contg. alkali metal (e.g. Na3SO3.5H2O) is coated on only the steel sheet surface where adhered zinc quantity is to be increased in 2X10<-4>-1X10<-3>mol/m<2> range, favorably as aq. soln., then dried. Next, the steel sheet after the treatment is heated to >=500 deg.C, and annealed to remove oxide fil on steel sheet surface, while adjusting ratio of CO to CO2 (CO/CO2) in atmospheric gas in heating furnace by nonoxidizing heating mode to <=0.4. Next, steel sheet in which oxide film on one surface is removed is dipped in molten zinc bath, and zinc is hot dip coated so that adhered zinc quantity on one surface of steel sheet is made 1.2-5 times as much as that on the other surface. Next, the coated steel sheet is heated immediately to alloy completely only the surface of a little adhered zinc quantity, and the aimed titled steel sheet is obtd.

Description

【発明の詳細な説明】 〈産業」=の利用分野〉 本発明は、片面合金化差厚溶融亜鉛めっき鋼板の製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Field of Application of Industry> The present invention relates to a method for manufacturing a single-side alloyed differential thickness hot-dip galvanized steel sheet.

〈従来技術とその問題点〉 自動車およびトラックの車体に使用される鋼板は1表面
は美麗な塗装表面を得易いこと、一方、表面は車体の穴
あき腐食を防ぐため、十分に高い防食性を有することが
望まれる。
<Prior art and its problems> The steel plates used for the bodies of automobiles and trucks must have one surface that is easy to obtain a beautiful painted surface, and another that has sufficiently high corrosion resistance to prevent pitting and corrosion of the vehicle body. It is desirable to have one.

そこで、近年高い防食性を有するZnめっき鋼板が自動
車車体に使用されるようになったが、金属亜鉛表面は塗
装性が劣ると同時に、車体組立てにおける、スポット溶
接性が、きわめて劣るため、これらの性能を改善するた
めに片面をFeとZnの合金となした片面合金化差厚溶
融Znめっき鋼板が自動車車体用鋼板として適している
0片面合金化差厚溶融Znめっき鋼板の製造に際しては
一般に表裏面の亜鉛付着量を変えてめっきし、次いで、
加熱することにより低+1着量面のみを完全に合金化す
ることにより製造される。この際完全合金化面のめっき
層中のFe含有社が8%〜12%となるように合金化す
ることが、良好なプレス成形性を有する合金めっきを得
るためには必要である。
Therefore, in recent years, Zn-plated steel sheets with high anti-corrosion properties have come to be used for automobile bodies, but the metal zinc surface has poor paintability and at the same time has extremely poor spot weldability during car body assembly. In order to improve performance, single-sided alloyed differentially thick hot-dip Zn-coated steel sheets with an alloy of Fe and Zn on one side are suitable as steel sheets for automobile bodies.In the production of single-sided alloyed differentially-thickness hot-dip Zn-coated steel sheets, generally Plating the back side with varying amounts of zinc, then
It is manufactured by completely alloying only the low +1 loading surface by heating. At this time, it is necessary to perform alloying so that the Fe content in the plating layer on the fully alloyed surface is 8% to 12% in order to obtain an alloy plating with good press formability.

しかし、このような合金化めっき層を得るための合金化
処理のための加熱に際し、高付着量面の鋼板、めっき層
界面にも合金層が形成され、このため非合金面のめっき
密着性が劣化するという問題があった。
However, during heating for alloying treatment to obtain such an alloyed plating layer, an alloy layer is also formed on the steel plate and the plating layer interface on the high-coating surface, resulting in poor plating adhesion on the non-alloyed surface. There was a problem with deterioration.

このような問題を解決する方法として、特開昭54−9
0024号には1合金化面のみ加熱し、非合金面を強制
冷却することにより非合金面における合金層の発達を抑
制する方法が開示されている。
As a method to solve such problems,
No. 0024 discloses a method of suppressing the development of an alloy layer on the non-alloyed surface by heating only one alloyed surface and forcedly cooling the non-alloyed surface.

しかし、鋼の熱伝導率が高いため、片面を加熱し片面を
冷却しても鋼板表裏面の温度差は、さほど大きくならず
、このため十分な効果を得ることは困難であった。
However, since the thermal conductivity of steel is high, even if one side is heated and the other side is cooled, the temperature difference between the front and back surfaces of the steel plate is not very large, and therefore it has been difficult to obtain a sufficient effect.

更に、特開昭59−23858号には、焼鈍前に合金化
面にNiめっきを施し1合金化反応を促進し、表裏面の
合金化速度に差をつけて非合金面の合金層の成長を小さ
くする方法が提案されている。しかし、この方法では、
片面のみにNiめっきをするための設備を必要とし、ま
たXiめっきのためのコストアップが避けられず、更に
、Ni付着量の(1]方向の不均一に起因する合金化ム
ラが発生するという欠点を有している。
Furthermore, in JP-A-59-23858, Ni plating is applied to the alloyed surface before annealing to promote the 1-alloying reaction, and the growth of the alloy layer on the non-alloyed surface is achieved by differentiating the alloying rate between the front and back surfaces. A method has been proposed to reduce the However, with this method,
It requires equipment to plate only one side with Ni, and the cost of Xi plating is unavoidable.Furthermore, uneven alloying occurs due to non-uniformity in the amount of Ni deposited in the (1) direction. It has its drawbacks.

〈発明の目的〉 本発明はこれら従来法の欠点を解決し、めっき密着性に
優れた片面合金化溶融亜鉛めっき鋼板の製造方法を提供
することを目的とする。
<Objective of the Invention> An object of the present invention is to solve the drawbacks of these conventional methods and provide a method for producing a single-sided alloyed hot-dip galvanized steel sheet with excellent plating adhesion.

〈発明の構成〉 本発明は、予備処理した鋼板を無酸化加熱方式で加熱後
還元雰囲気中での焼鈍により鋼板表面の酸化被膜を除去
した後に、溶融Zn浴に浸漬して鋼板の一方の面の亜鉛
付着量が他方の面のZn付着量の1.2倍以上、5倍以
下となるように調整してめっきし、直後に上記鋼板を加
熱することにより合金化処理し、亜鉛付着量の少ない面
のみ完全合金化させる片面合金化差厚溶融亜鉛めっき鋼
板を製造するに際し、 前記無酸化加熱−還元焼鈍工程前に亜鉛付着量が多くな
る面のみ、アルカリ金属を含有する無機化合物を2 X
 10−’mol/m’以上、IXlo−3moQ/m
′以下の範囲で塗布し1次いで、無酸化加熱方式による
加熱炉中の雰囲気ガスのCOとCO2の比(GO/CO
2)が0.4以下となるように調整して、500℃以上
の温度まで加熱することを特徴とする片面合金化差厚溶
融亜鉛めっき鋼板の製造方法を提供するものである。
<Structure of the Invention> The present invention involves heating a pretreated steel plate using a non-oxidizing heating method, removing an oxide film on the surface of the steel plate by annealing in a reducing atmosphere, and then immersing it in a molten Zn bath to heat one side of the steel plate. Plating is adjusted so that the amount of zinc deposited on the other side is 1.2 times or more and less than 5 times the amount of Zn deposited on the other side, and immediately after that, the steel plate is alloyed by heating, and the amount of zinc deposited is When producing a single-sided alloyed differential thickness galvanized steel sheet in which only a small number of surfaces are fully alloyed, an inorganic compound containing an alkali metal is added to only the surface where the amount of zinc deposited is large before the non-oxidation heating-reduction annealing step.
10-'mol/m' or more, IXlo-3moQ/m
'The ratio of CO to CO2 (GO/CO2) of the atmospheric gas in the heating furnace using the non-oxidation heating method is
2) is adjusted to 0.4 or less, and heating to a temperature of 500° C. or higher is provided.

以下本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明者らは、鋼板の無酸化加熱に際し、表面に形成さ
れる薄い酸化被膜を還元、焼鈍した後、溶融めっきする
ことにより、その後の合金化処理における合金化が促進
されることを見出し、更に、アルカリ金属を含有する無
機化合物を、2×10−’ moJ27 m’以上、I
 X 10−3man /m’以下の範囲で塗布するこ
とにより、無酸化加熱における酸化液11Qの形成が完
全に防1にし得ることを知見した。
The present inventors have discovered that during non-oxidation heating of a steel plate, by reducing and annealing the thin oxide film formed on the surface and then hot-dipping, alloying in the subsequent alloying treatment is promoted. Furthermore, an inorganic compound containing an alkali metal is added to an I
It has been found that the formation of oxidizing liquid 11Q during non-oxidizing heating can be completely prevented by coating in a range of X 10-3 man/m' or less.

そこで、片面合金化差厚溶融亜鉛めっき鋼板の製造に際
し、非合金面に上記化合物を塗布し、酸化被膜の形成を
防止するとともに、無酸化加熱炉の雰囲気をm酸化性と
なし、合金面に適度の酸化被膜を形成せしめることによ
り、合金面の合金化処理時の非合金面における合金層の
成長を抑制することにより本発明を完成させた。
Therefore, when manufacturing single-sided alloyed differential thickness galvanized steel sheets, the above compound is applied to the non-alloyed surface to prevent the formation of an oxide film, and the atmosphere in the non-oxidizing heating furnace is made oxidizing, so that the alloyed surface is coated with the above compound to prevent the formation of an oxide film. The present invention was completed by forming an appropriate oxide film to suppress the growth of the alloy layer on the non-alloy surface during alloying treatment of the alloy surface.

以下に本発明の工程を詳しく説明する。The steps of the present invention will be explained in detail below.

第1図は、本発明を実施するのに適した連続式溶融亜鉛
めっきラインの一例の概略を示す。ペイオフリール2よ
り取り出された鋼板lは、電解脱脂槽3で完全に脱脂さ
れ、スプレー4でアルカリ金属を含有する無機化合物の
水溶液を片面に塗布される。脱脂が不十分な場合は、上
記化合物の塗布ムラが生じ、ひいては、めっき後の合金
化処理に際し合金化ムラを生じるため完全に脱脂するこ
とが必要である。
FIG. 1 schematically shows an example of a continuous hot dip galvanizing line suitable for carrying out the present invention. The steel sheet l taken out from the payoff reel 2 is completely degreased in an electrolytic degreasing bath 3, and one side is coated with an aqueous solution of an inorganic compound containing an alkali metal using a sprayer 4. If degreasing is insufficient, uneven coating of the above compound will occur, which in turn will cause uneven alloying during alloying treatment after plating, so it is necessary to completely degrease.

無機化合物の塗布に際しては、作業性、コストの点から
水溶液として塗布することが好ましく、したがって水溶
性のアルカリ金属を含有する無機化合物、たとえばNa
2 SO3* 5H20、Na2B4O7・IOH20
などを用いることが適している。また塗布方法としては
、2X10−’1lon/rn’ 〜I X 10−”
l1ol /rrf(1)範囲で無機化合物水溶液を鋼
板の片面のみに均一に塗布し得る方法であればいかなる
方法でもよく、例えば、スプレー法やロールコータ−法
等を採用することが出来る。
When applying an inorganic compound, it is preferable to apply it as an aqueous solution from the viewpoint of workability and cost. Therefore, an inorganic compound containing a water-soluble alkali metal, such as Na
2 SO3* 5H20, Na2B4O7・IOH20
It is appropriate to use In addition, the coating method is 2X10-'1lon/rn' ~ I x 10-"
Any method may be used as long as it can uniformly apply the inorganic compound aqueous solution to only one side of the steel plate within the range of 11ol/rrf(1), such as a spray method or a roll coater method.

次いで鋼板はドライヤー5で乾燥され、無酸化加熱炉6
に導入され、500℃以上の温度まで加熱される。無酸
化炉6の加熱において、加熱炉内雰囲気のGO/CO2
の値は0.4以下とすることが必要である。
Next, the steel plate is dried in a dryer 5 and then in a non-oxidizing heating furnace 6.
and heated to a temperature of 500°C or higher. In heating the non-oxidation furnace 6, GO/CO2 in the atmosphere inside the heating furnace
The value of is required to be 0.4 or less.

すなわちCo1002を0.4以下とすることによりア
ルカリ金属含有無機化合物を塗布しなかった面には酸化
被膜が形成され、次の還元焼鈍工程でこの酸化被膜が還
元され、この還元鉄の層が存在することにより十分な合
金層の発達が促進される。
In other words, by setting Co1002 to 0.4 or less, an oxide film is formed on the surface not coated with the alkali metal-containing inorganic compound, and this oxide film is reduced in the next reduction annealing process, and this reduced iron layer is present. This promotes sufficient alloy layer development.

CO/ co2が0.4をこえると5合金層の発達促進
のために十分な酸化被膜が形成されない。
If CO/co2 exceeds 0.4, a sufficient oxide film will not be formed to promote the development of the 5 alloy layer.

また無酸化炉6における加熱温度が500℃未満の場合
も、同様に酸化被膜の形成が十分ではなく、合金化ムラ
や合金面の合金化のために十分な加熱を行うと非合金面
の合金層も発達し、めっき密着性劣化を招く。
In addition, if the heating temperature in the non-oxidation furnace 6 is less than 500°C, the formation of an oxide film will not be sufficient, and if sufficient heating is performed to cause uneven alloying and alloying of the alloyed surface, the non-alloyed surface will become alloyed. The layer also develops, leading to deterioration of plating adhesion.

次いで鋼板は還元焼鈍炉7で必要な材質を得るために適
当な温度域、すなわち680℃〜850℃に加熱される
。還元焼鈍においては、無酸化加熱炉6で形成された酸
化被膜を完全に還元するために、H2ガスを含有する雰
囲気中で焼鈍する必要がある。H2ガスの濃度は5%〜
25%の範囲が適当である。
Next, the steel plate is heated in a reduction annealing furnace 7 to an appropriate temperature range, ie, 680°C to 850°C, in order to obtain the required material. In reduction annealing, in order to completely reduce the oxide film formed in the non-oxidation heating furnace 6, it is necessary to perform annealing in an atmosphere containing H2 gas. The concentration of H2 gas is 5%~
A range of 25% is suitable.

焼鈍された鋼板は冷却帯8で冷却し、溶融Zn浴9に導
かれ、めっきされ、ガスワイピング装置10で表裏面の
Zn付着量の比が1.2〜5倍の範囲となるよう付着量
を制御された後、合金化炉11に導かれる。
The annealed steel sheet is cooled in a cooling zone 8, guided to a molten Zn bath 9, and plated, and then coated with a gas wiping device 10 so that the ratio of Zn coating on the front and back surfaces is in the range of 1.2 to 5 times. After being controlled, it is guided to the alloying furnace 11.

鋼板表裏面のZn付着量の比を1.2〜5倍にする理由
は1.2倍未満では非合金面の一部が完全に合金化して
しまうためであり、5倍をこえると厚目付面の表面平滑
性が失われるからである0合金化炉11で鋼板は加熱さ
れ、Znめっき層は鋼板中に拡散浸透し、亜鉛−鉄合金
めっき層となるが、加熱に際し過度に高温にすると、表
裏面における合金化速度の差が小さくなり、非合金面の
合金層の発達を抑制し難くなるため、鋼板の加熱温度は
合金化に必要な450℃以上でかつ580℃以下とする
ことが好ましい。
The reason why the ratio of the amount of Zn deposited on the front and back surfaces of the steel sheet is set to 1.2 to 5 times is that if it is less than 1.2 times, part of the non-alloyed surface will be completely alloyed, and if it exceeds 5 times, it will become thick. The steel plate is heated in the alloying furnace 11, and the Zn plating layer diffuses into the steel plate to form a zinc-iron alloy plating layer, but if the heating temperature is too high, , since the difference in alloying speed between the front and back surfaces becomes smaller and it becomes difficult to suppress the development of the alloy layer on the non-alloyed surface, the heating temperature of the steel plate should be set to a temperature higher than 450°C and lower than 580°C, which is necessary for alloying. preferable.

また、合金面を加熱し、非合金面を強制空冷する等の手
段を併用してもよい、かかる温度に加熱し、Zn付着量
の少ない面が完全に合金化した時点で、合金化炉11か
ら出た鋼板は、冷却後調質圧延機12により圧延され、
製品としてコイラー13に巻き取られる。
Alternatively, a method such as heating the alloyed surface and forced air cooling of the non-alloyed surface may be used in combination.When the surface with a small amount of Zn deposited is completely alloyed by heating to such a temperature, the alloying furnace 11 is heated. After cooling, the steel plate that comes out is rolled by a temper rolling mill 12,
It is wound up into a coiler 13 as a product.

〈実施例〉 次に本発明を実施例について具体的に述べる。<Example> Next, the present invention will be specifically described with reference to examples.

第1図に示したような連続溶融亜鉛めっきラインにおい
て表1に示す各条件で、亜鉛めっき及び合金化処理を行
ない、それぞれの条件でめっきされた鋼板の非合金面の
合金化度及び、めっき密着性を調べた。なお、めっき目
付量は1合金化面30g/rn’、非合金化面95g/
m”とした。
Galvanizing and alloying were carried out under the conditions shown in Table 1 on the continuous hot-dip galvanizing line shown in Figure 1. Adhesion was examined. The plating weight is 30g/rn' on the alloyed side and 95g/rn' on the non-alloyed side.
m”.

各条件において合金化温度は1合金面のめっき層中に含
有されるFe濃度が、10±1wt%となるように選定
した0表1に各々の条件で得られためっき鋼板の外観、
非合金面の合金化度およびめっき密着性を併せて示す。
In each condition, the alloying temperature was selected so that the Fe concentration contained in the plating layer on one alloy side was 10 ± 1 wt%.Table 1 shows the appearance of the plated steel sheets obtained under each condition.
The alloying degree and plating adhesion of the non-alloyed surface are also shown.

なお、合金化度およびめっき密着性の評価方法は下記の
通りである。
In addition, the evaluation method of alloying degree and plating adhesion is as follows.

(1)合金化度 ガルバノスタットを使用して、25℃の(l 00gZ
n5Oa +200gNaCl)/Jl溶液中でめっき
層を表面(lcnf)から電流密度20mA/ cゴで
定1′rF、流アノード溶解し、その時の電位の経時変
化を測定した。電解剥離に要した電気量で合金量を比較
した。
(1) Alloying degree using a galvanostat, (l 00gZ
The plating layer was anodically melted from the surface (lcnf) in a n5Oa +200g NaCl)/Jl solution at a current density of 20mA/c at a constant 1'rF, and the change in potential over time was measured. The amount of alloy was compared based on the amount of electricity required for electrolytic stripping.

非合金面の合金化度は50%を越えると剥離性が大きく
なるので、50%以下にしておくのがよい。
If the degree of alloying on the non-alloyed surface exceeds 50%, the peelability will increase, so it is preferable to keep it below 50%.

(2)めっき密着性(剥離性) ビート付ハツト絞り(ハツト部内径50mmφ、絞り深
さ30+sm)を行い、絞り後のめっき層剥離状況を5
段階評価した。
(2) Plating adhesion (removability) Perform a hat drawing with a beat (inner diameter of the hat part 50mmφ, drawing depth 30+sm), and check the peeling status of the plating layer after drawing.
Graded evaluation.

5・・・割れなし 4・・・微小割れ 3・・・大きな割れ 2・・・粉状(真状)剥離 ■・・・フレーク状(面状)剥離 通常の工程で、製造される片面合金化差厚溶融亜鉛めっ
き鋼板の場合1合金化部度570℃で合金めっき層中の
Fe濃度が10%となり、この時、非合金面の合金化率
は、50%を越えて非合金面のめっき剥離性は、一部点
状に剥離する。
5... No cracks 4... Micro cracks 3... Large cracks 2... Powder-like (true-like) peeling ■... Flake-like (plane-like) peeling Single-sided alloy manufactured by normal process In the case of differential thickness hot-dip galvanized steel sheets, the Fe concentration in the alloyed layer becomes 10% at 570°C in one alloyed part, and at this time, the alloying rate on the non-alloyed surface exceeds 50%, and the alloying rate on the non-alloyed surface exceeds 50%. The plating peels off in some spots.

一方、 Na2 B 407 ・IOH20を5X10
−4mon/rrl’塗布したNo、 2〜No、  
10では、無酸化炉の雰囲気および無酸化炉出側温度を
適宜制御することにより、合金面の合金層中のFe濃度
が10%となる合金化処理温度が低減し、それに伴い非
合金面の合金化率が50%以下となり、プレス加工時め
っき剥離のないめっき層が得られる。すなわち、無酸化
炉のGo/CO2が0.4以下および無酸化炉出口板温
が500℃以上の時に、合金面の合金層中のFe濃度が
10%となるような合金化温度が低くなり、良好な非合
金面のめっきが得られる。 Go1002が0.4を越
えたNo、 2およびNo、  3または合金化炉出側
板温が500℃以下のNo。
On the other hand, 5X10 Na2 B 407 ・IOH20
-4mon/rrl' applied No. 2~No.
In No. 10, by appropriately controlling the atmosphere of the non-oxidizing furnace and the temperature on the exit side of the non-oxidizing furnace, the alloying temperature at which the Fe concentration in the alloy layer on the alloy surface becomes 10% is reduced, and accordingly, the temperature on the non-alloy surface is reduced. The alloying ratio is 50% or less, and a plated layer without peeling during press working can be obtained. That is, when the Go/CO2 of the non-oxidizing furnace is 0.4 or less and the plate temperature at the exit of the non-oxidizing furnace is 500°C or more, the alloying temperature is low enough to make the Fe concentration in the alloy layer on the alloy surface 10%. , good plating on non-alloyed surfaces can be obtained. No. 2 and No. 3 with Go1002 exceeding 0.4 or No. with plate temperature at the exit side of the alloying furnace of 500°C or less.

9、No、10では非合金面にNa2B40710H2
0を塗布しても合金面も十分に酸化されないため、鋼板
両面の酸化の程度に差はなく、合金面を十分に合金化す
る温度では非合金面の合金化率が50%を超えてしまう
9, No., and 10 have Na2B40710H2 on the non-alloy surface.
Even if 0 is applied, the alloy side is not sufficiently oxidized, so there is no difference in the degree of oxidation on both sides of the steel plate, and at the temperature that sufficiently alloys the alloy side, the alloying rate on the non-alloy side exceeds 50%. .

このように無酸化炉における鋼板の加熱条件を合金面が
十分に高い合金化速度となるよう十分に酸化される条件
とした時、非合金面の酸化を防止するのに十分なNa2
 B 407 ・IOH20の塗布量は2XLO−’s
o文/m1以上必要であり、lX1O−311o文/r
rf以下としな゛くてはならない。
In this way, when the heating conditions of the steel plate in the non-oxidation furnace are set to such that the alloyed surface is sufficiently oxidized to achieve a sufficiently high alloying rate, sufficient Na2 to prevent oxidation of the non-alloyed surface is set.
B 407 ・The application amount of IOH20 is 2XLO-'s
o sentences/m1 or more are required, lX1O-311 o sentences/r
It must be below rf.

すなわち、塗布量を2X10−4■an/rtfとした
No、14は合金化後の非合金面の合金化率が48%と
なり、合金化めっき剥離性は良好ではあるものの、合金
化率からみて上限であり、これ以下の塗布量ではめっき
剥離を起すおそれがある。
In other words, No. 14 with a coating amount of 2X10-4 an/rtf has an alloying rate of 48% on the non-alloyed surface after alloying, and although the removability of the alloyed plating is good, in terms of the alloying rate. This is the upper limit, and if the coating amount is less than this, there is a risk that the plating will peel off.

一方、塗布量を5X 10’moi/rn’としたNo
On the other hand, No.
.

16では、薄めつきの非合金面にNa2 B 407 
・10H20を塗布することにより形成された被膜に起
因する不めっきが発生した。したがって、過度のNa2
 B 407 ・IOH20を塗布することは避ける必
要がある。
In 16, Na2 B 407 was applied to the diluted non-alloyed surface.
- Non-plating occurred due to the film formed by applying 10H20. Therefore, excessive Na2
B 407 ・It is necessary to avoid applying IOH20.

また、No、14〜16には、Na2 SO3a 5H
20を、No、  17〜19K 2 SO3・5H2
0を塗布した例を示すが、これら化合物を塗布した場合
にも。
In addition, for No. 14 to 16, Na2 SO3a 5H
20, No, 17~19K 2 SO3・5H2
0 is shown, but also when these compounds are applied.

Na2 B 407 m IOH20を塗布した場合と
同様の効果が得られた。
The same effect as when applying Na2B407mIOH20 was obtained.

〈発明の効果〉 本発明はめっき密着性に優れた片面合金化差厚溶融亜鉛
めっき鋼板の製造を容易にし、かつ合金化温度の低下が
図れることにより、エネルギーコストの低減効果もある
。更に、鋼板の合金化速度の制御にも応用出来ることか
ら、そのT業的価値は大きい。
<Effects of the Invention> The present invention facilitates the production of single-sided alloyed differentially thick galvanized steel sheets with excellent plating adhesion, and also has the effect of reducing energy costs by lowering the alloying temperature. Furthermore, since it can be applied to control the alloying rate of steel sheets, it has great value in the T industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は合金化溶融Znめっきラインの線図である。 符号の説明 l・・・鋼板(ストリップ)、 2・・・ペイオフリール、3・・・電解脱脂槽、4・・
・スプレーノズル、5・・・乾燥炉、6・・・無酸化加
熱炉、7・・・還元焼鈍炉、8・・・ガスワイピング装
置、9・・・溶融亜鉛浴、10・・・ガスワイピング装
置、11・・・合金化炉。 12・・・調質圧延機 FIG、1
FIG. 1 is a diagram of an alloying hot-dip Zn plating line. Explanation of symbols 1... Steel plate (strip), 2... Payoff reel, 3... Electrolytic degreasing tank, 4...
・Spray nozzle, 5... Drying furnace, 6... Non-oxidizing heating furnace, 7... Reduction annealing furnace, 8... Gas wiping device, 9... Molten zinc bath, 10... Gas wiping Equipment, 11...alloying furnace. 12... Temper rolling mill FIG, 1

Claims (1)

【特許請求の範囲】 予備処理した鋼板を無酸化加熱方式で加熱後還元雰囲気
中での焼鈍により鋼板表面の酸化被膜を除去した後に、
溶融Zn浴に浸漬して鋼板の一方の面の亜鉛付着量が他
方の面のZn付着量の1.2倍以上、5倍以下となるよ
うに調整してめっきし、直後に上記鋼板を加熱すること
により合金化処理し、亜鉛付着量の少ない面のみ完全合
金化させる片面合金化差厚溶融亜鉛めっき鋼板を製造す
るに際し、 前記無酸化加熱−還元焼鈍工程前に亜鉛付着量が多くな
る面にのみ、アルカリ金属を含有する無機化合物を2×
10^−^4mol/m^2以上、1×10^−^3m
ol/m^2以下の範囲で塗布し、次いで、無酸化加熱
方式による加熱炉中の雰囲気ガスのCOとCO_2の比
(CO/CO_2)が0.4以下となるように調整して
、500℃以上の温度まで加熱することを特徴とする片
面合金化差厚溶融亜鉛めっき鋼板の製造方法。
[Claims] After heating the pretreated steel plate using a non-oxidizing heating method and removing the oxide film on the surface of the steel plate by annealing in a reducing atmosphere,
The steel plate is immersed in a molten Zn bath and plated so that the amount of zinc deposited on one side of the steel plate is 1.2 times or more and 5 times or less than the amount of Zn deposited on the other side, and the steel plate is heated immediately after. When producing a single-sided alloyed differential thickness hot-dip galvanized steel sheet in which only the surface with a small amount of zinc deposit is completely alloyed by alloying, the surface with a large amount of zinc deposit is processed before the non-oxidation heating-reduction annealing process. 2x inorganic compounds containing alkali metals only in
10^-^4mol/m^2 or more, 1x10^-^3m
ol/m^2 or less, and then adjusted so that the ratio of CO to CO_2 in the atmospheric gas in the heating furnace using the non-oxidation heating method (CO/CO_2) was 0.4 or less. A method for producing a single-side alloyed differentially thick hot-dip galvanized steel sheet, which comprises heating to a temperature of ℃ or higher.
JP14971185A 1985-07-08 1985-07-08 Manufacture of molten galvanized steel sheet which is one surface alloyed in different thickness Pending JPS6210262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14971185A JPS6210262A (en) 1985-07-08 1985-07-08 Manufacture of molten galvanized steel sheet which is one surface alloyed in different thickness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14971185A JPS6210262A (en) 1985-07-08 1985-07-08 Manufacture of molten galvanized steel sheet which is one surface alloyed in different thickness

Publications (1)

Publication Number Publication Date
JPS6210262A true JPS6210262A (en) 1987-01-19

Family

ID=15481150

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14971185A Pending JPS6210262A (en) 1985-07-08 1985-07-08 Manufacture of molten galvanized steel sheet which is one surface alloyed in different thickness

Country Status (1)

Country Link
JP (1) JPS6210262A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8701622B2 (en) 2009-09-24 2014-04-22 Makita Corporation Lubrication system for portable four-stroke engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8701622B2 (en) 2009-09-24 2014-04-22 Makita Corporation Lubrication system for portable four-stroke engine

Similar Documents

Publication Publication Date Title
EP1439240B2 (en) Method for hot-press forming a plated steel product
JPH06128758A (en) Method for galvanizing silicon-containing steel sheet
JPH0688187A (en) Production of alloyed galvannealed steel sheet
JP2587725B2 (en) Method for producing P-containing high tensile alloyed hot-dip galvanized steel sheet
JPS58117866A (en) Producing of steel plate coated with dissimilar metals on double sides
CN111575622A (en) Aluminum-plated steel sheet for hot-formed parts having excellent coating properties, method for producing same, and hot-formed parts
JP2964911B2 (en) Alloying hot-dip galvanizing method for P-added high-strength steel
US5409553A (en) Process for manufacturing galvannealed steel sheets having high press-formability and anti-powdering property
JPS6056418B2 (en) Manufacturing method of hot-dip galvanized steel sheet
JP2000290762A (en) Production of hot dip metal coated steel sheet
JPH0645853B2 (en) Method for producing galvannealed steel sheet
JPH03271354A (en) Production of galvannealed steel sheet
JPS6210262A (en) Manufacture of molten galvanized steel sheet which is one surface alloyed in different thickness
JPH08170160A (en) Production of silicon-containing high tensile strength hot dip galvanized or galvannealed steel sheet
JP2004124118A (en) Galvanized steel sheet having excellent press formability and appearance and method for manufacturing the same
JP3114609B2 (en) Method for producing galvannealed steel sheet with excellent surface properties
JPH07331403A (en) Production of high strength galvannealed steel sheet
JPH0565612A (en) Hot-dip galvanizing method for si-containing steel sheet
JP3114610B2 (en) Method for producing alloyed hot-dip galvanized steel sheet having Fe-Ni-O-based coating
JP3205292B2 (en) Manufacturing method of hot-dip galvanized steel sheet with excellent corrosion resistance and plating adhesion
JPH08188861A (en) Production of galvanizing steel sheet
JP3376914B2 (en) Manufacturing method and apparatus for hot-dip galvanized steel sheet
JPH05106001A (en) Hot-dip galvanizing method for silicon-containing steel sheet
JP2003251401A (en) Method for producing cold-rolled steel sheet and method for producing galvanized steel sheet
JPH0741923A (en) Production of hot dip galvanized steel sheet excellent in adhension of zinc layer and appearance