JPS62102322A - Manufacture of transparent resistance sheet with anisotropic conductive layer - Google Patents

Manufacture of transparent resistance sheet with anisotropic conductive layer

Info

Publication number
JPS62102322A
JPS62102322A JP60241255A JP24125585A JPS62102322A JP S62102322 A JPS62102322 A JP S62102322A JP 60241255 A JP60241255 A JP 60241255A JP 24125585 A JP24125585 A JP 24125585A JP S62102322 A JPS62102322 A JP S62102322A
Authority
JP
Japan
Prior art keywords
transparent
sheet
conductive layer
short fibers
anisotropic conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60241255A
Other languages
Japanese (ja)
Inventor
Junzo Gashiro
賀代 純三
Shoichi Kurasaki
倉崎 庄市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP60241255A priority Critical patent/JPS62102322A/en
Publication of JPS62102322A publication Critical patent/JPS62102322A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To eliminate damage to a resistance film by using a transparent resistance sheet which has an anisotropic conductive layer. CONSTITUTION:When the transparent sheet 5 which has the transparent resistance film 2 formed of ITO (oxide indium or tin oxide) on a transparent glass plate 1 is manufactured, mixed liquid consisting of a stock solution of resin and numbers of magnetic conductive short fibers 4 is charged between the sheet 5 and its cover film 6 and the short fibers 4 are oriented in the thickness direction of the film 6 through the operation of a magnetic field. Further, the liquid thickness is set a little bit larger than the short fiber length and short fibers 4 which contact the cover film 6 and short fibers 4 which contact the resistance film 2 are produced alternately through magnetic operation between the fibers. Further, the cover film 6 is removed after the matrix resin sets and polishing is carried out until the short fibers 4 contacting the resistance film 2 are exposed, thus obtaining the transparent resistance film 5 which has the anisotropic conductive layer.

Description

【発明の詳細な説明】 (産業上の利用分野) 情報関連機器において画像情報の入力装置の材料として
用いられる。本発明の方法になる異方導電層を有する透
明抵抗シートを用いて作られた透明な入力デバイスを面
状ディスプレーと重ねて入出力を同一の面上で行なうよ
うにしたものはワープローラコンピューターあるいは画
像電話の端末として用いられる。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) Used as a material for an image information input device in information-related equipment. A warp roller computer or a device in which a transparent input device made using a transparent resistive sheet having an anisotropic conductive layer according to the method of the present invention is overlapped with a planar display so that input and output are performed on the same surface Used as a video phone terminal.

(従来の技術) 適当な面抵抗を持つシートの周辺に複数個の電極を設け
、シート内の一点から電気を注入し、各電極に流入する
電気量を検出することにより注入点の座標データを入力
することか出来ることが知られている。シートがネサガ
ラスのごとく透明であるばあいはこれをドットマ1〜リ
ツクス液晶ディスプレーのごときパネルディスプレーと
重ねることにより入出力を同一の面上で行なうようする
ことができワープロやコンピューターあるいは画像電話
の端末として用いることができる。
(Prior art) A plurality of electrodes are provided around a sheet with appropriate sheet resistance, electricity is injected from one point in the sheet, and the coordinate data of the injection point is obtained by detecting the amount of electricity flowing into each electrode. It is known that it is possible to input. If the sheet is transparent, such as Nesa glass, it can be stacked with a panel display such as a Dotmarix liquid crystal display so that input and output can be performed on the same surface, and it can be used as a terminal for a word processor, computer, or video telephone. Can be used.

(発明が解決しようとする問題点) 一般に透明抵抗膜は金属あるいは金属酸化物からなるぎ
りめで薄い膜でおる。従って入力ペンを直接にこの抵抗
膜の上を走らせると抵抗膜にひつかききずを生じ正確な
位置検出機能を損なうという問題がめった。本発明はペ
ンによる入力機能を保持しながらしかもぺ、ンによる抵
抗膜の損傷が防止された改良された透明抵抗シートの製
造方法に関する必る。
(Problems to be Solved by the Invention) Generally, a transparent resistive film is a very thin film made of metal or metal oxide. Therefore, when an input pen is run directly over this resistive film, it often causes scratches on the resistive film, impairing the accurate position detection function. The present invention relates to an improved method for manufacturing a transparent resistive sheet that retains the pen-based input function while preventing damage to the resistive film caused by the pen.

(問題点を解決する為の手段) 上記目的を達成するため本発明は下記の構成からなる。(Means for solving problems) In order to achieve the above object, the present invention consists of the following configuration.

「透明な硬化物性樹脂原液と多数の磁性導電性短繊維と
からなる混合液を、透明抵抗シートの抵抗膜面とカバー
シートとがなす空間に保持させ、磁界を作用させて前記
磁性導電性短繊維をシートの厚さ方向に配向し、その配
向を保ったまま樹脂原液を硬化することを特徴とする異
方導電層を有する透明抵抗シートの製造方法。」 第1図は本発明の異方導電層を有する透明抵抗シートの
製造方法の一例を示す部分断面図である。
"A liquid mixture consisting of a transparent cured physical resin stock solution and a large number of magnetic conductive short fibers is held in the space formed between the resistive film surface of the transparent resistance sheet and the cover sheet, and a magnetic field is applied to make the magnetic conductive short fibers. A method for producing a transparent resistive sheet having an anisotropic conductive layer, characterized by orienting fibers in the thickness direction of the sheet and curing a resin stock solution while maintaining that orientation.'' Figure 1 shows the anisotropic conductive layer of the present invention. FIG. 2 is a partial cross-sectional view showing an example of a method for manufacturing a transparent resistive sheet having a conductive layer.

透明なガラス板1のうえにITO(l化インジュウム、
酸化スズ)の透明抵抗膜2が形成されてなる透明抵抗シ
ート5とカバーシート6との間に樹脂原液3と多数の磁
性導電性短繊維4とからなる混合液が充満しており、磁
場の作用により短繊維は既にシートの厚さ方向に配向せ
られている。この例に示すように液厚さを短繊維長より
も僅かに大きく設定してあくことにより短繊維の配向は
完全なものになるが近接する短繊維相互間の磁気作用に
よりカバーフィルムに接する短繊維と抵抗膜に接する短
繊維とがほぼ交互に発生する。マトリックス樹脂が硬化
したのちカバーフィルムを除去し必要により点線のとこ
ろまで、すなわち抵抗膜に接している短繊維が露出する
まで研削することにより目的とする異方導電層を有する
透明抵抗シートかえられる。それを第2図に示す。短繊
維の長さがマトリックス層の厚さと等しいか、または大
きくて、はとんどの短繊維か最初から抵抗膜とカバーフ
ィルムの両方と接している場合、研削はごく軽度に行え
ばよいか、または不要でおる。
ITO (indium chloride,
A mixed solution consisting of a resin stock solution 3 and a large number of magnetic conductive short fibers 4 is filled between a transparent resistive sheet 5 on which a transparent resistive film 2 of tin oxide (tin oxide) is formed and a cover sheet 6. Due to this action, the short fibers are already oriented in the thickness direction of the sheet. As shown in this example, by setting the liquid thickness slightly larger than the length of the short fibers, the orientation of the short fibers becomes perfect. Fibers and short fibers in contact with the resistive film occur almost alternately. After the matrix resin has hardened, the cover film is removed and, if necessary, the transparent resistive sheet having the desired anisotropic conductive layer can be replaced by grinding to the dotted line, that is, until the short fibers in contact with the resistive film are exposed. This is shown in Figure 2. If the length of the short fibers is equal to or larger than the thickness of the matrix layer, and most of the short fibers are in contact with both the resistive film and the cover film from the beginning, then only slight grinding is required; Or it's unnecessary.

樹脂の硬化を行なう前に液厚さが短繊維長さよりも小さ
くなるまでゆっくりとプレスしたのちに硬化を行なうと
第3図に示すような全ての短繊維が抵抗膜に接したもの
を得ることかできる。この場合は短繊維にあれまがりが
生じるので光学的な品質が若干低下することがある。装
置的にも若干複雑な機(黄か必要となる。
Before curing the resin, press slowly until the liquid thickness becomes smaller than the length of the short fibers, and then cure, to obtain a product in which all the short fibers are in contact with the resistive film as shown in Figure 3. I can do it. In this case, the short fibers may be twisted, resulting in a slight decrease in optical quality. The machine is a bit complicated in terms of equipment (yellow or yellow is required).

液厚さが短繊維長さよりも小さくなるまでゆっくりとプ
レスした際に短繊維か曲らずにカバーフィルムに陥入す
るようにカバーフィルムの少なくとも樹脂原液と接する
側を軟質の材料で形成しておき、前述のように樹脂の硬
化を行なう前に液厚さが短繊維長さよりも小さくなるま
でゆっくりとプレスしたのち樹脂の硬化を行なうと第4
図に示すように全ての短繊維が抵抗膜に接しながら、か
つ直線性を保ったものを得ることが出来る。この場合は
ごく軽度の研磨のみで目的とする異方導電層を有する透
明抵抗シートかえられる。
At least the side of the cover film in contact with the resin stock solution is formed of a soft material so that when the short fibers are pressed slowly until the liquid thickness becomes smaller than the length of the short fibers, the short fibers invaginate into the cover film without bending. Then, as mentioned above, before curing the resin, press slowly until the liquid thickness becomes smaller than the short fiber length, and then cure the resin.
As shown in the figure, it is possible to obtain a product in which all the short fibers are in contact with the resistive film and maintain linearity. In this case, the transparent resistive sheet having the desired anisotropic conductive layer can be replaced by only slight polishing.

最初から液厚さを短繊維長さより小さく設定したうえで
短繊維の配向を行なうこともできる。この場合も第5図
に示すように全ての短繊維が抵抗膜に接しながら、かつ
直線性を保ったものを1qることが出来るが短繊維の垂
直性が乱れるので光学的並びに電気的性能が若干低下す
る。
It is also possible to orient the short fibers after setting the liquid thickness to be smaller than the length of the short fibers from the beginning. In this case as well, as shown in Figure 5, it is possible to make 1q with all the short fibers in contact with the resistive film and maintaining their linearity, but the perpendicularity of the short fibers is disturbed, resulting in poor optical and electrical performance. It will decrease slightly.

これに用いる透明抵抗シートは透明なカラスあるいはプ
ラスチックフィルムのうえに導電性の金属あるいは金属
酸化物の薄膜を蒸着、スパッタリングその他公知の技法
で形成することによって得られたものでおる。酸化すず
に少量の酸化インジニウムを加えた薄膜をガラス上に形
成したものがその典型である。薄膜の抵抗値は特に限定
されるものではないが、入力デバイス用としては50〜
1000オーム/Sqのものが好適に用いられる。
The transparent resistance sheet used for this purpose is obtained by forming a thin film of a conductive metal or metal oxide on a transparent glass or plastic film by vapor deposition, sputtering, or other known techniques. A typical example is a thin film formed by adding a small amount of indium oxide to tin oxide on glass. The resistance value of the thin film is not particularly limited, but for input devices it is 50~
A material having a resistance of 1000 ohms/Sq is preferably used.

また透明抵抗シートの可視光線透過率は40%以上ある
ことか好ましい。抵抗シートどの接着性を高めるために
抵抗膜面にあらかじめ、有機チタネート、ビニルシラン
、アルカリ、酸、低温プラズマ処理などの表面処理を行
なうこともある。
Further, it is preferable that the visible light transmittance of the transparent resistance sheet is 40% or more. In order to improve the adhesion of the resistive sheet, the surface of the resistive film is sometimes subjected to surface treatment such as organic titanate, vinyl silane, alkali, acid, or low-temperature plasma treatment.

透明異方導電層のマトリックスを形成する材料は原料段
階で流動性があり、化学的硬化、冷却固化等によって硬
くて透明なマトリックスを形成するものでおればよい。
The material forming the matrix of the transparent anisotropic conductive layer may be any material that is fluid in the raw material stage and forms a hard and transparent matrix by chemical hardening, cooling solidification, or the like.

硬化後の硬さは鉛筆硬度でB以上あることが好ましく、
H以上のものは特に好ましい。硬化後の電気絶縁性は高
い方が好ましいが、必ずしも完全な絶縁体でおる必要は
無く、面抵抗値でいえば透明抵抗膜の100倍以上あれ
ばよく通常は1メガオ一ム/Sq以上あればよい。
The hardness after curing is preferably B or higher on a pencil hardness scale,
Those of H or higher are particularly preferred. It is preferable that the electrical insulation property after curing be high, but it does not necessarily have to be a perfect insulator, and in terms of sheet resistance value, it is sufficient if it is 100 times or more that of the transparent resistive film, and usually it is 1 megaohm/Sq or more. Bye.

エポキシ、アクリル、共重合ポリエステル、低融点ガラ
スなど有機、無機、反応硬化型、熱可塑性をとわず各種
の組成のものが用いられるが、エポキシ系は特に優れて
いる。最終的なマトリックス層の厚さは1mm以下が好
ましく、特に0.1mmからQ、5mmの範囲が好適に
用いられる。
Various compositions are used, including epoxy, acrylic, copolymerized polyester, and low-melting glass, including organic, inorganic, reaction-curing, and thermoplastic materials, but epoxy-based materials are particularly excellent. The final thickness of the matrix layer is preferably 1 mm or less, and a range of 0.1 mm to Q5 mm is particularly preferably used.

これに用いられる導電性短繊維はニッケル、コバル1〜
、鉄、おる種のステンレススチールを含む各種磁性金属
ないし磁性合金からなっている。おるいは、これらの金
属と非磁性材料との複合材が用いられることもある。こ
の種の物の例としてはガラス繊維や炭素繊維の表面にニ
ッケルをメッキしたものなどがある。化学的あるいは電
気的性質を高めるためにこれらの短繊維に金、銀、銅、
すずなどの他種金属が被覆されることもめる。短繊維の
直径はQ、1mm以下、より好適には0.03mm以下
の極めて細いものが用いられる。短繊維の密植度は完全
に貫通したものが1平方mm当り10本以上あることが
好ましい。
The conductive short fibers used for this are nickel, Kobal 1~
, iron, and various magnetic metals or magnetic alloys, including stainless steel. Alternatively, composite materials of these metals and non-magnetic materials may be used. Examples of this type of material include glass fibers or carbon fibers whose surfaces are plated with nickel. Gold, silver, copper,
It can also be coated with other metals such as tin. The diameter of the short fibers is Q, which is extremely thin, 1 mm or less, more preferably 0.03 mm or less. The density of the short fibers is preferably 10 or more fibers per square mm that are completely penetrated.

カバーシートはフィルム、シート、板様のものを用いる
が、マトリックス材の硬化のプロセスにおいて著じるし
くは収縮、変形などしないものを選ぶ必要がおる。その
表面をシリコーン、フッソ系ポリマーなどで離形処理を
しておくと、取除きか容易である。表面にシリコーン処
理をしたポリエステルフィルムは特に好適に用いられる
。ただしカバーシートの除去は必ずしも剥離によるのみ
ならず機械的研削によることもできるし、溶解の容易な
材料でつくっておいて溶剤により溶解除去することもで
きる。
The cover sheet may be in the form of a film, sheet, or plate, but it is necessary to select one that does not shrink or deform significantly during the curing process of the matrix material. If the surface is subjected to release treatment with silicone, fluorocarbon polymer, etc., it can be easily removed. A polyester film whose surface has been treated with silicone is particularly preferably used. However, the cover sheet can be removed not only by peeling but also by mechanical grinding, or it can be made of an easily soluble material and removed by dissolving it with a solvent.

異方導電層は導電性短繊維を混練した液状の71〜リツ
クス原液を透明抵抗シートの抵抗膜面に流延し、シー1
へ様の材料で表面をカバーしたのち磁界の作用により、
短繊維を面と垂直方向に配向させ、その配向状態を保っ
たままでマトリックスを硬化ないし固化さVたのちカバ
ーを取除き必要に応じて表面を研磨ないし研削する事に
よって形成される。流延のかわりに透明抵抗シートの抵
抗膜面とカバーシート面とで囲まれた空隙のなかに導電
性短繊維を混練した液状の71〜リツクス原液を注入す
ることも勿論できる。
The anisotropic conductive layer is made by casting a liquid 71-Rix stock solution containing conductive short fibers on the resistive film surface of the transparent resistive sheet.
After covering the surface with the same material, due to the action of the magnetic field,
It is formed by orienting the short fibers in a direction perpendicular to the plane, curing or solidifying the matrix while maintaining that orientation, then removing the cover and polishing or grinding the surface as necessary. Instead of casting, it is of course possible to inject a liquid stock solution of 71-Rix, which is a mixture of conductive short fibers, into the gap surrounded by the resistive film surface of the transparent resistive sheet and the cover sheet surface.

このようにしてえられた複合体全体としての透明性は可
視光線透過率として30%以上であることが好ましい。
The transparency of the composite thus obtained as a whole is preferably 30% or more in terms of visible light transmittance.

また次式で求められる曇価が80%以下のものが好まし
い。
Further, it is preferable that the haze value determined by the following formula is 80% or less.

曇価(%)=(拡散光線透過率/全光線透過率)[実施
例] ITO系の透明抵抗膜と透明板ガラスとからなる透明抵
抗シートの抵抗膜面にモロ−ブトキシ−ビス(アセチル
アセ1−ナー1〜)チタンの1%MEK溶液をうすく塗
布し120’C3分乾燥した。
Haze value (%) = (diffuse light transmittance/total light transmittance) [Example] Moro-butoxy-bis (acetylacetate 1- 1~) A 1% MEK solution of titanium was applied thinly and dried at 120'C for 3 minutes.

90部のエピコー1−827.10部のエピコー1〜1
54.50部のエポメー1〜BOO2W(いずれも油化
シェル社の製品)からなるエポキシ原液に直径12ミク
ロン、平均長さ0.33mm、長さの標準偏差0.01
mmの磁性ステンレス短繊維5部を加えたものを、周辺
にQ、4mmの厚さの額縁形のスペーサー−を置いた先
に準備した透明抵抗シートのうえに0,4部mmの厚さ
に流延し、離形処理を施したポリイミドフィルムでカバ
ーした。面に垂直方向の磁場を作用させて短繊維を厚さ
方向に配向ざ往た状態で60°C11時間、加熱してエ
ポキシをほぼ硬化ざじたのちざらに磁場を作用させない
で60’C12時間加熱して完全に硬化させた。カバー
フィルムを取除き、エポキシ層を0.30mmの厚さま
で研削し更に鏡面かえられるまで研磨した。jqられた
複合体は実質的に透明であり、埋設されている短繊維の
ちょうど半数がITO膜と接していることが観察された
。透明異方導電層を通じて導電ゴムを電極として測定し
た任意の2点間の抵抗値は原料の導電板ガラスの値とほ
ぼ同等であり、短繊維を通じて抵抗膜に入力出来ること
が確認された。
90 parts of Epicor 1-827.10 parts of Epicor 1-1
A diameter of 12 microns, an average length of 0.33 mm, and a standard deviation of length of 0.01 were added to an epoxy stock solution consisting of 54.50 parts of Epome 1 to BOO2W (all products of Yuka Shell Co., Ltd.).
5 parts of magnetic stainless steel short fibers of 0.4 mm thick were added to the transparent resistive sheet prepared earlier, with a picture frame-shaped spacer of 4 mm thick placed around it, to a thickness of 0.4 mm. It was covered with a polyimide film that had been cast and subjected to mold release treatment. Heat at 60°C for 11 hours while applying a magnetic field perpendicular to the surface to orient the short fibers in the thickness direction until the epoxy is almost cured, then heat at 60°C for 12 hours without applying a magnetic field. and completely cured. The cover film was removed, and the epoxy layer was ground to a thickness of 0.30 mm and further polished to a mirror finish. It was observed that the jqed composite was substantially transparent and exactly half of the embedded short fibers were in contact with the ITO membrane. The resistance value between any two points measured through the transparent anisotropic conductive layer using the conductive rubber as an electrode was almost the same as the value of the raw material conductive plate glass, and it was confirmed that the resistance could be input to the resistive film through the short fibers.

[発明の効果] 本発明によりえられた異方導電層を有する透明抵抗シー
トを用いることにより、電力注入ペンで直接に入力して
も抵抗膜に損傷を受けることのない透明入力デバイスを
得ることができる。
[Effects of the Invention] By using the transparent resistive sheet having an anisotropic conductive layer obtained by the present invention, it is possible to obtain a transparent input device in which the resistive film is not damaged even when input is directly made with a power injection pen. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による透明導電複合体製造工程の一実D
5a様の部分断面図である。 第2図は本発明により1qられた異方導電層を有する透
明抵抗シートの一実施態様の部分断面図でおる。 第3図、第4図および第5図は本発明による透明導電複
合体製造工程の他の実施態様の部分断面図である。 1
;透明な仮ガラス 2;板ガラスのうえに形成された透明抵抗薄膜3:透明
なマトリックス層 4;導電性短繊維 5:1と2とからなる透明抵抗シート 6;カバーフィルム
Figure 1 shows an example of the transparent conductive composite manufacturing process according to the present invention.
5a is a partial cross-sectional view. FIG. 2 is a partial cross-sectional view of an embodiment of a transparent resistive sheet having a 1q anisotropic conductive layer according to the present invention. 3, 4, and 5 are partial cross-sectional views of other embodiments of the transparent conductive composite manufacturing process according to the present invention. 1
Transparent temporary glass 2; Transparent resistive thin film 3 formed on plate glass; Transparent matrix layer 4; Transparent resistive sheet 6 made of conductive short fibers 5:1 and 2; Cover film

Claims (6)

【特許請求の範囲】[Claims] (1)透明な硬化物性樹脂原液と多数の磁性導電性短繊
維とからなる混合液を、透明抵抗シートの抵抗膜面とカ
バーシートとがなす空間に保持させ、磁界を作用させて
前記磁性導電性短繊維をシートの厚さ方向に配向し、そ
の配向を保ったまま樹脂原液を硬化することを特徴とす
る異方導電層を有する透明抵抗シートの製造方法。
(1) A liquid mixture consisting of a transparent cured physical resin stock solution and a large number of short magnetic conductive fibers is held in the space formed by the resistive film surface of the transparent resistive sheet and the cover sheet, and a magnetic field is applied to conduct the magnetic conductive material. 1. A method for producing a transparent resistance sheet having an anisotropic conductive layer, which comprises orienting short fibers in the thickness direction of the sheet and curing a resin stock solution while maintaining this orientation.
(2)樹脂原液を硬化させたのちカバーシートを除去し
、硬化した樹脂面を研削することを特徴とする特許請求
の範囲第(1)項記載の異方導電層を有する透明抵抗シ
ートの製造方法。
(2) Production of a transparent resistance sheet having an anisotropic conductive layer according to claim (1), which comprises curing the resin stock solution, removing the cover sheet, and grinding the cured resin surface. Method.
(3)透明抵抗シートの基材がガラスまたはプラスチッ
クフィルムであることを特徴とする特許請求の範囲第(
1)項記載の異方導電層を有する透明抵抗シートの製造
方法。
(3) The base material of the transparent resistance sheet is glass or plastic film,
1) A method for producing a transparent resistive sheet having an anisotropic conductive layer as described in item 1).
(4)透明抵抗シートの電気的抵抗膜が金属または金属
酸化物でできていることを特徴とする特許請求の範囲第
(1)項記載の異方導電層を有する透明抵抗シートの製
造方法。
(4) The method for manufacturing a transparent resistive sheet having an anisotropic conductive layer according to claim (1), wherein the electrically resistive film of the transparent resistive sheet is made of a metal or a metal oxide.
(5)金属または金属酸化物が酸化インジュウムと酸化
スズからなることを特徴とする特許請求の範囲第(4)
項記載の異方導電層を有する透明抵抗シートの製造方法
(5) Claim (4), characterized in that the metal or metal oxide consists of indium oxide and tin oxide.
A method for manufacturing a transparent resistive sheet having an anisotropic conductive layer as described in 1.
(6)導電性短繊維が磁性金属繊維であることを特徴と
する特許請求の範囲第(1)項記載の異方導電層を有す
る透明抵抗シートの製造方法。
(6) The method for manufacturing a transparent resistance sheet having an anisotropic conductive layer according to claim (1), wherein the conductive short fibers are magnetic metal fibers.
JP60241255A 1985-10-30 1985-10-30 Manufacture of transparent resistance sheet with anisotropic conductive layer Pending JPS62102322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60241255A JPS62102322A (en) 1985-10-30 1985-10-30 Manufacture of transparent resistance sheet with anisotropic conductive layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60241255A JPS62102322A (en) 1985-10-30 1985-10-30 Manufacture of transparent resistance sheet with anisotropic conductive layer

Publications (1)

Publication Number Publication Date
JPS62102322A true JPS62102322A (en) 1987-05-12

Family

ID=17071517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60241255A Pending JPS62102322A (en) 1985-10-30 1985-10-30 Manufacture of transparent resistance sheet with anisotropic conductive layer

Country Status (1)

Country Link
JP (1) JPS62102322A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006350882A (en) * 2005-06-20 2006-12-28 Matsushita Electric Ind Co Ltd Touch panel and manufacturing method for it
EP2194446A2 (en) * 2008-12-04 2010-06-09 Electronics and Telecommunications Research Institute Touchpad using resistive electro-conductive fiber and input device having the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006350882A (en) * 2005-06-20 2006-12-28 Matsushita Electric Ind Co Ltd Touch panel and manufacturing method for it
JP4577109B2 (en) * 2005-06-20 2010-11-10 パナソニック株式会社 Touch panel and manufacturing method thereof
EP2194446A2 (en) * 2008-12-04 2010-06-09 Electronics and Telecommunications Research Institute Touchpad using resistive electro-conductive fiber and input device having the same

Similar Documents

Publication Publication Date Title
KR100308139B1 (en) Transparent touch panel
TWI233570B (en) Touch panel display apparatus and method of fabricating the same
CN1355907A (en) High-reliability touch panel
WO2016202065A1 (en) Touch screen and manufacturing method thereof, and display apparatus
JPS62102322A (en) Manufacture of transparent resistance sheet with anisotropic conductive layer
CN105319777A (en) Liquid crystal display devices and methods of manufacturing the same
JPS6179644A (en) Transparent laminated conductive film
JPS6292302A (en) Transparent resistive sheet with conductive layer
CN110888282A (en) Color filter module and preparation method thereof, and color electronic paper and preparation method thereof
JPH04355425A (en) Transparent sheet-like heater
JPS6132751A (en) Laminated conductive film
JPS59158015A (en) Transparent conductive film
JPH0990375A (en) Production of liquid crystal display panel
CN207764777U (en) A kind of touch display screen of extremely low reflection and high light transmission
JP2004224941A (en) Polymer film and method for producing the same
JP2576068Y2 (en) Transparent touch panel
JPS6343435B2 (en)
JPS6179646A (en) Transparent laminated conductive film
JPH05173120A (en) Liquid crystal display device
JPS63252308A (en) Manufacture of transparent conducting film
JPH0436012Y2 (en)
JP3021261B2 (en) Manufacturing method of plastic substrate liquid crystal display element
JPS6132817A (en) Liquid crystal display panel and its manufacture
JP2001194654A (en) Liquid crystal display device
JPH10249975A (en) Transparent conductive film