JPS62101008A - Magnetic member - Google Patents

Magnetic member

Info

Publication number
JPS62101008A
JPS62101008A JP60241056A JP24105685A JPS62101008A JP S62101008 A JPS62101008 A JP S62101008A JP 60241056 A JP60241056 A JP 60241056A JP 24105685 A JP24105685 A JP 24105685A JP S62101008 A JPS62101008 A JP S62101008A
Authority
JP
Japan
Prior art keywords
amorphous
approximately
magnetic
heat resistance
crystallites
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60241056A
Other languages
Japanese (ja)
Other versions
JP2516908B2 (en
Inventor
Koichi Kugimiya
公一 釘宮
Yuji Komata
雄二 小俣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60241056A priority Critical patent/JP2516908B2/en
Publication of JPS62101008A publication Critical patent/JPS62101008A/en
Application granted granted Critical
Publication of JP2516908B2 publication Critical patent/JP2516908B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Soft Magnetic Materials (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To improve heat resistance by dispersing a specific quantity of crystallites having particle size of approximately 0.1mum or less approximately uniformly into mother phase consisting of an amorphous body. CONSTITUTION:A pseudo-crystalline material is arranged in at least one part of a section requiring excellent magnetic characteristics as well as heat resistance, abrasion resistance, etc. The pseudo-crystalline material uses an amorphous body as mother phase, crystallites having particle size of approximately 0.1mum or less are dispersed approximately uniformly extending over the whole in the pseudo-crystalline material, and the whole volume of the crystallites is made the same as or larger than the volume of the amorphous body. A magnetic member is acquired by thermally treating a thin-film material obtained through sputtering, etc. for approximately one hr at a low temperature (300-500 deg.C), thus eliminating the thermal instability of an amorphous magnetic material, then improving the heat resistance of the material.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、磁気回路の少くとも一部を構成する非晶質系
の磁性部材に関し、各種電子部品、電子機器分野に広く
利用される。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an amorphous magnetic member constituting at least a part of a magnetic circuit, and is widely used in various electronic parts and electronic equipment fields.

従来の技術 非晶質磁性材料として、多くの材料、製造方法が一般に
知られている。例えば、超急冷法によるリボン状の非晶
質膜形成技術M、キクチ他+ Jpn。
BACKGROUND OF THE INVENTION Many materials and manufacturing methods are generally known for amorphous magnetic materials. For example, ribbon-shaped amorphous film formation technology M using ultra-quenching method, Kikuchi et al. + Jpn.

■、アプライドフィジックス(M、Kikuchi。■, Applied Physics (M, Kikuchi.

etal、 、 Jpn、 J、 Appl、 Phy
s−、14、1077(1975))やスパッター法に
よる薄膜形成技術M、ノセ他、■、アプライドフィジッ
クス(M。
etal, , Jpn, J, Appl, Phy
s-, 14, 1077 (1975)), thin film formation technology by sputtering method M, Nose et al., ■, Applied Physics (M.

No5e、 etal、 、 1. Appl、 Ph
ys、 52 、1911(1981))などによシ、
非晶質磁性材料が製造されている。これらの非晶質材料
は、衆知のように、非晶質であるが故に他の結晶質にな
い特性。
No5e, etal, , 1. Appl, Ph
ys, 52, 1911 (1981)), etc.
Amorphous magnetic materials have been produced. As is well known, these amorphous materials have properties that other crystalline materials do not have because they are amorphous.

例えば、耐蝕性、耐摩耗性に優れているが、一旦結晶化
が始まると極端に特性の悪くなることが知られテイル。
For example, although it has excellent corrosion resistance and wear resistance, it is known that once crystallization begins, its properties become extremely poor.

例えば、特許USP第4,079,430号明細書によ
れば、結晶体が、概略50%以下の量であれば、特性劣
化があっても使用に耐えうるとされている。しかしこれ
らの、基本的には非晶質磁性材料は公知のように、又、
発明者らの実験によっても、熱的に非常に不安定であっ
て、300〜SOO℃の低温の3時間位の熱処理で劣化
することが判っている。この時、材料を電子顕微鏡など
により詳細に観察すると、0.2〜1μmの大きな粒子
が全体に発生していることが判るO発明が解決しようと
する問題点 上述の説明で一部明らかなように、非晶質材料は熱安定
性に乏しく、従って、これら材料を使用して電子部品な
どを製造する際などの熱処理に種々の問題を生じている
。又、使用において、耐熱性に乏しいため、放熱や断熱
などの種々の熱対策が必要とされておシ、長期信頼性に
問題がある。
For example, according to patent USP No. 4,079,430, if the amount of crystalline material is approximately 50% or less, it can be used even if the characteristics deteriorate. However, these basically amorphous magnetic materials are known to be
Experiments conducted by the inventors have shown that it is very thermally unstable and deteriorates after heat treatment at a low temperature of 300 to SOO°C for about 3 hours. At this time, when the material is observed in detail using an electron microscope, etc., it can be seen that large particles of 0.2 to 1 μm are generated throughout the material.Problems to be solved by the inventionAs is partially clear from the above explanation, In addition, amorphous materials have poor thermal stability, and therefore various problems arise in heat treatment when manufacturing electronic components and the like using these materials. Furthermore, in use, due to poor heat resistance, various heat countermeasures such as heat radiation and insulation are required, and long-term reliability is problematic.

本発明は、このような耐熱性の問題を解決した磁性部材
を提供する。
The present invention provides a magnetic member that solves the problem of heat resistance.

問題点を解決するための手段 耐熱性や耐摩耗性などと共に、優れた磁気特性を必要と
する部分の少くとも一部に、凝結晶質材料を配置する。
Means for Solving the Problems A condensed crystalline material is placed in at least a portion of the parts that require excellent magnetic properties as well as heat resistance and abrasion resistance.

その凝結晶質材料は、非晶質体を母相としており、その
中に、ほぼ0.1μm以下の粒径を有する微結晶が全体
にほぼ均等に分散しており、且つ、微結晶の全体の体積
が非晶質体の体積の等倍以上である。
The coagulated crystalline material has an amorphous matrix, in which microcrystals having a grain size of approximately 0.1 μm or less are almost evenly dispersed throughout, and The volume of the amorphous material is equal to or larger than the volume of the amorphous material.

作  用 均質に分散された微結晶が、均質な粒成長の核となり、
即ち異常な粒成長や、構造変化を防止する結果、微細構
造の変化に鋭敏な磁気特性の変化を防止する効果をもた
らす。
Function Homogeneously dispersed microcrystals become nuclei for homogeneous grain growth,
That is, as a result of preventing abnormal grain growth and structural changes, it has the effect of preventing changes in magnetic properties that are sensitive to changes in fine structure.

実施例 本発明による磁性部材は、スパッター等によって得られ
た薄膜材料を一旦、低温(3OO〜500℃)で熱処理
を1時間程度行ない、さらに電子機器用に必要とされる
加工(切断、研磨、ガラス接着や再熱処理)を行なう。
EXAMPLE A magnetic member according to the present invention is produced by first heat-treating a thin film material obtained by sputtering or the like at a low temperature (300°C to 500°C) for about 1 hour, and further processing (cutting, polishing, etc.) required for electronic equipment. glass bonding and reheat treatment).

この結果、上述の微結晶が全体に均等に分散した凝結晶
質材料を形成。
As a result, a coagulated crystalline material is formed in which the above-mentioned microcrystals are evenly distributed throughout.

含有する。contains.

本発明における磁性部材に使用されている、熱安定性凝
結晶質材料の本質については解明されていないことが多
く、今後の検討に待つ所が多い。
The nature of the thermally stable coagulated crystalline material used in the magnetic member of the present invention is largely unknown, and much remains to be investigated in the future.

しかし、発明者らの実験結果より、以下に記す作用が考
えられている。
However, based on the experimental results of the inventors, the following effects are considered.

一般に非晶質材料は、熱的に不安定であり、加熱によっ
て結晶化する過冷却のガラス状態と考えられる。このよ
うな非晶質材料は、非晶質とは云え、第2図のように、
微視的には非晶質体1中にエンブリオといわれる微小な
しかし、種々の大きさの結晶核2ai無数に含んでいる
。加熱によシ。
Generally, amorphous materials are thermally unstable and are considered to be in a supercooled glass state that crystallizes when heated. Although such an amorphous material is amorphous, as shown in Figure 2,
Microscopically, the amorphous body 1 contains countless microscopic crystal nuclei 2ai called embryos, but of various sizes. Good for heating.

このエンブリオのうち、一定条件のものが成長し、結晶
核となシ成長を続ける。この時、周辺に体積変化などに
よる歪が生じ、さらに成長が加速される0従って、一般
の非晶質材料においては、第2図に示すように、0.2
〜1μmに及ぶ異常に大きな結晶3を含んだ、いわゆる
異常粒成長を観察できる。又、材料中に、大きな局所歪
が存在したり、不純物塊が存在しても、いわゆる不均一
核形成が生じ、やはシ、第2図に示すように、二重粒度
分布構造を生ずる。
Among these embryos, those under certain conditions grow and continue to grow as crystal nuclei. At this time, strain occurs in the periphery due to volume changes, etc., and the growth is further accelerated. Therefore, in general amorphous materials, as shown in Figure 2, 0.2
So-called abnormal grain growth including abnormally large crystals 3 up to 1 μm in size can be observed. Furthermore, even if there is a large local strain or a lump of impurities in the material, so-called non-uniform nucleation occurs, resulting in a double grain size distribution structure as shown in FIG.

本発明における材料も、形成直後は上述のよう不安定な
状態と考えられる。しかし、300〜600℃での短時
間(1〜3時間)の熱処理によって、上述のような局所
歪などを焼鈍して、不均一核形成をなくすと共に、エン
ブリオの形状分布を安定な形に変化させており、第1図
に示すように、非晶質体1中に微結晶が均一に分散して
いる。よって、異常粒成長や、さらに、低温での微小な
構造緩和などによる構造変化を防いでいると考えられる
。一般に、エンブリオの大きさは、第3図実線(イ)に
示すように、小さいものは無数に存在し、大きなもの程
、急に少なくなる。その大きさは、一般に数人であり、
100人よシは大きくなると推定されている。この時、
熱処理を行うと、その温度によってきまる臨界径(ロ)
以下のエンブリオを消滅し、以上のエンブリオは成長し
始める。従って、一定の時間の後は、点線eつのような
分布になる。
The material in the present invention is also considered to be in an unstable state as described above immediately after formation. However, by short-term heat treatment at 300-600°C (1-3 hours), the above-mentioned local strains are annealed, eliminating heterogeneous nucleation and changing the shape distribution of the embryo to a stable shape. As shown in FIG. 1, microcrystals are uniformly dispersed in the amorphous body 1. Therefore, it is thought that abnormal grain growth and structural changes due to minute structural relaxation at low temperatures are prevented. In general, as shown by the solid line (a) in Figure 3, there are countless small embryos, and the larger the embryo, the smaller the number of embryos. Its size is generally several people,
It is estimated that 100 people will grow. At this time,
When heat treatment is performed, the critical diameter (b) determined by the temperature
The following Embryos will disappear and the above Embryos will begin to grow. Therefore, after a certain period of time, the distribution becomes as shown by the dotted line.

この結果、熱処理に鋭敏な小さいエンブリオは消滅、な
いしは大巾に減少し、逆に鈍感な大きいエンブリオが幾
分残ることになる。このため、以降での熱処理に対して
、非常に安定な材料となっていると考えられる。この効
果は、以上の説明で明らかなように、特に結晶化しやす
い材料、例えば相図において、非晶質−結晶質の境界に
近い組成で、特に顕著な効果があることが判る。
As a result, small embryos that are sensitive to heat treatment disappear or are greatly reduced, while some large embryos that are insensitive remain. Therefore, it is considered that the material is extremely stable against subsequent heat treatment. As is clear from the above description, this effect is particularly noticeable in materials that are particularly easy to crystallize, for example, in compositions close to the amorphous-crystalline boundary in the phase diagram.

以上に説明した本発明における凝結晶質材料を結晶化温
度以上で熱処理を施すと、一定の大きさのエンブリオな
どが均等に分布しているため、電子顕微鏡による観察で
も明らかなように材料組成に拘らず二重粒度分布構造に
ならず、ほぼ0.1μm以下の均等な粒構造となる。
When the precipitated crystalline material of the present invention described above is heat-treated at a temperature higher than the crystallization temperature, embryos of a certain size are evenly distributed, and as is clear from observation with an electron microscope, the material composition changes. However, a double particle size distribution structure is not obtained, and a uniform particle structure of approximately 0.1 μm or less is obtained.

以下に実施例Vこついてより詳細に説明する。Example V will be explained in more detail below.

”8O−9ONb10−152r3−8Ta2−7の各
種の組成のターゲツトを準備し、Arガス中でスパッタ
ーして、ガラス基板上に薄膜材料を51trn厚に形成
した。スパッター条件は、Arガス圧2×1O−2To
rr 、 13.45 MHzのrf入力400W、タ
ーゲット距離約4crR,基板水冷(26℃)であり、
ガラス基板としては、熱歪の少ない熱膨張係数110X
10−7をもつ結晶化ガラスを用いた。
"8O-9ONb10-152r3-8Ta2-7 targets with various compositions were prepared and sputtered in Ar gas to form a thin film material with a thickness of 51 trn on a glass substrate.The sputtering conditions were: Ar gas pressure 2× 1O-2To
rr, 13.45 MHz rf input 400W, target distance approximately 4crR, substrate water cooling (26℃),
The glass substrate has a thermal expansion coefficient of 110X with little thermal distortion.
A crystallized glass having a molecular weight of 10-7 was used.

−代表例の透過電子回折実験の結果を第4図に示す。- Figure 4 shows the results of a typical transmission electron diffraction experiment.

薄膜形成直後において、完全な非晶質でない状態を示す
デバイーシェーラー環を示す材料においても、aOO℃
1時間の第一次の熱処理を行った後、480℃で数時間
の熱処理を行っても非常に安定であり、ほぼ6時間にわ
たって、磁気特性が変化しないことが判った。電子回折
環の状況は、第一次、以降の熱処理において、当初のデ
バイーンヱーラー環に比べて、幾分輪郭が明確になった
ものの、大きな変化は生じていない0結晶化源度以上、
例えば700℃、1分の熱処理では、上述のようにQ、
1μm以下の粒径のもつ多結晶体になっていると共に、
非常に明確な電子回折図を得た。この回折写真の黒度解
析により、回折強度を得る。この強度は、結晶部分を示
し、非晶質母相の寄与は殆んどなく、又、これらは材料
9組成とも同一であることから、結晶部分の体積に比例
すると考えられる。
Immediately after forming a thin film, even in materials exhibiting a Debye-Scherer ring, which indicates a state that is not completely amorphous, aOO℃
After a primary heat treatment of 1 hour, it was found to be very stable even after several hours of heat treatment at 480° C., with no change in magnetic properties for approximately 6 hours. The state of the electron diffraction rings has become somewhat clearer than the original Devine-Eller rings during the first and subsequent heat treatments, but no major changes have occurred. ,
For example, in heat treatment at 700°C for 1 minute, Q,
It is polycrystalline with a grain size of 1 μm or less, and
A very clear electron diffraction pattern was obtained. Diffraction intensity is obtained by blackness analysis of this diffraction photograph. This strength indicates a crystalline portion, with almost no contribution from the amorphous parent phase, and since these are the same composition as Material 9, it is considered to be proportional to the volume of the crystalline portion.

微結晶の全体積と非晶質母相の体積の比を以上の方法で
算出した所、いずれも1.0以上あった。
When the ratio of the total volume of microcrystals to the volume of the amorphous matrix was calculated using the above method, both were 1.0 or more.

以上の代表例を含む、種々の形成条件による実験結果を
第1表に示す。
Table 1 shows experimental results under various formation conditions, including the representative examples above.

膜の評価は、先ず、形成直後、電子回折像を観察する。To evaluate the film, first, immediately after formation, an electron diffraction image is observed.

第1表には、完全ハロー状のものをと。Table 1 shows those with a complete halo shape.

デバイーシエーラー環を含むものをQで示しである。次
にSOO℃で1時間予備加熱処理で焼鈍を行ない、再度
電子回折像を観察し、その状態を上述と同様に、a、Q
で示し、さらに透過電子顕微鏡観察により、粒子の全く
ない状態(コントラストの不明確なものを含む)をa、
異常粒子を含むものiDとした。この時、磁気特性とし
て、構造敏感性の高い初透磁率(1MHz )  を測
定した。
Those containing a Debye-Schierer ring are indicated by Q. Next, annealing was performed by preheating treatment at SOO℃ for 1 hour, and the electron diffraction image was observed again.
Further, by transmission electron microscopy, the state where there are no particles (including those with unclear contrast) is shown as a,
Those containing abnormal particles were designated as iD. At this time, the initial magnetic permeability (1 MHz), which is highly sensitive to structure, was measured as a magnetic property.

次に480℃5時間の長時間の耐熱テストを行なった後
、初透磁率を再度測定した。その変化率(低下率)30
%以下をA、50%以下をB1以上をCと定義し、第1
表に結果を示した。さらに、700℃1分の完全結晶化
の熱処理を行ない、結晶化の状況を観察した。均一な粒
成長をしたものにはS、異常成長のある二重構造のもの
にはDiつけ、表中に示した。
Next, after conducting a long-term heat resistance test at 480° C. for 5 hours, the initial magnetic permeability was measured again. Its rate of change (rate of decline) 30
% or less is defined as A, 50% or less is defined as B1 or more is defined as C, and the first
The results are shown in the table. Further, a complete crystallization heat treatment was performed at 700° C. for 1 minute, and the state of crystallization was observed. Those with uniform grain growth were labeled with S, and those with a double structure with abnormal growth were labeled with Di, as shown in the table.

又、予後の欄には、結晶質/非晶質母相の体積比率を示
しである。ハロー状のものについては本比率を0.5以
下とした。最初の欄に参考のため形成時のスパッタ圧(
10−3Torr )を示した。
In addition, the column of prognosis shows the volume ratio of crystalline/amorphous matrix. For halo-shaped particles, the ratio was set to 0.5 or less. For reference, the first column shows the sputtering pressure during formation (
10-3 Torr).

第1表より判るように、体積比率が1.0を越している
ものにおいて、耐熱性の良好なことが示されている。又
、これら材料において、焼鈍後の結晶粒の大きさは0.
1μm以下であることも観察された。以外のものについ
ては、0.2〜1μmになっていた。
As can be seen from Table 1, those having a volume ratio of more than 1.0 are shown to have good heat resistance. Furthermore, in these materials, the grain size after annealing is 0.
It was also observed that it was less than 1 μm. For other items, it was 0.2 to 1 μm.

なお、本実施例においては、上述の材料、組成の示を示
したが、前項9作用で説明した原理に基づいていると考
えられることから、他の同様な材料に、本原理が適用せ
しめられることは、明白であろう。
In this example, the above-mentioned materials and compositions are shown, but since it is considered to be based on the principle explained in the previous section 9, the present principle can be applied to other similar materials. That should be obvious.

次に第1表の評価Aの材料について、40℃。Next, for the material of evaluation A in Table 1, the temperature was 40°C.

80%、1000時間の耐湿テストを行なった所何ら従
来の非晶質材料と異なることのない良好な耐蝕性を示し
た。
When an 80% humidity test was conducted for 1000 hours, it showed good corrosion resistance no different from conventional amorphous materials.

さらに第6図に示すように、厚さ5μmの本発明による
凝結晶質材料の層4を8102 の絶縁膜5を介して、
基板e上に8層(図示省略)、計約30μm厚に積層し
、次に同一基板6を接着し、切断その他の加工を経て、
o、4μm長の磁気ギャップ7を持つ磁気ヘッドを形成
した。この過程で、焼鈍を兼ねた熱処理やガラス封着処
理など、6o。
Further, as shown in FIG. 6, a layer 4 of a precipitated crystalline material according to the present invention having a thickness of 5 μm is placed through an insulating film 5 of 8102.
Eight layers (not shown) are laminated on the substrate e to a total thickness of about 30 μm, then the same substrate 6 is bonded, and after cutting and other processing,
A magnetic head having a magnetic gap 7 with a length of 4 μm was formed. In this process, 6o heat treatment that also serves as annealing and glass sealing treatment are performed.

℃、1時間、480℃、30分の熱処理が施されている
C. for 1 hour and 480.degree. C. for 30 minutes.

この磁気ヘッドをVH3型VTRに取りつけ、6MHz
  の基準出力を測定し、これを基準odBとした。次
に同じ磁気ヘッドをさらに余分に2時間480℃で熱処
理して、その出力を測定した所、全て±1dB内になっ
ており、出力変化の少ないことが判明した。
Attach this magnetic head to a VH3 type VTR to generate a 6MHz
The standard output was measured, and this was taken as the standard odB. Next, the same magnetic head was heat-treated at 480° C. for an additional 2 hours, and its output was measured, and it was found that all outputs were within ±1 dB, indicating that there was little change in the output.

次に、B評価、C評価の材料について、同様のテストを
行なった所、各々、平均して、約3 dB。
Next, we conducted similar tests on B-rated and C-rated materials, and each found an average of about 3 dB.

cs dBの出力低下があることが判った。It was found that there was a decrease in output of cs dB.

このような高温環境は実際の一般使用環境ではないが、
この結果、得られる熱安定性は、製造歩留シ向上や、晶
質の安定化を招き、さらに長期の信頼性の向上になる。
Although such a high temperature environment is not an actual general use environment,
As a result, the resulting thermal stability leads to an improvement in production yield and stabilization of crystallinity, which further improves long-term reliability.

又、磁気ヘッドの先端部分では、テープとの接触によっ
て、高温になっていると推定されており、この局所にお
いても、耐熱性の向上による磁気特性の維持、スペーシ
ングロス防止に役立っている。
Furthermore, it is estimated that the tip of the magnetic head is at a high temperature due to contact with the tape, and even in this local area, improved heat resistance helps maintain magnetic properties and prevent spacing loss.

以上の例では限られた材料、組成についての記述に留ま
っているが、本発明の原理は他の材料組成に同様にあて
はまることは込うまでもない。
Although the above examples are limited to only limited materials and compositions, it goes without saying that the principles of the present invention are equally applicable to other material compositions.

磁気ヘッドの先端部の局所加熱と同様の部材、例えば、
超音速ジェット機先端部の電波反射防止膜などKも応用
でき、同じ効果のあることはいうまでもない。
A member similar to local heating of the tip of a magnetic head, for example,
It goes without saying that K can also be applied to anti-radio wave reflection coatings on the tips of supersonic jet aircraft, and has the same effect.

発明の効果 本発明によれば、非晶質磁性材料の持つ熱的な不安定さ
が解消され、材料の耐熱性が大巾に向上される。
Effects of the Invention According to the present invention, the thermal instability of an amorphous magnetic material is eliminated, and the heat resistance of the material is greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明における凝結晶質材料の微細構造の概略
を示す断面図、第2図は熱処理後に観察される、不良磁
気特性を示す材料の微細構造、二重粒度分布構造を示す
断面図、第3図はエンブリオ分布及びその変化を示すグ
ラフ、第4図は電子回折図の一例を示す図、さらに第5
図は本発明の一実施例である磁気ヘッドの概略を示す断
面図である。 1・・・・・・非晶質体、2・・・・・・微結晶。
Fig. 1 is a cross-sectional view showing the outline of the microstructure of the coagulated crystalline material in the present invention, and Fig. 2 is a cross-sectional view showing the microstructure and double grain size distribution structure of the material exhibiting poor magnetic properties observed after heat treatment. , Figure 3 is a graph showing the embryo distribution and its changes, Figure 4 is a diagram showing an example of an electron diffraction diagram, and Figure 5 is a graph showing an example of an electron diffraction diagram.
The figure is a cross-sectional view schematically showing a magnetic head that is an embodiment of the present invention. 1... Amorphous body, 2... Microcrystalline.

Claims (1)

【特許請求の範囲】[Claims]  非晶質体より成る母相中に、ほぼ0.1μm以下の粒
径の微結晶が概略均等に分散しており、且つ、前記微結
晶の全体積が、母相の体積以上である凝結晶質材料を、
磁気回路の少なくとも一部に使用したことを特徴とした
磁性部材。
A coagulated crystal in which microcrystals with a grain size of approximately 0.1 μm or less are almost evenly dispersed in a matrix composed of an amorphous substance, and the total volume of the microcrystals is greater than or equal to the volume of the matrix. quality materials,
A magnetic member characterized in that it is used for at least a part of a magnetic circuit.
JP60241056A 1985-10-28 1985-10-28 Magnetic head and manufacturing method thereof Expired - Lifetime JP2516908B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60241056A JP2516908B2 (en) 1985-10-28 1985-10-28 Magnetic head and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60241056A JP2516908B2 (en) 1985-10-28 1985-10-28 Magnetic head and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS62101008A true JPS62101008A (en) 1987-05-11
JP2516908B2 JP2516908B2 (en) 1996-07-24

Family

ID=17068652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60241056A Expired - Lifetime JP2516908B2 (en) 1985-10-28 1985-10-28 Magnetic head and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2516908B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4918555A (en) * 1987-07-23 1990-04-17 Hitachi Metals, Ltd. Magnetic head containing an Fe-base soft magnetic alloy layer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855557A (en) * 1981-09-29 1983-04-01 Takeshi Masumoto Ferrous amorphous alloy containing fine crystal particle
JPS58122036A (en) * 1982-01-12 1983-07-20 Matsushita Electric Ind Co Ltd Production of polycrystalline film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855557A (en) * 1981-09-29 1983-04-01 Takeshi Masumoto Ferrous amorphous alloy containing fine crystal particle
JPS58122036A (en) * 1982-01-12 1983-07-20 Matsushita Electric Ind Co Ltd Production of polycrystalline film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4918555A (en) * 1987-07-23 1990-04-17 Hitachi Metals, Ltd. Magnetic head containing an Fe-base soft magnetic alloy layer

Also Published As

Publication number Publication date
JP2516908B2 (en) 1996-07-24

Similar Documents

Publication Publication Date Title
Sonnenberg et al. Preparation of biaxially aligned cubic zirconia films on pyrex glass substrates using ion‐beam assisted deposition
US5087297A (en) Aluminum target for magnetron sputtering and method of making same
US5456815A (en) Sputtering targets of high-purity aluminum or alloy thereof
JPS5896845A (en) Nickel base superalloy sheet and manufacture
CN108315705B (en) Structure for improving crystallization resistance of amorphous metal film material and preparation method thereof
JPS62101008A (en) Magnetic member
KR100883228B1 (en) Magnesium oxide single crystal having controlled crystallinity and method for preparation thereof, and substrate using said single crystal
Jardine et al. Investigation into the thin-film fabrication of intermetallic NiTi
JP4006620B2 (en) Manufacturing method of high purity nickel target and high purity nickel target
JP2706635B2 (en) High purity titanium target for sputtering and method for producing the same
Itoh et al. A Role of Rapid Thermal Annealing (RTA) for Achieving Fine Isolated Grains of FeCuPt
JPH04268056A (en) Manufacture of beryllium copper alloy and beryllium copper alloy manufactured by the above method
JP2830662B2 (en) Aluminum target and method of manufacturing the same
CN114657345B (en) Iron target, iron-nickel alloy target and grain refinement method of target
JPH0790560A (en) High purity titanium sputtering target
JPS6181608A (en) Preparation of powder of hexagonal ferrite particle
JP3976467B2 (en) Method for producing giant magnetostrictive alloy
US3437577A (en) Method of fabricating uniform rare earth iron garnet thin films by sputtering
JPH0354454B2 (en)
JPS6276710A (en) Manufacture of magnetic thin film
JP2795450B2 (en) Amorphous magnetic alloy for magnetic head
JPS61274342A (en) Ferroelectric element and manufacture thereof
JPS63125663A (en) Production of thin amorphous ta-w alloy film
JPH0192359A (en) Manufacture of thin amorphous film
JPH02430B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term