JPS62102502A - Manufacture of nonlinear resistance element - Google Patents

Manufacture of nonlinear resistance element

Info

Publication number
JPS62102502A
JPS62102502A JP60240402A JP24040285A JPS62102502A JP S62102502 A JPS62102502 A JP S62102502A JP 60240402 A JP60240402 A JP 60240402A JP 24040285 A JP24040285 A JP 24040285A JP S62102502 A JPS62102502 A JP S62102502A
Authority
JP
Japan
Prior art keywords
electrode
resistor
linear
present
manufacture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60240402A
Other languages
Japanese (ja)
Inventor
清和 梅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60240402A priority Critical patent/JPS62102502A/en
Publication of JPS62102502A publication Critical patent/JPS62102502A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は酸化亜鉛を主成分とする非直線抵抗体に係オ〕
す、特に電極形成工程を改良した非直線抵抗体の製造方
法に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a nonlinear resistor whose main component is zinc oxide.
In particular, the present invention relates to a method of manufacturing a nonlinear resistor with an improved electrode forming process.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

電気系統において、正常な電圧に重畳される過電圧を除
去し電気系統を保護するために過電圧保護装置が用いら
れる。この過電圧保護装置には、正常な電圧ではほぼ絶
縁特性を示し、過電圧が印加された時には比較的低抵抗
値になる非直線抵抗体が用いられる。非直線抵抗体は炭
化硅素(SiC)もしくは酸化亜鉛(ZnO)に金属酸
化物を混合し成形した素材を焼成して作られる。 Zn
O系の非直線抵抗体は、小電流域における非直線特性が
息唆で、かつ、大電流域に到るまで鋭い立ち」〕がりを
もつため、 SiC系の非直線抵抗体を用いた過電圧保
護装置よりもすぐれた過電圧保護装置をつくることがで
きる。 しかし、ZnO系の非直線抵抗体は、多くの製
造工程を有し、工業的に量産製造が困難で、非直線抵抗
特性の低下やその特性上のバラツキが大きく、課電寿命
・放電耐量等の他の性能低下をも発生するという問題点
がある。
In electrical systems, overvoltage protection devices are used to protect the electrical system by removing overvoltages that are superimposed on normal voltages. This overvoltage protection device uses a non-linear resistor that exhibits almost insulating properties at normal voltage and has a relatively low resistance value when overvoltage is applied. A non-linear resistor is made by baking a molded material of silicon carbide (SiC) or zinc oxide (ZnO) mixed with a metal oxide. Zn
O-based non-linear resistors have impressive non-linear characteristics in the small current range and have a sharp rise up to the large current range, so overvoltage using SiC-based non-linear resistors is It is possible to create an overvoltage protection device that is better than the protection device. However, ZnO-based non-linear resistors require many manufacturing processes, are difficult to mass-produce industrially, and suffer from a decline in non-linear resistance characteristics and large variations in their characteristics, as well as problems such as electrification life, discharge capacity, etc. There is a problem that other performance deterioration also occurs.

〔発明の目的〕[Purpose of the invention]

本発明は上記問題点として、多くの製造工程の中で、特
に特性と深く係わりがある電極形成工程に着目しなされ
たもので、非直線抵抗特性の低下やその特性上のバラツ
キ、1斌特性の性能低ドを向上させた非直線抵抗体の製
造方法を提供することを目的とするものである。
The present invention has been made to address the above-mentioned problems by focusing on the electrode formation process, which is closely related to the characteristics among many manufacturing processes, and to address the problems described above, such as the decrease in non-linear resistance characteristics, variations in the characteristics, and It is an object of the present invention to provide a method for manufacturing a nonlinear resistor with improved performance.

〔発明の概要〕[Summary of the invention]

本発明は上記目的を達成する為、非直線抵抗体の製造方
法の電極を形成させる工程において、電極の形成層を2
〜5重に設け、電極層の全厚を0.05〜0.2mmに
することを特徴とする。
In order to achieve the above object, the present invention has two electrode forming layers in the step of forming an electrode in a method for manufacturing a non-linear resistor.
It is characterized in that it is provided in ~5 layers and the total thickness of the electrode layer is 0.05 to 0.2 mm.

〔発明の実施例〕[Embodiments of the invention]

と 以下、本発明の実施例に基づいて説明する。主成分であ
る酸化亜鉛(ZnO)の粉末に酸化ビスマス(Bi20
.)、Wk化アンチモン(Sb203) 、 ′fIl
化クロムクロムr203) 、酸化コバルト(Coo)
および酸化マンガン(MnO)等の粉末をそれぞれ0.
01〜6.0モル%の範囲で添加し、ボールミルで混合
する。このとき酸化物と有機結合剤例えばポリビニルア
ルコールとを同時に混合する。このようにして得られた
混合物を乾燥造粒装置、例えばスプレードライヤーに入
れ、球状団粒にする。この粉末状混合物をプレスにかけ
、例えば直径80I、厚さ30mmの円板にする。この
成形物を電気炉に入れ焼成する。焼成温度は1200℃
で1時間は例えば6時間が適当である。焼成後の円板状
焼成物は焼成前より収縮するが、はぼ均一な組織、密度
を有する。
This will be explained below based on embodiments of the present invention. Bismuth oxide (Bi20) is added to zinc oxide (ZnO) powder, which is the main component.
.. ), Wk antimony (Sb203), 'fIl
chromium oxide (chromium oxide r203), cobalt oxide (Coo)
and manganese oxide (MnO) powder, respectively.
It is added in a range of 01 to 6.0 mol% and mixed in a ball mill. At this time, the oxide and an organic binder such as polyvinyl alcohol are mixed simultaneously. The mixture thus obtained is placed in a dry granulation device, for example a spray dryer, to form spherical agglomerates. This powdery mixture is pressed into a disk having a diameter of 80 mm and a thickness of 30 mm, for example. This molded product is placed in an electric furnace and fired. Firing temperature is 1200℃
For example, 6 hours is appropriate for 1 hour. After firing, the disc-shaped fired product shrinks more than before firing, but has a nearly uniform structure and density.

この焼成物の側面に絶縁カラーを塗布し焼付けを行なう
。その後、周平面を研磨し1例えばアルミニウムにてメ
タリコンを行ない電極を設け非直線抵抗体を完成させる
。第4図に本発明により製造された非直線抵抗体の断面
図を示す。図において1は焼成体でその周平面に電極2
が形成されている。しかし、研磨等により非直線抵抗体
の平行度は悪くなっている。避雷器として考えるときは
抵抗体を積重ねた時の電極面の接触の善し悪しが性能に
大きく影響するため、周平面に設ける電極の形成層を例
えば1層設け加圧し更に1層設けるというぐあいに形成
層を2〜5重にし電極層の全厚さを0.05〜0.2o
oに規定することにより抵抗体間の密着度を増しコロナ
等の発生を防ぎ安定した非直線抵抗体とすることができ
る。上記実施例では、アルミニウムにてメタリコンを行
なったが、異種合金によるメタリコンの形成層でも電極
としてその機能を得るものであれば本発明の効果を得る
ことができるのはもちろんである。
An insulating collar is applied to the side surface of this fired product and baked. Thereafter, the circumferential surface is polished and metallized with aluminum, for example, to provide electrodes and complete the non-linear resistor. FIG. 4 shows a cross-sectional view of a non-linear resistor manufactured according to the present invention. In the figure, 1 is a fired body with an electrode 2 on its circumferential plane.
is formed. However, the parallelism of the non-linear resistor has deteriorated due to polishing or the like. When considering a lightning arrester, the quality of the contact between the electrode surfaces when resistors are stacked has a large effect on the performance, so for example, one layer for forming the electrode on the circumferential plane is applied, pressure is applied, and then another layer is formed. The total thickness of the electrode layer is 0.05 to 0.2o with 2 to 5 layers.
By specifying 0, it is possible to increase the degree of adhesion between the resistors, prevent the occurrence of corona, etc., and make it possible to obtain a stable non-linear resistor. In the above embodiment, aluminum was used for metallization, but it goes without saying that the effects of the present invention can also be obtained with a metallization layer made of a different alloy as long as it functions as an electrode.

この様に製造した非直線抵抗体のバラツキの程度を第1
図及び第2図、第3図に示す。第1図は非直線抵抗体の
電極の形成層を1mm重に変化させ抵抗体を2段積みに
したときのサージエネルギー耐量の強さを示す。横軸に
電極の形成層をとり、第1図から明らかな様に、本発明
に係る非直線抵抗体は、電極の形成層を1層の時抵抗体
と電極の密着性が悪く、抵抗体間で火花を生じ、サージ
エネルギーを処理できない。また電極の形成層を6層以
上に多く設けた場合は、電極が抵抗体より剥離し電極と
抵抗体との間で放電しサージエネルギーを処理できない
The degree of variation in the nonlinear resistor manufactured in this way is
2 and 3. FIG. 1 shows the strength of the surge energy resistance when the electrode formation layer of the non-linear resistor is changed to a thickness of 1 mm and the resistors are stacked in two layers. As is clear from FIG. 1, where the horizontal axis represents the electrode formation layer, the nonlinear resistor according to the present invention has poor adhesion between the resistor and the electrode when the electrode formation layer is one layer. sparks between the two, and cannot handle surge energy. In addition, when six or more electrode formation layers are provided, the electrode separates from the resistor and discharge occurs between the electrode and the resistor, making it impossible to handle surge energy.

第2図は、本発明の方法と従来の方法によって製作した
非直線抵抗体のサージエネルギー耐量のバラツキを示す
。すなねち、横軸にサージ電流を流して非直線抵抗体が
破壊される時のサージエネルギー(J)をとり、縦軸に
全数量を100%とした時の、印加されたサージエネル
ギーに耐えた数量を相対値でとっている。第2図におい
て、実線で図示した曲線Aは本発明の方法による非直線
抵抗体の分布を示し、また点線で図示した曲線Bは従来
の方法による非直線抵抗体の分布を示している。この図
から明らかなように本発明の方法による曲線Aの方が従
来の方法による曲線Bより、サージエネルギー耐量のバ
ラツキが小さくなったことが確認できる。
FIG. 2 shows variations in surge energy withstand capacity of nonlinear resistors manufactured by the method of the present invention and the conventional method. In other words, the horizontal axis shows the surge energy (J) when a nonlinear resistor is destroyed by flowing a surge current, and the vertical axis shows the applied surge energy when the total quantity is set as 100%. The quantity withstood is taken as a relative value. In FIG. 2, curve A shown as a solid line shows the distribution of non-linear resistors according to the method of the present invention, and curve B shown as a dotted line shows the distribution of non-linear resistors according to the conventional method. As is clear from this figure, it can be confirmed that the variation in the surge energy withstand capacity is smaller in the curve A according to the method of the present invention than in the curve B according to the conventional method.

第3図は、非直線抵抗体の電極の形成層を3層に固定し
、厚さを変化させたときのサージエネルギー耐量の強さ
を示す。横軸に電極の厚さをとり、縦軸に印加されたサ
ージエネルギーに耐える処理エネルギーをとっている。
FIG. 3 shows the strength of the surge energy resistance when the electrode forming layers of the non-linear resistor are fixed to three layers and the thickness is varied. The horizontal axis represents the thickness of the electrode, and the vertical axis represents the processing energy that withstands the applied surge energy.

第3図から明らかなように、厚さが0.05am以下の
時、電極の密着性が悪く、0.2m以上の時は、電極が
剥離しサージエネルギーを処理できない。第3図は、形
成層を3層にて行なったが、2〜5重であるとき本発明
の効果を得ることができることは、確認済である。
As is clear from FIG. 3, when the thickness is less than 0.05 am, the adhesion of the electrode is poor, and when it is more than 0.2 m, the electrode peels off and cannot handle surge energy. In FIG. 3, the formation layer is three-layered, but it has been confirmed that the effect of the present invention can be obtained when there are two to five layers.

〔発明の効果〕〔Effect of the invention〕

以上の様に本発明によれば酸化亜鉛を主成分とする焼結
体の両軍面を研磨し、電極を形成させる工程において電
極の層を2〜5重に設け電極層の厚さを0.05〜0.
2mmに規定することにより電極の密着度を増すことが
でき、またサージエネルギー耐量すなわち放電耐量特性
が従来の方法よりすぐれ、より品質の高い非直線抵抗体
の電極形成方法を提供することができる。
As described above, according to the present invention, in the step of polishing both sides of a sintered body containing zinc oxide as a main component and forming an electrode, two to five layers of the electrode are formed, and the thickness of the electrode layer is reduced to zero. .05~0.
By specifying the thickness to 2 mm, it is possible to increase the adhesion of the electrodes, and the surge energy withstand characteristics, that is, the discharge withstand characteristics are superior to conventional methods, and it is possible to provide a method for forming electrodes of a nonlinear resistor of higher quality.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図は本発明の製造工程を用いて製
造した非直線抵抗体の電気特性を説明する曲線図、第4
図は本発明により製造された非直線抵抗体の断面図であ
る。 代理人 弁理士 則 近 憲 佑 同  三俣弘文 〔J〕 第  t 図 サー長エネル桔− 第  2 図
1, 2, and 3 are curve diagrams illustrating the electrical characteristics of a nonlinear resistor manufactured using the manufacturing process of the present invention;
The figure is a cross-sectional view of a non-linear resistor manufactured according to the present invention. Agent Patent Attorney Norihiro Ken Yudo Mitsumata Hirofumi [J] Figure t.

Claims (1)

【特許請求の範囲】[Claims]  酸化亜鉛を主成分として少なくとも一種以上の金属酸
化物を混合して焼成してなる焼成体の両平面を研磨して
電極を形成してなる非直線抵抗体の製造方法において、
前記焼成体の両平面を研磨し、電極を形成させる工程に
おいて電極の形成層を2〜5重に設け電極層の全厚さを
0.05〜0.2mmにすることを特徴とする非直線抵
抗体の製造方法。
In a method for manufacturing a non-linear resistor, the electrodes are formed by polishing both surfaces of a fired body made by firing a mixture of zinc oxide as a main component and at least one kind of metal oxide,
A non-linear method characterized in that in the step of polishing both planes of the fired body and forming an electrode, two to five electrode formation layers are provided so that the total thickness of the electrode layer is 0.05 to 0.2 mm. Method of manufacturing a resistor.
JP60240402A 1985-10-29 1985-10-29 Manufacture of nonlinear resistance element Pending JPS62102502A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60240402A JPS62102502A (en) 1985-10-29 1985-10-29 Manufacture of nonlinear resistance element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60240402A JPS62102502A (en) 1985-10-29 1985-10-29 Manufacture of nonlinear resistance element

Publications (1)

Publication Number Publication Date
JPS62102502A true JPS62102502A (en) 1987-05-13

Family

ID=17058935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60240402A Pending JPS62102502A (en) 1985-10-29 1985-10-29 Manufacture of nonlinear resistance element

Country Status (1)

Country Link
JP (1) JPS62102502A (en)

Similar Documents

Publication Publication Date Title
JPS62102502A (en) Manufacture of nonlinear resistance element
JPS59189604A (en) Method of producing nonlinear resistor
JPS6122603A (en) Method of forming electrode of nonlinear resistor
JPH0374005B2 (en)
JPS59189605A (en) Nonlinear resistor
JPH0574921B2 (en)
JPS6243324B2 (en)
JPS62101002A (en) Manufacture of nonlinear resistance element
JP3270618B2 (en) Voltage non-linear resistor
JP2001052907A (en) Ceramic element and manufacturing method
JPS59103302A (en) Method of producing nonlinear resistor
JP2548299B2 (en) Manufacturing method of voltage-dependent nonlinear resistor element
JPS63114104A (en) Manufacture of nonlinear resistor
JPS58225602A (en) Method of producing nonlinear resistor
JPH0574922B2 (en)
JPS58188101A (en) Method of producing nonlinear resistor
JPS5838563Y2 (en) nonlinear resistor
JPS6410081B2 (en)
JPS63146407A (en) Manufacture of voltage nonlinear resistor
JPS58153301A (en) Method of producing nonlinear resistor
JPH10321409A (en) Ceramic element
JPS6410085B2 (en)
JPS60198704A (en) Method of producing voltage nonlinear resistor
JPS63114103A (en) Manufacture of nonlinear resistor
JPH07106108A (en) Nonlinear resistor