JPS62102519A - Manufacture of shroud for semiconductor manufacturing equipment - Google Patents

Manufacture of shroud for semiconductor manufacturing equipment

Info

Publication number
JPS62102519A
JPS62102519A JP24366585A JP24366585A JPS62102519A JP S62102519 A JPS62102519 A JP S62102519A JP 24366585 A JP24366585 A JP 24366585A JP 24366585 A JP24366585 A JP 24366585A JP S62102519 A JPS62102519 A JP S62102519A
Authority
JP
Japan
Prior art keywords
shroud
cylinder
aluminum
cooling fluid
ion implantation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24366585A
Other languages
Japanese (ja)
Other versions
JPH0568540B2 (en
Inventor
Yutaka Kato
豊 加藤
Eizo Isoyama
礒山 永三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP24366585A priority Critical patent/JPS62102519A/en
Publication of JPS62102519A publication Critical patent/JPS62102519A/en
Publication of JPH0568540B2 publication Critical patent/JPH0568540B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a shroud of light weight, good heat conductivity and good anti-corrosion by forming a covering layer by ion-implantation which makes a compound which reacts with an element of Al and is not corroded by gallium inside a cylinder for the shroud made of Al. CONSTITUTION:A cylinder made of Al which has a space for cooling fluid flow in the circumferential wall for a shroud is made. Then, a covering layer made of a compound which reacts with an element of Al and is not corrected by gallium is formed by ion implantation on at least the inner surface of both the inner and the outer surfaces of the cylinder. The cylinder for the shroud has a spiral pipe for cooling fluid flow made of Al connected to the outside of the Al cylinder or has an Al plate which has a pipe-like swelling for cooling fluid flow is made cylinder-shaped and the projection is connected, etc. This can provide the shroud of light weight, good heat conductivity and good anti- corrosion.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、Gaを含む膜状の半導体を製造する装置に
用いられるシュラウドの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method for manufacturing a shroud used in an apparatus for manufacturing a film-like semiconductor containing Ga.

この明細書において、「アルミニラA Jという語には
、純アルミニウムのほかにアルミニウム合金も含むもの
とする。ただし、「アルミニウム元素Jという場合には
アルミニウム合金(よ含まない。
In this specification, the term ``Aluminum A J'' shall include aluminum alloys in addition to pure aluminum. However, when ``Aluminum element J'' is used, the term ``aluminum alloys'' shall not include aluminum alloys.

従来技術とその問題点 たとえばGaAs等のGaを含む半導体膜をM B I
E装置等の半導体C!A造装■で製造するにさいし、よ
り高性能なものを得るためには、超高真空中での成膜が
必要不可欠の条件となる。そのため、MBE装置の成膜
室にはシュラウドが用いられている。従来のシュラウド
は、ステンレス鋼板からなる円筒状のもので、その外周
面にステンレス鋼製管がらせん状に巻付けられ、この管
内を液体チッソ等の冷却流体が流れるようになっている
。そして、上記半導体膜の成膜時には、まずシュラウド
を200〜250℃に加熱することによりベーキング処
理を施してシュラウドの表面に吸着している水分を除去
した後、ステンレス鋼製管内に冷部流体を流し、この冷
却流体によってシュラウドを冷却し、その表面に真空化
された成膜室中の残留ガスを吸着させ、超高真空を得る
ようになっている。しかしながら、従来のシュラウドで
は筒体および管がステンレス鋼製であるので、重nが大
きく、しかち熱伝導性が十分ではないという問題があっ
た。熱伝導性が十分でないと、上記ベーキングの時にシ
ュラウド全・体が均一に加熱されるのに時間がかかると
ともに、冷却流体を流したさいにシュラウドの表面が所
定温度まで冷却されるのに時間がかかるという問題があ
った。
Conventional technology and its problems For example, when a semiconductor film containing Ga such as GaAs is
Semiconductor C such as E equipment! When manufacturing with the A structure (■), film formation in an ultra-high vacuum is an essential condition in order to obtain higher performance. Therefore, a shroud is used in the film forming chamber of the MBE apparatus. A conventional shroud has a cylindrical shape made of a stainless steel plate, and a stainless steel tube is spirally wound around the outer peripheral surface of the shroud, and a cooling fluid such as liquid nitrogen flows through the tube. When forming the semiconductor film, first, the shroud is heated to 200 to 250°C to perform a baking treatment to remove moisture adsorbed on the surface of the shroud, and then a cold fluid is introduced into the stainless steel tube. The shroud is cooled by this cooling fluid, and the residual gas in the evacuated film forming chamber is adsorbed onto its surface, thereby creating an ultra-high vacuum. However, in the conventional shroud, since the cylinder body and the tube are made of stainless steel, there is a problem that the weight n is large and the thermal conductivity is not sufficient. If the thermal conductivity is insufficient, it will take time for the entire shroud to be uniformly heated during the above-mentioned baking process, and it will also take time for the surface of the shroud to cool to the specified temperature when cooling fluid is supplied. There was a problem that it took a while.

そこで、ステンレス鋼に比較して重量が小さく、熱伝導
性が優れ、しかし表面のガス放出係数の小さなアルミニ
ウム材でシュラウドをつくることも考えられているが、
アルミニウムは成膜中に蒸発したGaB付看すると侵さ
れて貫通孔が発生するので、いまだアルミニウム製のシ
ュラウドは実現していないのが実情である。
Therefore, it is being considered to make the shroud from aluminum, which is lighter in weight and has better thermal conductivity than stainless steel, but also has a smaller surface gas release coefficient.
The reality is that aluminum shrouds have not yet been realized because aluminum is corroded by GaB vaporized during film formation and through holes are generated.

この発明の目的は、上記の問題を解決した半導体製造装
置用シュラウドの製造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a shroud for semiconductor manufacturing equipment that solves the above problems.

問題点を解決するための手段 この発明による、半導体製造装置用シュラウドの製造方
法は、周壁に冷却流体流通部を有するアルミニウム製シ
ュラウド用筒体をつくった後、これらの内外両面のうち
少なくとも内面に、イオン注入法によって、アルミニウ
ム元素と反応じかつガリウムに侵されない化合物をつく
るイオンを注入して上記化合物からなる被覆層を形成す
ることを特徴とするものである。
Means for Solving the Problems In the method of manufacturing a shroud for semiconductor manufacturing equipment according to the present invention, after an aluminum shroud cylinder having a cooling fluid circulation portion on the peripheral wall is manufactured, at least the inner surface of the inside and outside surfaces of the cylinder is manufactured. This method is characterized in that a coating layer made of the above compound is formed by implanting ions that react with aluminum element and create a compound that is not attacked by gallium using an ion implantation method.

上記において、シュラウド用筒体としては、アルミニウ
ム筒の外周面にアルミニウム製冷却流体流通管がらせん
状に巻付けられて接合されたもの、またはたとえばロー
ル・ボンド・パネルのように冷i1流体流通用管状膨出
部を備えたアルミニウム!11板状休を円筒状に成形し
、その突合わせ部を接合したもの等がある。
In the above, the shroud cylindrical body is one in which an aluminum cooling fluid distribution pipe is spirally wound and bonded to the outer circumferential surface of an aluminum cylinder, or one for cold fluid distribution such as a roll bond panel. Aluminum with tubular bulge! There is one in which a No. 11 plate-shaped plate is formed into a cylindrical shape and the butted portions are joined.

また上記において、アルミニウム元素と反応してガリウ
ムに侵されない化合物をつくるイオンは、数多く存在す
るが、その中でたとえばチッ素イオン、酸素イオン、炭
素イオン等が用いられる。これらのイオンは、容易にガ
ス化されるN2.02、C等から得られる。上記イオン
とアルミニウム元素との反応によりつくられる化合物は
AIN、△/203、A/C等である。
Furthermore, in the above, there are many ions that react with the aluminum element to form compounds that are not attacked by gallium, and among them, for example, nitrogen ions, oxygen ions, carbon ions, etc. are used. These ions are obtained from easily gasified N2.02, C, etc. Compounds produced by the reaction of the above ions with the aluminum element include AIN, Δ/203, A/C, and the like.

また、化合物の被覆層の厚さは0.1〜1躍の範囲内に
あることが好ましい。その理由は、被覆層の厚さが0.
1ttm未満であると、被覆層のガリウムに対する耐侵
食性が十分ではなく、またイオン注入によっては上記淳
さを1 ttmを越えて厚くすることはできないからで
ある。上記被覆層の厚さの制御は、イオン注入時におけ
る、注入深さに関連する加速電圧および注入道に関連す
るイオン注入電流等を制御することによって行なう。上
記被覆層の厚さを0.1〜1μmとするには、たとえば
加速電圧を50〜500に■に制御し、イオン注入電流
を注入量が1×1018〜1X1019個/dとなるよ
うに制御する。
Moreover, it is preferable that the thickness of the coating layer of the compound is within the range of 0.1 to 1. The reason is that the thickness of the coating layer is 0.
If the thickness is less than 1 ttm, the corrosion resistance of the coating layer against gallium will not be sufficient, and the thickness cannot be increased beyond 1 ttm by ion implantation. The thickness of the coating layer is controlled by controlling the acceleration voltage related to the implantation depth, the ion implantation current related to the implantation path, etc. during ion implantation. In order to make the thickness of the coating layer 0.1 to 1 μm, for example, the acceleration voltage is controlled to 50 to 500, and the ion implantation current is controlled so that the implantation amount is 1×1018 to 1×1019 ions/d. do.

実  施  例 以下、この発明の実施例を比較例とともに示す。Example Examples of the present invention will be shown below along with comparative examples.

実施例1 まず、アルミニウム材から周壁に冷却流体流通部を有す
るシュラウド用筒体をつくった。ついで、このシュラウ
ド用筒体をターゲットとし、その内面に加速電圧300
にVという条件でチッ素イオンを1×1019個/ c
i注入した。そして、筒体の内面に厚さ1pのAIN層
を形成した。
Example 1 First, a cylindrical body for a shroud having a cooling fluid circulation portion on the peripheral wall was made from an aluminum material. Next, this shroud cylinder was targeted, and an accelerating voltage of 300 was applied to its inner surface.
1×1019 nitrogen ions/c under the condition of V
i injected. Then, an AIN layer with a thickness of 1 p was formed on the inner surface of the cylinder.

そして、シュラウド用筒体の内面にGa−を1g付もさ
せた後、200℃×24時間加熱→液体チッ素で30分
間冷却、の熱サイクルテストを6サイクル繰返して行な
い、Gaによる侵食を調べた。筒体の内面を観察した結
果、Gaによる侵食は認められなかった。
After adding 1 g of Ga to the inner surface of the shroud cylinder, a thermal cycle test of heating at 200°C for 24 hours and then cooling with liquid nitrogen for 30 minutes was repeated for 6 cycles to investigate corrosion caused by Ga. Ta. As a result of observing the inner surface of the cylinder, no corrosion by Ga was observed.

実施例2 イオン注入のさいの注入イオンとして炭素イオンを使用
し、加速電圧100KV、イオン注入ff1lX101
8個/ ciとした他は上記実施例1と同様にしてシュ
ラウド用向体の内面に厚さ0゜5切のA/C層を形成し
、同じく上記実施例1と同様にQaによる侵食を調べた
。その結果、シュラウド用筒体の内面にはGaによる侵
食は認められなかった。
Example 2 Carbon ions were used as implanted ions during ion implantation, acceleration voltage was 100 KV, and ion implantation was performed at ff1lX101.
An A/C layer with a thickness of 0.5 mm was formed on the inner surface of the shroud facing body in the same manner as in Example 1, except that the number of layers was 8 pieces/ci. Examined. As a result, no corrosion by Ga was observed on the inner surface of the shroud cylinder.

実施例3 イオン注入のさいの注入イオンとして酸素イオンを使用
し、加速電圧、3.OOKV、イオン注入m1X101
9個/dとした他は上記実施例1と同様にしてシュラウ
ド用筒体の内面に厚さ171177のA/203層を形
成し、同じく上記実施例1と同様にGaによる侵食を調
べた。その結果、シュラウド用筒体の内面にはGaによ
る侵食は認められなかった。
Example 3 Oxygen ions were used as the implanted ions during ion implantation, and the accelerating voltage, 3. OOKV, ion implantation m1X101
An A/203 layer having a thickness of 171,177 mm was formed on the inner surface of the shroud cylinder in the same manner as in Example 1, except that the number of particles/d was 9 pieces/d, and corrosion by Ga was examined in the same manner as in Example 1. As a result, no corrosion by Ga was observed on the inner surface of the shroud cylinder.

比較例 まず、アルミニウム材から周壁に冷却流体流通部を有す
るシュラウド用筒体をつくった。そして、シュラウド用
筒体の内面にGaを1g付着さじた後、200℃×24
時間加熱→液体チッ素で30分間冷却、の熱サイクルテ
ストを6サイクル繰返して行ない、Gaによる侵食を調
べた。筒体の内面を観察した結果、Gaによる激しい侵
食が認められた。
Comparative Example First, a cylindrical body for a shroud having a cooling fluid circulation portion on the peripheral wall was made from an aluminum material. After applying 1 g of Ga to the inner surface of the shroud cylinder,
A thermal cycle test of heating for 30 minutes followed by cooling with liquid nitrogen for 30 minutes was repeated for 6 cycles to examine corrosion caused by Ga. As a result of observing the inner surface of the cylinder, severe corrosion by Ga was observed.

発明の効果 この発明による半導体製造装置用シュラウドの製造方法
は、周壁に冷却流体流通部を有するアルミニウム製シュ
ラウド用筒体をつくった後、これらの内外両面のうち少
なくとも内面に、イオン注入法によって、アルミニウム
元素と反応しかつガリウムに侵されない化合物をつくる
イオンを注入して上記化合物からなる被覆層を形成する
ことを特徴とするものであるから、従来のステンレス鋼
製のものと比較して軽量で、熱伝導性が良く、しかもG
aに対する耐侵食性がステンレス鋼製のものと同等のシ
ュラウドを簡単に製造することができる。特に、熱伝導
性に優れているので、従来のものに比べて半導体膜の成
膜時のベーキング処理時間を短縮することができるとと
もに、冷却流体流通部に冷II流体を流して行なう冷却
のさいの冷却効率が向上し、半導体膜成膜時の残留ガス
吸着率が向上する。
Effects of the Invention In the method of manufacturing a shroud for semiconductor manufacturing equipment according to the present invention, after making an aluminum shroud cylinder having a cooling fluid circulation portion on the peripheral wall, at least the inner surface of both the inner and outer surfaces thereof is implanted by ion implantation. It is characterized by forming a coating layer made of the above compound by implanting ions that react with the aluminum element and create a compound that is not attacked by gallium, so it is lighter than conventional stainless steel ones. , good thermal conductivity, and G
It is possible to easily manufacture a shroud having corrosion resistance against a that is equivalent to that made of stainless steel. In particular, since it has excellent thermal conductivity, it is possible to shorten the baking treatment time during semiconductor film formation compared to conventional products, and it is also possible to shorten the baking treatment time when forming a semiconductor film compared to conventional ones. The cooling efficiency is improved, and the residual gas adsorption rate during semiconductor film formation is improved.

また、シュラウド用筒体をアルミニウム材からつくるの
であるから、ステンレス鋼材からつくる場合に比較して
加工が容易である。
Furthermore, since the shroud cylinder is made from aluminum, it is easier to process than when it is made from stainless steel.

また、イオン注入法により被覆層を形成するのであるか
ら、被覆層の形成時この層に水分が吸着していることは
なく、この方法によって製造されたシュラウドをMBE
装置等に使用するさいには、従来から行なわれている半
導体膜の成膜時のベーキング処理を施すだけでよい。
In addition, since the coating layer is formed by ion implantation, moisture is not adsorbed to this layer when the coating layer is formed, and the shroud manufactured by this method can be used for MBE.
When used in devices, etc., it is only necessary to perform the conventional baking treatment during film formation of semiconductor films.

また、イオン注入法により被覆層を形成するものである
から、この層の熱サイクル性は優れており、脱ガスの目
的での250℃程度までの加熱および半導体膜成膜時の
液体チッ素による冷却を繰返しても皮膜に剥れや割れ等
が生じることはない。
In addition, since the coating layer is formed by ion implantation, this layer has excellent thermal cycling properties, including heating to about 250°C for degassing purposes and liquid nitrogen during semiconductor film formation. Even after repeated cooling, the film does not peel or crack.

さらに、アルミニウムはステンレス鋼に比べてガス放出
係数が小さいので、MBE装置における半導体膜の成膜
室内の真空度を低下させるおそれが少ない。
Furthermore, since aluminum has a smaller gas release coefficient than stainless steel, there is less risk of reducing the degree of vacuum in the semiconductor film deposition chamber in the MBE apparatus.

以  上that's all

Claims (1)

【特許請求の範囲】[Claims] 周壁に冷却流体流通部を有するアルミニウム製シユラウ
ド用筒体をつくった後、これらの内外両面のうち少なく
とも内面に、イオン注入法によって、アルミニウム元素
と反応しかつガリウムに侵されない化合物をつくるイオ
ンを注入して上記化合物からなる被覆層を形成すること
を特徴とする半導体製造装置用シュラウドの製造方法。
After making an aluminum shroud cylinder having a cooling fluid circulation part on its peripheral wall, ions are implanted into at least the inner surface of both the inner and outer surfaces thereof by an ion implantation method to create a compound that reacts with the aluminum element and is not attacked by gallium. A method for manufacturing a shroud for semiconductor manufacturing equipment, comprising: forming a coating layer made of the above compound.
JP24366585A 1985-10-29 1985-10-29 Manufacture of shroud for semiconductor manufacturing equipment Granted JPS62102519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24366585A JPS62102519A (en) 1985-10-29 1985-10-29 Manufacture of shroud for semiconductor manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24366585A JPS62102519A (en) 1985-10-29 1985-10-29 Manufacture of shroud for semiconductor manufacturing equipment

Publications (2)

Publication Number Publication Date
JPS62102519A true JPS62102519A (en) 1987-05-13
JPH0568540B2 JPH0568540B2 (en) 1993-09-29

Family

ID=17107178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24366585A Granted JPS62102519A (en) 1985-10-29 1985-10-29 Manufacture of shroud for semiconductor manufacturing equipment

Country Status (1)

Country Link
JP (1) JPS62102519A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01261816A (en) * 1988-04-12 1989-10-18 Showa Alum Corp Cooling apparatus for vacuum in vacuum chamber
WO2008089178A2 (en) * 2007-01-16 2008-07-24 Varian Semiconductor Equipment Associates, Inc. Plasma source with liner for reducing metal contamination

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01261816A (en) * 1988-04-12 1989-10-18 Showa Alum Corp Cooling apparatus for vacuum in vacuum chamber
WO2008089178A2 (en) * 2007-01-16 2008-07-24 Varian Semiconductor Equipment Associates, Inc. Plasma source with liner for reducing metal contamination
WO2008089178A3 (en) * 2007-01-16 2008-12-24 Varian Semiconductor Equipment Plasma source with liner for reducing metal contamination
JP2010516062A (en) * 2007-01-16 2010-05-13 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド Plasma source with liner for reducing metal contamination

Also Published As

Publication number Publication date
JPH0568540B2 (en) 1993-09-29

Similar Documents

Publication Publication Date Title
JP4104676B2 (en) In situ cleaning of native oxide from silicon surface
CN105453227B (en) Variable frequency microwave in semiconductive thin film manufacture(VFM)Technique and application
US4597808A (en) Process for ion nitriding aluminum or aluminum alloys
TWI577820B (en) Means for improving MOCVD reaction method and improvement method thereof
JPS62102519A (en) Manufacture of shroud for semiconductor manufacturing equipment
JPS63115338A (en) Low temperature dryetching process and system thereof
JPH02138469A (en) Material for vacuum having diamond surface, surface treatment of this material for vacuum production, of diamond film surface, vacuum vessel and its parts formed by using material for vacuum, in-vacuum driving mechanism, electron release source, in-vacuum heater and vessel of vapor deposition source
JPH01100927A (en) Recovery process apparatus and method for semiconductor wafer
JPS62103379A (en) Manufacture of vacuum chamber in cvd apparatus and dry etching apparatus
JPS62102518A (en) Manufacture of shroud for semiconductor manufacturing equipment
JPS5935425A (en) Manufacture of semiconductor device
KR20000000551A (en) Deposition apparatus, organic evaporation source and fabrication method of an organic thin film
JPS63290269A (en) Sputtering device
US4196022A (en) Surface hardening method
JPS59205468A (en) High temperature corrosion resistant material
JPS6362862A (en) Ceramic coated ti and ti alloy product and its production
JPH08259209A (en) Furnace for highly purifying graphite member
JPS62103380A (en) Production of vacuum chamber for cvd device and dry etching device
JPS61104648A (en) Substrate cooling device
JPS6230686B2 (en)
JPH08188876A (en) Semiconductor-producing device and semiconductor device-producing method
JPH022282B2 (en)
JPH03185820A (en) Member for treating semiconductor
JPS62162324A (en) Reactive gas heating and introducing apparatus for ultra-high vacuum
JPS61226164A (en) Production of vacuum vessel made of aluminum