JPS62101242A - Microscope for operation - Google Patents

Microscope for operation

Info

Publication number
JPS62101242A
JPS62101242A JP60242402A JP24240285A JPS62101242A JP S62101242 A JPS62101242 A JP S62101242A JP 60242402 A JP60242402 A JP 60242402A JP 24240285 A JP24240285 A JP 24240285A JP S62101242 A JPS62101242 A JP S62101242A
Authority
JP
Japan
Prior art keywords
light
illumination
cornea
examined
eye
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60242402A
Other languages
Japanese (ja)
Inventor
長野 隆
孝 深谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP60242402A priority Critical patent/JPS62101242A/en
Publication of JPS62101242A publication Critical patent/JPS62101242A/en
Pending legal-status Critical Current

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、角膜手術等に用いる手術用顕微鏡に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a surgical microscope used for corneal surgery and the like.

〔従来の技術〕[Conventional technology]

近年微細な手術を顕微鏡観察下で拡大観察しながら行う
いわゆるマイクロサージエリ−が盛んに行われるように
なってきており、これは手術を正確に行えることから眼
科、脳外科、形成外科をはしめ各分野で多大な成果をあ
げるに至っている。
In recent years, so-called microsurgery, in which microsurgery is performed under magnified observation under a microscope, has become popular, and because it allows the surgery to be performed accurately, it has become popular in various fields, including ophthalmology, neurosurgery, and plastic surgery. has achieved great results.

また、特に眼科の分野では、角膜手術において色部を縫
合する際角膜の曲率半径を測定しながらその測定値に応
じて縫合の程度を手加減することにより術後に角膜乱視
を発生するのを未然に防ぐことへの要求が高まっている
。これらの要求をみたすべく、例えば特開昭59−10
5436号公報では、被検眼の角膜の曲率半径を自動的
に測定し得る装置を備えた手術用顕微鏡の一例が開示さ
れている。これは、被検部を観察するための観察系と、
観察用の照明を行う観察照明系と、角膜曲率半径を測定
するための光電検出器及び角膜照明系を具える測定装置
とを設けるとともに、観察照明系による照明光中から所
定性質の光を除去するための除去手段と、光電検出器へ
入射する光を所定の性質の光のみに規制する規制手段と
を設けていることが特徴である。また、前記除去手段及
び規制手段は、光の波長(色)により除去及び規制を行
ういわゆる波長カットフィルターである。
In addition, especially in the field of ophthalmology, when suturing the colored area during corneal surgery, the radius of curvature of the cornea is measured and the degree of suturing is adjusted according to the measured value, thereby preventing the occurrence of corneal astigmatism after surgery. There is an increasing demand for prevention. In order to meet these demands, for example,
Japanese Patent No. 5436 discloses an example of a surgical microscope equipped with a device that can automatically measure the radius of curvature of the cornea of an eye to be examined. This consists of an observation system for observing the test area,
An observation illumination system that provides illumination for observation, a measurement device that includes a photoelectric detector and a corneal illumination system for measuring the radius of corneal curvature are provided, and light with a predetermined property is removed from the illumination light by the observation illumination system. The present invention is characterized in that it is provided with a removing means for removing the light and a regulating means for regulating the light incident on the photoelectric detector to only light having a predetermined property. Further, the removing means and regulating means are so-called wavelength cut filters that remove and regulate light depending on the wavelength (color) of light.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のように、従来技術では、リング状の角膜曲率半径
測定用の光源の他に該光源と照射角度が異なる被検部観
察用の光源が必要であるので手術用顕微鏡の鏡筒付近に
二種の光源を設けるなどしなければならず、そのため複
雑な構成となり且つ操作性が悪いばかりか、波長カット
フィルターによる照明光量の損失が大きい等の欠点があ
る。 本発明は、以上の点に鑑み、手術用顕微鏡の鏡筒
付近がシンプルで操作性が良く、且つ照明の効率のよい
手術用顕微鏡を提供することを目的とする。
As described above, in the conventional technology, in addition to a ring-shaped light source for measuring the radius of corneal curvature, a light source for observing the examination area with a different irradiation angle from the ring-shaped light source is required, so two light sources are installed near the lens barrel of the surgical microscope. It is necessary to provide a different light source, which results in a complicated structure and poor operability, and has drawbacks such as a large loss of illumination light due to the wavelength cut filter. SUMMARY OF THE INVENTION In view of the above points, it is an object of the present invention to provide a surgical microscope in which the vicinity of the lens barrel of the surgical microscope is simple, has good operability, and has efficient illumination.

〔問題点を解決するための手段及び作用〕本発明による
手術用顕微鏡は、角膜曲率半径測定兼角膜観察用の照明
光を直線偏光にして被検部に照射し、角膜で反射される
前記照明光と同一の偏光成分のみを偏光分割部材で分割
して角膜曲率半径測定光学系に導くと共に、前記偏光成
分と異る偏光成分を観察光として用いるようにして同一
の光源にて角膜の曲率半径の測定と観察を可能にしたも
のである。
[Means and effects for solving the problems] The surgical microscope according to the present invention transforms illumination light for corneal curvature radius measurement and corneal observation into linearly polarized light and irradiates it onto the examination area, and the illumination reflected by the cornea Only the polarized light component that is the same as the light is split by a polarization splitting member and guided to the corneal radius of curvature measurement optical system, and a polarized light component that is different from the polarized light component is used as observation light to measure the corneal radius of curvature using the same light source. This enabled the measurement and observation of

〔実施例〕〔Example〕

第1図に本発明の第一実施例の光学系を示す。 FIG. 1 shows an optical system according to a first embodiment of the present invention.

図において、Eは被検眼、Cは被検眼Eの角膜である。In the figure, E is the eye to be examined, and C is the cornea of the eye E to be examined.

lは例えばリング状に配置したファイバー束で構成され
た照明光源である。2はリング状のスリット、3はリン
グ状のコリメートレンズで、コリメートレンズ3は各経
線方向で屈折率を持ちこれに直交する方向即ちリング円
周方向では屈折率を持たない円環状シリンドリカルレン
ズから成っており、スリット2よりその焦点距離だけへ
だてて配置されていて、前記光tA1により照明された
スリット2の像を平行にし光学的に無限遠がら被検眼E
の角膜Cに投影するようにする。また、被検眼Eの光軸
0と被検眼已に投影される前記照明光束とのなす角は、
光軸0のまわりについて同じ角度θである。4はリング
状の偏光板で、照明光のうち紙面に対して垂直な直線偏
光のみをi3遇するものであり、光源1から被検眼Eの
角膜Cまでの光路中であればどこに配置してもがまねな
い。
1 is an illumination light source composed of, for example, a fiber bundle arranged in a ring shape. 2 is a ring-shaped slit, 3 is a ring-shaped collimating lens, and the collimating lens 3 is an annular cylindrical lens that has a refractive index in each meridian direction and has no refractive index in the direction perpendicular to the meridian direction, that is, in the ring circumferential direction. The slit 2 is placed apart from the slit 2 by its focal length, and the image of the slit 2 illuminated by the light tA1 is made parallel to the subject's eye E from an optically infinite distance.
so that it is projected onto the cornea C of the person. Further, the angle formed between the optical axis 0 of the eye E to be examined and the illumination light flux projected onto the eye to be examined is:
The same angle θ is about the optical axis 0. Reference numeral 4 denotes a ring-shaped polarizing plate, which allows only the linearly polarized light perpendicular to the paper surface of the illumination light to be viewed. Don't struggle.

以上により被検眼Eの照明光学系を構成する。The illumination optical system for the eye E to be examined is configured as described above.

5は手術用顕微鏡の対物レンズ、6.6′は左右のリレ
ーレンズで、リレーレンズ6.6′の光軸は平行に配さ
れている。7.7′は左右の接眼レンズで、リレーレン
ズ6.6′による像をそれぞれ目視するのに用いる。以
上の対物レンズ5゜リレーレンズ6.6′及び接眼レン
ズ7.7′により被検眼E及び角膜Cを立体的に観察す
るための双眼実体顕微鏡の光学系を構成している。
5 is an objective lens of a surgical microscope, and 6.6' is a left and right relay lens, and the optical axes of the relay lenses 6.6' are arranged in parallel. Reference numeral 7.7' denotes left and right eyepieces, which are used to visually observe the images produced by the relay lenses 6 and 6'. The objective lens 5.degree. relay lens 6.6' and the eyepiece lens 7.7' constitute an optical system of a binocular stereomicroscope for three-dimensionally observing the eye E and the cornea C.

8′はいわゆる偏光ビームスプリッタで紙面に対して垂
直な偏光成分の大半を反射し、水平な偏光成分を透過す
る特性を存する。9は結像レンズ、10は二次元撮像用
の光電変換器で、例えばccD (Charge Co
upled Device)の様な固体描像素子を使用
する。以上の対物レンズ5.リレーレンズ6′、偏光ビ
ームスプリッタ8゛、結像レンズ9及び光電変換器10
により角膜曲率半径測定装置の受光部を構成している。
8' is a so-called polarizing beam splitter which has the characteristic of reflecting most of the polarized light component perpendicular to the paper surface and transmitting the horizontal polarized light component. 9 is an imaging lens; 10 is a photoelectric converter for two-dimensional imaging; for example, a ccD (Charge Co.
A solid-state imaging element such as an upgraded device is used. Objective lens 5. Relay lens 6', polarizing beam splitter 8', imaging lens 9 and photoelectric converter 10
This constitutes the light receiving section of the corneal radius of curvature measuring device.

ここで角膜曲率半径測定装置の作用を説明する。Here, the operation of the corneal curvature radius measuring device will be explained.

第1図においてリング状のスリットの像は・被検眼Eの
角膜Cにより鏡面反射して、反射像11(虚像)を形成
する。この反射像11は角膜Cによる鏡面反射による像
であるため、偏光板4を透過する直線偏光(紙面に対し
垂直)は保たれており、したがって前記偏光ビームスプ
リッタによりその大半は反射される。したがって、前記
角膜曲率半径測定装置の受光部により光電変換器lo上
へ投影像11′ (第2図)として結像される。ここで
、角膜Cは一般にトーリック面とみなされるため、前記
照明光学系のリング状のスリット2が真円であっても角
膜反射像11及び光電変換器10上の投影像11′はだ
円となる。
In FIG. 1, the image of the ring-shaped slit is specularly reflected by the cornea C of the eye E to be examined, forming a reflected image 11 (virtual image). Since this reflected image 11 is an image caused by specular reflection by the cornea C, the linearly polarized light (perpendicular to the plane of the paper) transmitted through the polarizing plate 4 is maintained, and most of it is therefore reflected by the polarizing beam splitter. Therefore, the light receiving section of the corneal radius of curvature measuring device forms a projected image 11' (FIG. 2) onto the photoelectric converter lo. Here, since the cornea C is generally regarded as a toric surface, even if the ring-shaped slit 2 of the illumination optical system is a perfect circle, the corneal reflected image 11 and the projected image 11' on the photoelectric converter 10 are elliptical. Become.

第2図に示した如く、光電変換器lo上に投影された投
影像11゛とこれを横切る適当な間隔の3本の走査線1
2,13.14により投影像11との交点12’、12
“、13”、13”、14’、14’が求まる。これら
交点のうち5点の座標より投影像ll′のだ円形状を求
めることができ、これにより被検眼の角膜曲率半径を算
出することができる。
As shown in FIG. 2, there is a projected image 11' projected onto the photoelectric converter lo and three scanning lines 1 at appropriate intervals crossing it.
2, 13. Intersection with the projected image 11 by 14 12', 12
", 13", 13", 14', 14' are found. From the coordinates of five of these intersection points, the elliptical shape of the projected image ll' can be found, and from this the radius of corneal curvature of the eye to be examined is calculated. be able to.

一般にだ円の方程式は任意の座標軸x、yに対し ax”  +by”  +2cxy+dx+ey+1=
0と書き表わせる。ここでa −eの5つが未知数で、
これを求めるには上記式に平面上の5点の座標を代入す
る必要があり、該5点の座標を求めるために3本の走査
線を用いるのである。
Generally, the equation of an ellipse is ax" + by" +2cxy+dx+ey+1= for any coordinate axes x and y.
It can be written as 0. Here, five of a - e are unknown numbers,
To find this, it is necessary to substitute the coordinates of five points on the plane into the above equation, and three scanning lines are used to find the coordinates of the five points.

次に、被検眼E及び角膜C付近を立体的に観察するため
の双眼実体顕微鏡の光学系について説明する。
Next, an optical system of a binocular stereomicroscope for three-dimensionally observing the eye E and the vicinity of the cornea C will be described.

照明光学系による直線偏光の照明光と角膜Cで鏡面反射
される光を除き被検眼E及び角膜Cにより散乱され、直
線偏光は乱されてランダムな偏光となる。”このランダ
ムな偏光による被検眼E及び角膜Cの像を双眼実体顕微
鏡の光学系により観察する。ただし、前記偏光ビームス
プリッタ8′はランダム偏光のうち紙面に水平な成分を
透過させるものである。ここで8は偏光ビームスプリッ
タa″と同じように紙面に対し水平な偏光成分を透過し
且つ垂直な偏光成分を反射するような偏光ビームスプリ
ッタでもよいし、紙面に水平な偏光成分を透過する偏光
板であってもかまわない。また、角膜Cでの鏡面反射に
よる紙面と垂直な直線偏光である角膜Cの曲率半径測定
用光束と、前記被検眼E及び角膜Cからのランダム偏光
である観察光との分N能を高めるために、偏光ビームス
プリンタ8,8′より観察者側にまたは/及び偏光ビー
ムスプリッタ8′と光電検出器10との間に偏光板を挿
入してもよい。
Except for the linearly polarized illumination light from the illumination optical system and the light specularly reflected by the cornea C, the linearly polarized light is scattered by the eye E and the cornea C, and the linearly polarized light is disturbed and becomes randomly polarized light. ``The images of the eye E and the cornea C created by this randomly polarized light are observed using the optical system of a binocular stereomicroscope.However, the polarizing beam splitter 8' transmits the component of the randomly polarized light that is horizontal to the plane of the paper. Here, 8 may be a polarizing beam splitter that transmits polarized light components horizontal to the plane of the paper and reflects polarized light components perpendicular to the plane of the paper, similar to the polarization beam splitter a'', or a polarized light beam that transmits polarized light components that are horizontal to the plane of the paper. It doesn't matter if it's a board. In addition, in order to increase the separation between the light flux for measuring the radius of curvature of the cornea C, which is linearly polarized light perpendicular to the plane of the paper due to specular reflection on the cornea C, and the observation light, which is randomly polarized light from the eye E and the cornea C, Additionally, a polarizing plate may be inserted closer to the viewer than the polarizing beam splitters 8, 8' and/or between the polarizing beam splitter 8' and the photoelectric detector 10.

本実施例は、以上のように構成されているので、従来の
ような異なる角度で照射される二つの光源を必要とせず
に一つの光源で角膜曲率半径の測定及び観察ができ、そ
の結果手術用顕微鏡の鏡筒付近がシンプルになり操作性
が良い。また、波長カットフィルターを特に設ける必要
がなく、その結果照明光の損失が少なく、効率の良い照
明が可能である。また、偏光板4を光軸○について回転
するようにすれば、角膜反射像11を随時観察し得るよ
うにすることができる。また、観察用及び測定用の照明
光軸が同軸であって角膜に形成されるリング状光源像が
一致し、光電検出器10上でも一致しているので、観察
用照明光が測定精度に影響をあたえることがない。
Since this embodiment is configured as described above, the radius of corneal curvature can be measured and observed with one light source without the need for two light sources that irradiate at different angles as in the conventional case. The area around the lens barrel of the microscope is simpler and easier to operate. Further, there is no need to provide a wavelength cut filter, and as a result, there is little loss of illumination light, and efficient illumination is possible. Further, by rotating the polarizing plate 4 about the optical axis ◯, the corneal reflection image 11 can be observed at any time. In addition, since the observation and measurement illumination optical axes are coaxial, the ring-shaped light source images formed on the cornea coincide, and also on the photoelectric detector 10, so the observation illumination light affects measurement accuracy. I never give.

第3図に本発明の第二実施例の光学系を示す。FIG. 3 shows an optical system according to a second embodiment of the present invention.

その構成は第一実施例と基本的には同じであるが、リン
グ状光源lの後方にリングレンズ15.リングストロボ
16が配置してあり、リンズストロボ16の−はリング
レンズ1.5に関してスリット2と共役な位置に配置さ
れている。ここで、リングストロボ16を角膜Cの曲率
半径測定時のみ発光させるようにすれば、第一実施例よ
りも光電検出2g 10の感度を下げて測定することが
できる。また、リング状光源1とリングストロボ16の
間に近赤外光のみを透過するような波長カットフィルタ
ー17を挿入すれば、前記リングストロボ16の発光時
に観察者にリングストロボ16の可視成分が観察される
ことはなく、その結果観察者(術者)が眩惑されて手術
を中断するというような危険性がなくなる。また、偏光
ビームスプリンタ8′と光電変fA器10との間に前記
波長カットフィルター17と同様な特徴を存する波長カ
ットフィルター18を挿入すれば、外部からの迷光等測
定精度を低下させる要゛因を除去できる。
Its configuration is basically the same as that of the first embodiment, but a ring lens 15. A ring strobe 16 is arranged, and the - of the ring strobe 16 is arranged at a position conjugate with the slit 2 with respect to the ring lens 1.5. Here, if the ring strobe 16 is made to emit light only when measuring the radius of curvature of the cornea C, the sensitivity of the photoelectric detection 2g 10 can be lowered than in the first embodiment. Furthermore, if a wavelength cut filter 17 that transmits only near-infrared light is inserted between the ring light source 1 and the ring strobe 16, the visible component of the ring strobe 16 will be visible to the viewer when the ring strobe 16 emits light. As a result, there is no risk of the observer (operator) being dazzled and interrupting the operation. Furthermore, if a wavelength cut filter 18 having the same characteristics as the wavelength cut filter 17 is inserted between the polarization beam splinter 8' and the photoelectric converter 10, stray light from the outside, etc., which may reduce measurement accuracy, can be removed. can be removed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明による手術用顕微鏡は、被
検眼の観察及び角膜曲率半径測定のために同一の照明光
を被検眼に入射させることが可能であるため、外部に別
の照明系を設ける必要がなく、その結果鏡体のまわりが
シンプルな構成とな且つ操作性が良く、また波長カット
フィルターを特に設ける必要がなく、その結果照明光の
損失が少なく、効率の良い照明が可能である。
As explained above, the surgical microscope according to the present invention allows the same illumination light to be incident on the eye to be examined for observation of the eye to be examined and measurement of the radius of corneal curvature, so a separate illumination system can be installed externally. As a result, the structure around the mirror body is simple and easy to operate, and there is no need to provide a wavelength cut filter, resulting in less loss of illumination light and more efficient illumination. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による手術用顕微鏡の第一実施例の光学
系を示す図、第2図は上記第一実施例の光電変換器上の
結像状態を示す図、第3図は第二実施例の光学系を示す
図である。 1・・・・照明光源、2・・・・スリット、3・・・・
コリメートレンズ、4・・・・偏光板、5・・・・対物
レンズ、6.6′・・・・リレーレンズ、7.7’・・
・・接眼しンズ、8.8″・・・・偏光ビームスプリフ
タ、9.。 0.結像レンズ、1o・・・・光電変換器、11・・・
・反射像、11′・・・・投影像、12,13.14・
・・・走査線、12’、12’、13’、13’、14
゛、14″山・交点、E・・・・被検眼、C・・・・角
膜。 第1 図
FIG. 1 is a diagram showing the optical system of the first embodiment of the surgical microscope according to the present invention, FIG. 2 is a diagram showing the image formation state on the photoelectric converter of the first embodiment, and FIG. It is a figure showing an optical system of an example. 1...Illumination light source, 2...Slit, 3...
Collimating lens, 4...Polarizing plate, 5...Objective lens, 6.6'...Relay lens, 7.7'...
... Eyepiece, 8.8" ... Polarizing beam splitter, 9. 0. Imaging lens, 1o... Photoelectric converter, 11...
・Reflected image, 11'...Projected image, 12, 13.14.
...Scanning lines, 12', 12', 13', 13', 14
゛, 14'' peak/intersection, E... eye to be examined, C... cornea. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 被検部を観察するための観察系と、角膜曲率半径を測定
する測定装置とを備えた手術用顕微鏡において、観察兼
測定用の照明系と、前記照明系の照明光を偏光に規制し
て被検部に照射する規制手段と、被検部からの反射光を
鏡面反射光と散乱反射光とに分割して前者を前記測定装
置に後者を前記観察系に夫々導く分割手段とを設けたこ
とを特徴とする手術用顕微鏡。
A surgical microscope equipped with an observation system for observing an object to be examined and a measuring device for measuring the radius of corneal curvature, an illumination system for observation and measurement, and regulating the illumination light of the illumination system to polarized light. A regulating means for irradiating the area to be examined, and a dividing means for dividing the reflected light from the area to be examined into specularly reflected light and scattered reflected light and guiding the former to the measuring device and the latter to the observation system, respectively, are provided. A surgical microscope characterized by:
JP60242402A 1985-10-29 1985-10-29 Microscope for operation Pending JPS62101242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60242402A JPS62101242A (en) 1985-10-29 1985-10-29 Microscope for operation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60242402A JPS62101242A (en) 1985-10-29 1985-10-29 Microscope for operation

Publications (1)

Publication Number Publication Date
JPS62101242A true JPS62101242A (en) 1987-05-11

Family

ID=17088607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60242402A Pending JPS62101242A (en) 1985-10-29 1985-10-29 Microscope for operation

Country Status (1)

Country Link
JP (1) JPS62101242A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005349211A (en) * 2004-06-11 2005-12-22 Leica Microsystems (Schweiz) Ag Eye protector and optical element having free shape surface for illumination beam path
JP2018126492A (en) * 2017-02-07 2018-08-16 パナソニックIpマネジメント株式会社 Eyeball imaging apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005349211A (en) * 2004-06-11 2005-12-22 Leica Microsystems (Schweiz) Ag Eye protector and optical element having free shape surface for illumination beam path
JP2018126492A (en) * 2017-02-07 2018-08-16 パナソニックIpマネジメント株式会社 Eyeball imaging apparatus

Similar Documents

Publication Publication Date Title
US4711541A (en) Slit lamp and accessory device thereof
US5463430A (en) Examination apparatus for examining an object having a spheroidal reflective surface
US6741359B2 (en) Optical coherence tomography optical scanner
JPH061298B2 (en) Stereoscopic microscope for performing surgery
US4657357A (en) Illumination system for single objective lens binocular microscope
US10151909B2 (en) Surgical microscope and method for highlighting eye lens pieces
US4807989A (en) Surgical microscope system
US4795250A (en) Ophthalmic apparatus
US5781275A (en) Eye refractometer and eye refractive power measuring apparatus for electro-optically measuring the refractive power of the eye
JP3501499B2 (en) Optometrist
JPS62101242A (en) Microscope for operation
JPS633612B2 (en)
JP2933108B2 (en) Corneal surgery device
JP3619858B2 (en) Stereoscopic microscope
JPS59144436A (en) Ophthalmic apparatus
US4299455A (en) Vision testing instrument
JPS62164449A (en) Operation microscope
JPH02302243A (en) Measuring instrument for refractive index of eyes
JPS6236692B2 (en)
JP2018166927A (en) Ophthalmic microscope
JPS62117525A (en) Stereoscopic endoscope
JP2951991B2 (en) Eye refractometer
JPS6351017B2 (en)
JPS59155232A (en) Ophthalmic apparatus
JP2023120804A (en) Optical system and inspection device