JPS6210227A - Sintering operation method - Google Patents

Sintering operation method

Info

Publication number
JPS6210227A
JPS6210227A JP14820785A JP14820785A JPS6210227A JP S6210227 A JPS6210227 A JP S6210227A JP 14820785 A JP14820785 A JP 14820785A JP 14820785 A JP14820785 A JP 14820785A JP S6210227 A JPS6210227 A JP S6210227A
Authority
JP
Japan
Prior art keywords
sintering
height direction
air
sintered
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14820785A
Other languages
Japanese (ja)
Inventor
Akira Kato
明 加藤
Minoru Watanabe
実 渡辺
Hiroyasu Takahashi
高橋 博保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14820785A priority Critical patent/JPS6210227A/en
Publication of JPS6210227A publication Critical patent/JPS6210227A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To control quality in height direction of sintered layer on pallet uniform, by dehumidifying sucked air only for ore discharging part to a predetermined humidity or below and supplying bit in a continuous sintering machine. CONSTITUTION:Sintering material 2 is charged from a hopper 1 in lamellar stat to plural pallets connected to a sintering machine 3 in endless mode, fired by an ignition furnace 6, sucked by a main exhauster 5, and crushed stones are sintered and discharged from the ore discharging part 11. Thereat, in the part 11, air sucked from an air intake 10 is dehumidified to a prescribed humidity by a dehumidifier 9, and supplied to the sintering material layer 2 from a hood 7 through a duct 8. Variation of region absorbing dehumidified air as the variation of sintering end points is controlled by operating a damper 13 in a hood 7. In this way, the variance of post calcining strength in height direction owing to the unevenness of heat supply in material layer height direction is solved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は無端式連続焼結機の焼結鉱製造時の排鉱部での
吸引空気を除湿して焼結鉱の品質を安定させる焼結操業
方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a sintering method that stabilizes the quality of sintered ore by dehumidifying the suction air in the ore discharge section during the production of sintered ore in an endless continuous sintering machine. Concerning the method of drying.

〔従来の技術〕[Conventional technology]

焼結操業においてパレット上で焼成される焼結鉱は通常
、高さ方向にその強度の分41をもっている。一般的に
は層上部はシャッタ強度が低く、相対的に熱不足の状況
になっており、下層部に向かうに従って熱がヒ分供給さ
れるようになり、それに応じてシャッタ強度が大きくな
ってきている。
Sintered ore fired on pallets in a sintering operation typically has 41 of its strength in the height direction. Generally, the shutter strength is low at the top of the layer, resulting in a relative lack of heat, and as you move toward the bottom, more heat is supplied, and the shutter strength increases accordingly. There is.

これは本発明が対象としている連続式連結機での原料焼
成方式の特性と考えられる。
This is considered to be a characteristic of the raw material firing method using the continuous coupling machine, which is the object of the present invention.

熱源として供給するコークス使用量を低減する上では上
記の焼結鉱の強度のばらつきを解消することが必要であ
り、それにより高炉等の焼結鉱を使用する側から要求さ
れる強度を満足しつつコークス原単位(kg/1−si
nter)c7)低減を達成することができる。
In order to reduce the amount of coke used as a heat source, it is necessary to eliminate the above-mentioned variation in the strength of sintered ore. Coke consumption per unit (kg/1-si)
nter) c7) reduction can be achieved.

この問題に対して、上層部と下層部で装入するコークス
量を変えたり、また粒度を高さ方向で変えたりする偏析
装入が行われている焼結機もある。ところが、このよう
な偏析装入では、原料供給装置が大型で複雑な構造のも
のとなり、既設の焼結機ではその改造が難しい、またそ
のような設備を用いても狙い通りの理想的な偏析を層内
に設けることは難しい。また、この偏析装入のためには
混合される原料の切出し制御、粒度調整の手順が複雑と
なり操業上のコストも上昇する。
To solve this problem, some sintering machines use segregation charging, in which the amount of coke charged in the upper and lower layers is varied, or the grain size is varied in the height direction. However, in this type of segregation charging, the raw material supply equipment is large and has a complicated structure, and it is difficult to modify the existing sintering machine, and even with such equipment, it is difficult to achieve the desired segregation. It is difficult to provide this in a layer. In addition, for this segregation charging, the procedures for controlling the cutting out of the raw materials to be mixed and adjusting the particle size become complicated, which increases operational costs.

そこで、特開昭58−104127や特開昭58−16
4734で、点火炉後段から排鉱部に至る吸引空気中の
湿分を除湿して品質を一定に保持する操業法が提案され
ている。しかし第3図に示すようにこの場合、点火炉直
後では熱量不足が生じており、ここでも除湿することは
焼結層の機長方向や高さ方向における熱供給量の不均一
をもたらし、これに伴って焼結後の品質も層内高さ方向
でばらつきを生じ、歩留低下をもたらす要因となってい
るゆまたパレット原料層下層部では、燃焼帯領域14が
排鉱部側16にあり、層内温度測定結果によれば上層、
中層に比較して高温保持時間が長く熱供給過剰になる傾
向がある。このことは第3図(b)に示すようなヒート
パターンによって表わされる。この原料層上、中、下層
の熱供給の差は焼結された成品の強度等の性状の原料層
の高さ方向の不均一性を生じさせる。
Therefore, JP-A-58-104127 and JP-A-58-16
No. 4734 proposes an operating method for maintaining constant quality by dehumidifying the moisture in the suction air from the latter stage of the ignition furnace to the ore discharge section. However, as shown in Figure 3, in this case, there is a lack of heat immediately after the ignition furnace, and dehumidifying here also causes uneven heat supply in the longitudinal and height directions of the sintered layer. Accordingly, the quality after sintering also varies in the height direction within the layer, which is a factor causing a decrease in yield.In the lower layer of the Yumata pallet raw material layer, the combustion zone area 14 is located on the ore discharge side 16, According to the temperature measurement results in the upper layer,
Compared to the middle layer, the high temperature retention time is longer and there is a tendency for excessive heat supply. This is represented by a heat pattern as shown in FIG. 3(b). This difference in heat supply between the upper, middle and lower layers of the raw material layer causes non-uniformity in properties such as strength of the sintered product in the height direction of the raw material layer.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記連続式焼結機に特有の原料層高さ方向の熱
供給の不均一・に伴う焼成後強度の高さ方向のばらつき
を解決することにある。
The object of the present invention is to solve the problem of unevenness in strength after firing in the height direction due to non-uniform heat supply in the height direction of the raw material layer, which is peculiar to the continuous sintering machine.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は無端式に連結された複数のパレットに焼結原料
を層状に装入し、この原料に点火後、パレット下部から
焼結原料層を通過する空気を吸引しつつ粉鉱石を焼結さ
せる連続式焼結機の操業方法において、排鉱部のみの吸
引空気をあらかじめ定めた湿分値以下に除湿して供給し
、パレット上の焼結層内高さ方向の品質を均一にするよ
うに制御することを特徴とする焼結操業方法である。
In the present invention, sintering raw materials are loaded in layers into a plurality of pallets connected in an endless manner, and after the raw materials are ignited, the fine ore is sintered while sucking air passing through the sintering raw material layers from the bottom of the pallets. In the operating method of the continuous sintering machine, the suction air only in the ore discharge section is dehumidified to below a predetermined moisture value and supplied to make the quality uniform in the height direction within the sintered layer on the pallet. This is a sintering operation method characterized by control.

〔作用〕[Effect]

焼結操業において、吸引される空気中の湿分と、吸引後
原料層を通過した排ガス中のガス利用率ηcoとの間に
第2図に示す関係が得られた。ガス利用率ηcoは焼結
原料中の炭酸塩の分解により星するCo2を除<Co2
濃度C02*と、C0濃度とに・よって表わされるもの
で、 ηco−(GO2末)/ (CO+GO2本)で示され
るものである。大気湿分とηCoとの関係は下記(1)
、(2)、(3)式で説明できる。
In the sintering operation, the relationship shown in FIG. 2 was obtained between the moisture content in the suctioned air and the gas utilization rate ηco in the exhaust gas that passed through the raw material layer after suction. The gas utilization rate ηco is calculated by excluding CO2, which is produced due to the decomposition of carbonates in the sintering raw material.<Co2
It is expressed by the concentration C02* and the C0 concentration, and is expressed as ηco-(GO2 end)/(CO+GO2). The relationship between atmospheric moisture and ηCo is as follows (1)
, (2) and (3).

GO+H20(g)=CO2+H2−(1)H2+y2
o2  =I(20・・・ (2)CO十賜o2=co
2           ・・・ (3)すなわち湿分
量の増加に伴い、H20ガスを媒介としてCoガスの酸
化が促進される。この中で(3)式は発熱反応であり、
この反応は焼結層内で温度上昇に寄与することになる。
GO+H20(g)=CO2+H2-(1)H2+y2
o2 = I (20... (2) CO ten gift o2 = co
2... (3) That is, as the moisture content increases, oxidation of Co gas is promoted through H20 gas. Among these, equation (3) is an exothermic reaction,
This reaction will contribute to an increase in temperature within the sintered layer.

従ってこの発熱量を抑制するため本発明では上記の吸引
空気中の湿分の働きに注目したもので、前述のように焼
結層下層部では熱供給過剰傾向となるのに対処して、上
記(3)式の発熱反応による熱供給を除去するために吸
引空気を除湿して、前述の(3)式による発熱反応の発
生を抑制して、それにより焼結層下層部での熱供給過剰
現象を防止しようとするものである。
Therefore, in order to suppress this calorific value, the present invention focuses on the function of moisture in the sucked air, and in order to cope with the tendency of excessive heat supply in the lower part of the sintered layer as described above, In order to remove the heat supply due to the exothermic reaction of formula (3), the suction air is dehumidified to suppress the occurrence of the exothermic reaction according to formula (3) described above, thereby preventing excessive heat supply in the lower layer of the sintered layer. This is an attempt to prevent this phenomenon.

一方、原料層上層部において焼結反応が進行する給鉱部
側では前述のように熱不足気味となるので空気中の湿分
を積極的に利用して(3)式の反応を生かして熱供給量
を上昇させるようにする。
On the other hand, as mentioned above, there is a lack of heat in the ore feed section where the sintering reaction progresses in the upper part of the raw material layer, so the moisture in the air is actively used to take advantage of the reaction in equation (3) to heat up. Try to increase the supply.

ただし原料層内燃焼帯領域は操業状況により常に変動し
ており、原料層下層部の焼結反応において除湿空気の必
要なパレット上の領域は常に変動している。そこで実際
の操業では層内の焼結完了点をパレット直下の温度測定
結果等により常に監視し、その変動に合わせて除湿空気
の吸引領域を、例えばフード7を仕切り、それぞれにダ
ンパ13を設けて設定する0以上のように、コークス配
合量、粒度を高さ方向で分布を持たせる偏析装入をする
ことなく、吸引空気中の湿分を除去することにより1発
熱反応を制御し、層内高さ方向の熱供給状態を均一化し
、焼結後の強度を均一にすることができる。
However, the combustion zone area in the raw material bed is constantly changing depending on the operating conditions, and the area on the pallet where dehumidified air is required for the sintering reaction in the lower layer of the raw material bed is always changing. Therefore, in actual operation, the sintering completion point in the layer is constantly monitored using the temperature measurement results directly under the pallet, etc., and the suction area of dehumidified air is divided according to the fluctuations, for example, with the hood 7, and a damper 13 is installed in each. By setting 0 or more, the exothermic reaction is controlled by removing the moisture in the suction air without performing segregation charging, which distributes the coke content and particle size in the height direction. The heat supply state in the height direction can be made uniform, and the strength after sintering can be made uniform.

〔実施例〕〔Example〕

実際の焼結操業に適用した例を以下に示す。 An example of application to actual sintering operations is shown below.

生産量7000 t / B、吸引8L量900ONr
n’7分のDL焼結機3に第1図に示すようにフード7
、ダクト8、除湿装置9、大気吸引口10を設けて焼結
操業を行った。除湿装置10としては冷凍式除湿機を使
用した。焼結完了点の変動に伴う除湿空気の吸収領域の
変更はフード内のダンパ13の操作により調節した。
Production volume 7000t/B, suction volume 8L 900ONr
As shown in Fig. 1, the hood 7 is attached to the DL sintering machine 3 for n'7 minutes.
, a duct 8, a dehumidifying device 9, and an atmospheric suction port 10 were installed to carry out the sintering operation. As the dehumidifying device 10, a refrigerating type dehumidifier was used. Changes in the absorption area of dehumidified air due to changes in the sintering completion point were adjusted by operating a damper 13 in the hood.

焼結機排鉱部に供給される吸引空気の湿分値は最も制御
性のよい10 g/Nm’以下に管理して操業を行った
The operation was carried out by controlling the moisture content of the suction air supplied to the sintering machine discharge section to 10 g/Nm' or less, which provides the best controllability.

本発明を適用した期間と従来の点火炉後段から排鉱部ま
でを除湿した操業方法で行った期間のそれぞれの操業デ
ータの比較を第1表に示す。
Table 1 shows a comparison of operational data for a period in which the present invention was applied and a period in which a conventional operation method was used in which the operation method from the latter stage of the ignition furnace to the ore discharge section was dehumidified.

第1表より明らかなようにコークス原単位は本発明の適
用により低減しているが、落下強度はほぼ同じ値にする
ことができている。特に層内高さ方向の落下強度のばら
つきを調べるために行った高さ方向3点の局所サンプリ
ング試料での落下強度の結果によれば層内下層部の値が
従来方法に比較して低下しており、高さ方向のばらつき
を非常に小さくすることができた。
As is clear from Table 1, the coke consumption rate is reduced by applying the present invention, but the falling strength can be kept at approximately the same value. In particular, the fall strength results for local sampling samples at three points in the height direction, which were conducted to investigate the variation in fall strength in the height direction within the layer, showed that the value in the lower layer of the layer was lower compared to the conventional method. This made it possible to significantly reduce the variation in height.

また、生産性の点でも本発明の採用により歩留を太きく
向上させることができている。
Furthermore, in terms of productivity, the adoption of the present invention has made it possible to significantly improve the yield.

〔発明の効果〕〔Effect of the invention〕

本発明の採用により、第1表に明らかにされたように層
内高さ方向の落下強度のばらつきが大きく低減され、さ
らにコークス原単位の低減が達成されており、焼結成品
の歩留向上と共にコスト削減に大きな効果を奏する。
By adopting the present invention, as shown in Table 1, the variation in drop strength in the height direction within the layer has been greatly reduced, and the coke consumption rate has also been reduced, improving the yield of sintered products. This also has a significant effect on cost reduction.

第1表Table 1

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の系統図、第2図は吸引空気中
湿分と層内を通過した排ガスのガス利用率ηco:CO
2本/ (CO+GO2本) 、!=(7)fsEI係
を示す図、第3図(a)は焼結機の模式側面図。 第3図(b)はヒートパターンを示すグラフである。 1・・・焼結原料装入ホッパ 2・・・焼結原料層   3・・・無端式連続焼結機5
・・・主排風機    6・・・点火炉7・・・フード
     8・・・ダクト9・・・除湿装置    1
0・・・大気吸引lコ11・・・排鉱部
Fig. 1 is a system diagram of an embodiment of the present invention, and Fig. 2 shows the humidity in the suction air and the gas utilization rate ηco:CO of the exhaust gas that has passed through the layer.
2 bottles/ (CO+GO 2 bottles),! =(7) A diagram showing the fsEI relationship, and FIG. 3(a) is a schematic side view of the sintering machine. FIG. 3(b) is a graph showing the heat pattern. 1... Sintering raw material charging hopper 2... Sintering raw material layer 3... Endless continuous sintering machine 5
...Main exhaust fan 6...Ignition furnace 7...Hood 8...Duct 9...Dehumidifier 1
0... Atmospheric suction 11... Ore discharge section

Claims (1)

【特許請求の範囲】[Claims] 1 無端式に連結された複数のパレットに焼結原料を層
状に装入し、この原料に点火後、パレット下部から焼結
原料層を通過する空気を吸引しつつ粉鉱石を焼結させる
連続式焼結機の操業方法において、排鉱部のみの吸引空
気をあらかじめ定めた湿分値以下に除湿して供給し、パ
レット上の焼結層内高さ方向の品質を均一にするように
制御することを特徴とする焼結操業方法。
1 A continuous method in which sintering raw materials are charged in layers into multiple pallets connected in an endless manner, and after the raw materials are ignited, the fine ore is sintered while sucking air passing through the sintering raw material layers from the bottom of the pallets. In the operating method of the sintering machine, the suction air only in the ore discharge section is dehumidified to below a predetermined moisture value and supplied, and the quality is controlled to be uniform in the height direction within the sintered layer on the pallet. A sintering operation method characterized by:
JP14820785A 1985-07-08 1985-07-08 Sintering operation method Pending JPS6210227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14820785A JPS6210227A (en) 1985-07-08 1985-07-08 Sintering operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14820785A JPS6210227A (en) 1985-07-08 1985-07-08 Sintering operation method

Publications (1)

Publication Number Publication Date
JPS6210227A true JPS6210227A (en) 1987-01-19

Family

ID=15447656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14820785A Pending JPS6210227A (en) 1985-07-08 1985-07-08 Sintering operation method

Country Status (1)

Country Link
JP (1) JPS6210227A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108267008A (en) * 2016-12-30 2018-07-10 中冶长天国际工程有限责任公司 A kind of discharged nitrous oxides control method and device
CN108548420A (en) * 2018-04-18 2018-09-18 湖南理工学院 A kind of isothermal discharging sintering machine and discharge method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108267008A (en) * 2016-12-30 2018-07-10 中冶长天国际工程有限责任公司 A kind of discharged nitrous oxides control method and device
CN108267008B (en) * 2016-12-30 2019-12-27 中冶长天国际工程有限责任公司 Nitrogen oxide emission control method and device
CN108548420A (en) * 2018-04-18 2018-09-18 湖南理工学院 A kind of isothermal discharging sintering machine and discharge method

Similar Documents

Publication Publication Date Title
JPS6210227A (en) Sintering operation method
WO1998007891A1 (en) Method of manufacturing sintered ore and sintering machine therefor
JPH0339424A (en) Method for controlling air permeability of sintered raw material bed
JPS5911649B2 (en) Method and device for igniting sintered mixtures
JP2002121621A (en) Method for producing sintered ore and dl type sintering machine
CN207025272U (en) The infrared curing software pelletizer of sludge
KR101359274B1 (en) Apparatus for charging sintering material and Method for charging sintering material
JP2018536837A (en) Raw material charging apparatus and method
JP2538158B2 (en) Device for heat treatment and / or gas permeation of particulate matter
JPH07159048A (en) Exhaust gas circulation sintering process and exhaust gas circulation equipment
KR101998754B1 (en) Sintering apparatus
JPH0814007B2 (en) Agglomerated ore manufacturing method
JPS58171533A (en) Operating method for sintering device
JPS6148538A (en) Manufacture of sintered ore
KR20000014613A (en) Sinter mineral manufacturing system
JPH05272872A (en) Control device for feed amount of sintering material
SU1482965A1 (en) Method of loading pellets onto firing cars of conveyer machines
JPH04259335A (en) Production of sintered ore
JP2005281810A (en) Method and apparatus for feeding sintered ore to moving trough type cooling machine
JPS6125860Y2 (en)
KR101705055B1 (en) Processing method for raw material
CN2444961Y (en) Acid oxide pelletizing roasting shaft furnace
RU2173720C1 (en) Method of heat treatment of pellets on conveyer roasting machine
SU1232698A1 (en) Method of roasting iron ore pellets on conveyer machines
JP2000320978A (en) Control method of charging sintered material