JPS62100952A - Charging method for zinc-chlorine cell for high output in short time - Google Patents

Charging method for zinc-chlorine cell for high output in short time

Info

Publication number
JPS62100952A
JPS62100952A JP60241032A JP24103285A JPS62100952A JP S62100952 A JPS62100952 A JP S62100952A JP 60241032 A JP60241032 A JP 60241032A JP 24103285 A JP24103285 A JP 24103285A JP S62100952 A JPS62100952 A JP S62100952A
Authority
JP
Japan
Prior art keywords
battery
current density
electrode
zinc
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60241032A
Other languages
Japanese (ja)
Inventor
Fumiaki Fujisaki
藤崎 文昭
Toshio Horie
俊男 堀江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Furukawa Battery Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Furukawa Battery Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP60241032A priority Critical patent/JPS62100952A/en
Publication of JPS62100952A publication Critical patent/JPS62100952A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To stabilize the cell capacity and prevent a damage of the cell owing to an abnormal rise or drop of the inner pressure of a battery jar, by preparing a device to measure the inner pressure of the jar, and controlling the charging current density depending on the inner pressure. CONSTITUTION:In this cell are furnished a positive electrode of a chlorine electrode 5, a negative electrode of a zinc electrode 6, and an electrolyte of a water solution consisting of mainly zinc chloride. Between the electrodes 5 and 6, plural bipolar electrodes 7 combining a chlorine electrode 5a and a zinc electrode 6a are arranged parallel. At the upper part of a battery jar 1, a linking hole to link cell chambers 8a to 8d which are separated by the electrodes 7, and at one of the cell chambers are furnished a pressure detecting protector 11 and a sensor 12. By this sensor 12, the inner pressure of the jar 1 is measured, and when the pressure is low, the charging current density is increased, and when the pressure exceeds a specific value, the current density is decreased or the charging is halted to maintain the cell capacity constant. Therefore, a damage of the cell from an abnormal rise or drop of the inner pressure depending on an inadequate charging current density can be prevented.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は短時間だけ高出力を外部負荷に供給する亜鉛−
塩素電池の充電方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides zinc-
The present invention relates to a method of charging a chlorine battery.

従来の技術 一般に電力各社では雷などによる送電線や送電設備に事
故が発生17た場合、電力設備の損害を最小限にとどめ
るため、事故を高速度で検出して事故設備を切離し7て
いる。しかし最高水準の技術を駆使した保護リレーシス
テムを用いても、事故を切離すまでに0.07〜2秒間
電圧が大幅に低下する。ところで一般的なコンピュータ
ーに10〜20%以上の電圧低下が0.003〜0.0
2秒間継続すると計算ミスを起すため、通常は自動的に
演算を停止するようになっている。そこでコンピュータ
ーを用いたオンラインリアルタイムシステムのように極
めて重要度が高いものでは、商用電源が停止しても無停
電で電力を供給することができるように、二次電池を付
設した定電圧定周波電源装置C以下単にCVCFと略記
)が用いられている。
Conventional Technology In general, when electric power companies experience an accident on power transmission lines or equipment due to lightning or other causes, they detect the accident at high speed and disconnect the equipment in order to minimize damage to the power equipment. However, even with the most advanced protective relay system, the voltage will drop significantly for 0.07 to 2 seconds before the fault is isolated. By the way, a typical computer has a voltage drop of 10 to 20% or more of 0.003 to 0.0.
If this continues for 2 seconds, a calculation error will occur, so normally the calculation is automatically stopped. Therefore, for extremely important items such as online real-time systems using computers, a constant voltage, constant frequency power supply equipped with a secondary battery is required so that power can be supplied uninterrupted even if the commercial power supply is interrupted. Device C (hereinafter simply abbreviated as CVCF) is used.

CVCFとしては、例えば第4図に示すように商用電源
囚と交流出力の)間に整流器(0、DCフィルター〇、
インバータ[F]、ACフィルター[F]を直列に接続
し、一方商用電源囚とDCフィルター■)間に充電機0
、二次笛、池U、サイリスタスイッチ(I)を通る回路
を並列に接続し1更にインバータ■と交流出力03)間
に周波数発振器(J)e有する位・相制御卸と電圧制御
■を通る回路を並列に接続したもので、常時商用電源を
直流に交換し、波形整形により目的の電圧及び周波数の
交流に再変換する。このようにして二次電池は商用電源
により常時小電力で充電しておき、瞬時電圧低下時にサ
イリスクスイッチの作動により、商用電源を変換し7た
直流に代り、二次電池の直流が印加され、波形整形によ
り交流出力となる。商用電源が正常化するとサイリスタ
スイッチが作動して二次電池は切りはなされ、再び商用
電源により常時小電力で充電される。同図において、実
線は交流入力が健全な場合の電流の流れを示し、点線は
交流出力が停止した場合の電流の流れを示す。
As a CVCF, for example, as shown in Figure 4, a rectifier (0, DC filter,
Connect the inverter [F] and AC filter [F] in series, and connect the charger between the commercial power supply and the DC filter.
, secondary whistle, pond U, and thyristor switch (I) are connected in parallel.1 Furthermore, between the inverter (■) and the AC output (03), a frequency oscillator (J) e is connected, and a phase/phase control circuit with a frequency control circuit (J) and voltage control (2) are connected. This circuit connects circuits in parallel and constantly exchanges commercial power to direct current, which is reconverted to alternating current at the desired voltage and frequency through waveform shaping. In this way, the secondary battery is constantly charged with a small amount of power from the commercial power supply, and when the voltage drops instantaneously, the DC current from the secondary battery is applied instead of the DC generated by converting the commercial power supply by activation of the SIRISK switch. , it becomes AC output by waveform shaping. When the commercial power supply returns to normal, the thyristor switch is activated, the secondary battery is turned off, and the battery is charged again using the commercial power supply at a constant low power level. In the figure, the solid line shows the current flow when the AC input is healthy, and the dotted line shows the current flow when the AC output is stopped.

CVCFにより長時間(5分以上)にわたる停電におい
ても無停電全継続する場合にはCVCFにエンジン発電
機等を付設すればよく、瞬時停電(0,07〜2秒)で
は付設置、た二次電池で十分である。このような二次電
池としては出力が太きく、通電時間は長くても5秒間安
定して電力を取り出すことができればよく、電池容量が
大きい必要はない。従来はIW〜1000 KW程度の
電力を蓄積放出するのに鉛蓄電池やアルカリ蓄電池が用
いられている。これ等は何れも出力(ワット)に対し容
量(了ンペ了eアワー)が太きく、放電時に積算電力量
(ワット・アワー〕を多く取出すことができるも、大電
力を短時間、例えば1分以内放電する目的には適してい
ない。
If a CVCF allows continuous uninterrupted power even during a long-term power outage (more than 5 minutes), it is sufficient to attach an engine generator, etc. to the CVCF, and for momentary power outages (0.07 to 2 seconds) Batteries are sufficient. Such a secondary battery only needs to have a large output and be able to stably extract power for 5 seconds at the longest, and does not need to have a large battery capacity. Conventionally, lead storage batteries and alkaline storage batteries have been used to store and release power of about IW to 1000 KW. All of these have a large capacity (hours) compared to output (watts), and can extract a large amount of integrated electric power (watt hours) during discharge, but they can also generate large amounts of power for short periods of time, such as 1 hour. Not suitable for discharging within minutes.

即ちCVCF[技術の発達と共に、小型化及び軽量化の
傾向にあるが、上記二次電池にその構造上、小型化及び
軽量化は不可能であった。
That is, with the development of CVCF technology, there is a trend toward smaller size and lighter weight, but due to the structure of the secondary battery, it has not been possible to make it smaller and lighter.

した亜鉛−塩素二次電池において、電解液貯蔵槽を省略
【7、電池槽を密閉し2、て充電時に正極で発生する塩
素を槽内に装入1.た電解液中に溶存させ、これを放電
時に正極で消費させれば短時間高出力を外部負荷に供給
することができることを知見し、電池槽内に槽より突出
する正極用端子と負極用端子を対設し、正極用端子面に
塩素を活物質とする多孔質又は比表面積の大きい正極を
設け、負極用端子面に亜鉛を活物質とする負極を設け、
正負両極間に塩素を活物質とする多孔質又は比表面積の
大きい正極と、亜鉛を活物質とする負極を組み合せた複
数個のバイポーラ電極を間隙を設けて正極と負極が対向
するように並設して槽内を各電池室に仕切り、各室内に
電解液として塩化亜鉛を主成分とする水溶液を装入1−
で電池室を密閉し7、充電時に正極で発生する塩素を電
解液中に溶存させ、これを放電時に正極で消費させるこ
とを特徴とする短時間高出力用小型二次電池を特願昭5
9−30043号により提案1−た。この電池によれば
小型化及び軽量化を達成することができる。
In the zinc-chlorine secondary battery, the electrolyte storage tank is omitted [7. The battery tank is sealed 2. Chlorine generated at the positive electrode during charging is charged into the tank 1. They discovered that high output could be supplied to an external load for a short period of time by dissolving it in an electrolytic solution and consuming it at the positive electrode during discharge. are placed opposite each other, a porous or large positive electrode with chlorine as an active material is provided on the positive electrode terminal surface, and a negative electrode with zinc as an active material is provided on the negative electrode terminal surface,
Multiple bipolar electrodes, which are a combination of a porous or large-specific-surface positive electrode that uses chlorine as an active material and a negative electrode that uses zinc as an active material, are arranged side by side with a gap between them so that the positive and negative electrodes face each other. The inside of the tank is divided into battery compartments, and an aqueous solution containing zinc chloride as the main component is charged into each compartment as an electrolyte.1-
A patent application was filed in 1973 for a small secondary battery for short-term, high-output use, which is characterized by sealing the battery compartment with a battery chamber and dissolving chlorine generated at the positive electrode during charging into an electrolytic solution, which is then consumed at the positive electrode during discharging.
Proposal 1 was made by No. 9-30043. According to this battery, it is possible to achieve a reduction in size and weight.

発明が解決しようとする問題点 上記短時間高出力用小型二次電池をCVCF等に取付け
て使用する場合には、商用電源によって自己腐食に相当
する電流を常時流して充電する必要がある。しかし自己
腐食は電解液中の塩素濃度、液温及び亜鉛の電析状態等
により変化するため、一定電流で充電すると電池の内圧
を一定に保つことができず、内圧の異常上昇により電池
を破損する恐れがある。また電池は放 。
Problems to be Solved by the Invention When the above-mentioned short-term, high-output small-sized secondary battery is used by being attached to a CVCF or the like, it is necessary to charge it by constantly flowing a current equivalent to self-corrosion from a commercial power source. However, self-corrosion changes depending on the chlorine concentration in the electrolyte, the temperature of the electrolyte, and the state of zinc electrodeposition, so if the battery is charged with a constant current, the internal pressure of the battery cannot be kept constant, and the battery will be damaged due to an abnormal increase in internal pressure. There is a risk that Also, discharge the battery.

電接、速やかに電池容量を回復させてやる必要があるが
、自己腐食に対応する一定電流では電池容量の回復に時
間がかかりすぎる欠点がある。
Electrical connection requires rapid recovery of battery capacity, but the disadvantage is that it takes too long to recover battery capacity with a constant current that prevents self-corrosion.

問題を解決するための手段 本発明はこれに鑑み種々検討の結果、電池内圧を一定値
以下に抑え、電池容量を短時間で回復することができる
短時間高出力用亜鉛−塩素電池の充電法を開発り、たも
ので、塩素極を正極、亜鉛極を負極とし、電解液に塩化
亜鉛を主成分とする水溶液音用いた密閉構造の短時間高
出力用電池の充電において、電池槽内の圧力全検知し、
該圧力によって充電電流密度を制御することf特徴とす
るものである。
Means for Solving the Problems In view of this, and as a result of various studies, the present invention has developed a charging method for short-time, high-output zinc-chlorine batteries that can suppress the battery internal pressure below a certain value and restore battery capacity in a short time. The chlorine electrode is the positive electrode, the zinc electrode is the negative electrode, and the electrolyte is an aqueous solution containing zinc chloride as the main component. Detects all pressure,
The charging current density is controlled by the pressure.

即ち本発明は第1図に示すように、ポリ塩化ビニル製電
池槽(1)内に、核種(1)より突出する白金メッキチ
タンからなる正極用端子(2)と、負極用端子(3)全
対設し、正極用端子(2)にはグラファイトからなる集
電板(4)全弁I2て塩素極(5)を取付け、負極用端
子(3)には亜鉛極(6)全取付ける。塩素極(5)と
亜鉛極(6)の間には、塩素極(5a)と亜鉛極(6a
)を組み合せ几複数個c図は3個の場合を示す〕のバイ
ポーラ電極(7)全間隙を設けて塩素極(5a)と亜鉛
極(6a)が対向するように並設し1、電池槽(1)内
を各電池室(8a)(8b)(8c)(8d)K、仕切
ると共に各セルを電気的に直列接続する。電池槽(1)
の上部には各電池室(8a)(8b)(8c)(8d)
の連通口を形放し、て石英ガラスバイブ(9)全装着し
、該パイプ(9)内に紫外線ランプ(10)を配置する
That is, as shown in FIG. 1, the present invention includes a positive electrode terminal (2) made of platinum-plated titanium that protrudes from the nuclide (1) and a negative electrode terminal (3) in a polyvinyl chloride battery cell (1). The terminals for the positive electrode (2) are equipped with a current collector plate (4) made of graphite, and the chlorine electrodes (5) are attached to all the valves I2, and the terminals for the negative electrode (3) are equipped with the zinc electrodes (6). Between the chlorine electrode (5) and the zinc electrode (6), there is a chlorine electrode (5a) and a zinc electrode (6a).
) are combined (the figure shows a case of three) bipolar electrodes (7) are arranged side by side with a full gap so that the chlorine electrode (5a) and the zinc electrode (6a) face each other. (1) The interior is partitioned into battery compartments (8a), (8b), (8c), (8d) and each cell is electrically connected in series. Battery tank (1)
At the top of each battery compartment (8a) (8b) (8c) (8d)
The quartz glass vibrator (9) is fully attached, and the ultraviolet lamp (10) is placed inside the pipe (9).

このようにして各電池室内に塩化亜鉛を主成分とする水
溶液からなる電解液を装入密閉し、充電時に塩素極で塩
素ガスを発生させ、亜鉛極で金属亜鉛を析出させる。副
反応として発生する水素ガスは、塩素ガスと紫外線によ
り反応させて塩化水素とし、これを電解液にもどす。
In this way, an electrolytic solution consisting of an aqueous solution containing zinc chloride as a main component is charged and sealed in each battery chamber, and during charging, chlorine gas is generated at the chlorine electrode and metallic zinc is deposited at the zinc electrode. Hydrogen gas generated as a side reaction is reacted with chlorine gas and ultraviolet light to form hydrogen chloride, which is returned to the electrolyte.

この短時間高出力用亜鉛−塩素電池において図に示すよ
うに各電池室の何れか(図では電池室3d)に電池槽(
1)内の圧力検知用プロテクター(11)とセンサー(
12)’i設け、充電時の電流密度全電池槽内の圧力に
より制御するもので、プロテクターによりセンサーは塩
素による腐食からまぬがれることができる。圧力検知用
センサーとしては塩素ガス、塩酸、電解液等の腐食性雰
囲気に耐えるものがよく、或いは図に示すようにプロテ
クターを装着したものがよく、例えば歪ゲージを使用し
たセンサー全電池槽に小孔’に設けて取付ける。このよ
うにしてセンサーにより電池槽内の圧力を電気信号、例
えば電圧に変換し、該電圧に対応する充電電流を流すよ
うにする。
In this short-term high-output zinc-chlorine battery, as shown in the figure, one of the battery compartments (battery compartment 3d in the diagram) is located in the battery compartment (battery compartment 3d).
1) Pressure detection protector (11) and sensor (
12) The current density during charging is controlled by the pressure inside the battery tank, and the protector protects the sensor from corrosion caused by chlorine. The pressure detection sensor should be one that can withstand corrosive atmospheres such as chlorine gas, hydrochloric acid, and electrolytes, or it should be equipped with a protector as shown in the figure.For example, a sensor using a strain gauge with a small Install it in the hole. In this way, the sensor converts the pressure inside the battery tank into an electrical signal, such as a voltage, and a charging current corresponding to the voltage is caused to flow.

[乍用 上記密閉構造の亜鉛−塩素電池の充電時における電極反
応は、上記の如く、塩素極で塩素イオンdE酸化されて
塩素分子となり、亜鉛極で亜鉛イオンが金属亜鉛に還元
さn、副反応として水素イオンが水素に還元される。電
析し、た亜鉛ばまt、溶液中の塩酸と反応し水素全発生
する。
[The electrode reaction during charging of the above-mentioned sealed zinc-chlorine battery is as described above. At the chlorine electrode, chlorine ions are oxidized to become chlorine molecules, and at the zinc electrode, zinc ions are reduced to metallic zinc. As a reaction, hydrogen ions are reduced to hydrogen. When the zinc is deposited, it reacts with the hydrochloric acid in the solution, generating all hydrogen.

このようにして発生した塩素と水素は紫外線により反応
17て塩化水素となる几め、電池槽内を一定圧にするこ
とにより、塩素と亜鉛に同量づつ保持さn1電池容量に
安定化する。そこで電池槽の内圧全測定1〜、該内圧が
一定圧、!:V低くなると自己腐食電流密度範囲付近の
電流密度により充電を開始17、内圧が一定圧を越える
と充電を中止するか、もしくは電流密度全下げることに
より電池容量を一定に保持する。また放電により電池槽
内圧が一定圧より大巾に低下また状態では自己腐食電流
密度の数倍の電流密度、もL(は内部圧力に対応する電
流密度で充tを開始することにより電池容量を短時間で
回復し、電池槽の内圧上昇に応じて充電電流密度を自己
腐食電流密度近傍まで下げ、内圧が一定圧を越えると充
電を中止するか、も1.〈は電流密度を下げるかにより
、電池槽内圧を一定圧に維持[、短時間で電池容量を一
定に保つことができる。
The chlorine and hydrogen thus generated are reacted with ultraviolet rays (17) to become hydrogen chloride, and by keeping the pressure inside the battery tank constant, the same amounts of chlorine and zinc are retained and stabilized at n1 battery capacity. Therefore, the total internal pressure of the battery tank is measured 1~, and the internal pressure is a constant pressure! : When V becomes low, charging starts at a current density near the self-corrosion current density range17, and when the internal pressure exceeds a certain pressure, charging is stopped or the current density is completely lowered to maintain the battery capacity at a constant level. In addition, due to discharge, the internal pressure of the battery cell drops significantly below a constant pressure, and in a state where the current density is several times the self-corrosion current density, the battery capacity is increased by starting charging at a current density corresponding to the internal pressure. Either the battery recovers in a short time and the charging current density is reduced to near the self-corrosion current density as the internal pressure of the battery tank increases, and charging is stopped when the internal pressure exceeds a certain level. , Maintaining the internal pressure of the battery tank at a constant pressure [, Battery capacity can be kept constant in a short time.

実施例(1) 第1図に示す積層構造により積層1−た密閉構造の亜鉛
−塩素電池音用い、本発明により第2図に示すように、
電池槽内の圧力が[?s0.08にり/Crlになるま
で7 m A/crA tn 電流密度で充電11に腎 圧力P++ (0,08量−/c! )からP2(0,
12に9/ca )までは1mA/crIの電流密度で
充電する。圧力22以上では充電電流は0とする。なお
第2図は、本笛池の自己腐食電流密度f0.5〜1.5
mA/crlと仮定した。
Example (1) A sealed zinc-chlorine battery having a laminated structure shown in FIG. 1 was used, and according to the present invention, as shown in FIG. 2,
The pressure inside the battery tank [? Charging at a current density of 7 mA/crA tn until s 0.08/Crl, renal pressure P++ (0,08 amount -/c!) to P2 (0,
12 to 9/ca) at a current density of 1 mA/crI. When the pressure is 22 or higher, the charging current is zero. In addition, Fig. 2 shows the self-corrosion current density f0.5 to 1.5 of Honfueike.
mA/crl was assumed.

このように電池内部圧力に対応して充電電流密度を制御
することにより、内部圧力全P+ 。
By controlling the charging current density in accordance with the battery internal pressure in this way, the total internal pressure P+ can be reduced.

P2の間でコントロールすることができ、多少の変動が
あるものの電池容量もある巾で制御しうる。
It can be controlled between P2, and the battery capacity can also be controlled within a certain range, although there is some variation.

また、放電時に塩素極で塩素分子が塩素イオンに還元さ
れるため圧力は減少するが、内部圧がP、以下になると
、比較的大きな電流密度7 m A/cAで充電するた
め圧力は回復する。
Also, during discharging, the pressure decreases as chlorine molecules are reduced to chlorine ions at the chlorine electrode, but when the internal pressure drops below P, the pressure recovers because charging is performed at a relatively large current density of 7 mA/cA. .

以上のように充放電とも電池内部圧力を一定巾に保ち、
電池容量を保持する制御が可能となる。
As mentioned above, the internal pressure of the battery is kept constant during charging and discharging,
Control to maintain battery capacity becomes possible.

実施例2 実施例1において、第3図に示すように圧力P3以下で
は定電流密度、P3からP4までを内部圧に反比例1−
1た電流密度を充電時流した。
Example 2 In Example 1, as shown in Figure 3, the current density is constant at pressures below P3, and from P3 to P4 is inversely proportional to the internal pressure 1-
A current density of 1 was applied during charging.

その結果充電時自己腐食電流に反応し、た圧力で電池容
量を保持できび、放電後圧力P3までに内部圧が低下す
るにつれ電流密度は徐々に増加し、P3以下では大電流
密度により急速に内部圧力を回復するとともに、ふたた
び自己腐食に相当する圧力で平衡状態となジ、容量を保
持することができた。
As a result, in response to the self-corrosion current during charging, the battery capacity cannot be maintained at the pressure below, and after discharging, the current density gradually increases as the internal pressure decreases until pressure P3, and below P3, the current density rapidly increases due to the large current density. As the internal pressure was restored, it was again able to reach an equilibrium state at a pressure equivalent to self-corrosion, and was able to maintain its capacity.

発明の効果 このように本発明によれば、短時間高出力用亜鉛−塩素
電池の充電時における電流密度を電池槽内の圧力で制御
することにより電池容量を安定化し、不適当な充電電流
密度による電池槽の内圧異常上昇おるいは低下による電
池の破損を防止することができる等、工業上顕著な効果
を奏するものである。
Effects of the Invention As described above, according to the present invention, the current density during charging of a short-term, high-output zinc-chlorine battery is controlled by the pressure inside the battery tank, thereby stabilizing the battery capacity and preventing inappropriate charging current density. This has significant industrial effects, such as being able to prevent damage to batteries due to abnormal rise or fall in internal pressure of the battery tank.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の一例を示す説明図、第2図及び第
3図はそれぞれ本発明方法の一実施例における電池槽内
圧と充電電流密度の関係を示す説明図、第4図はCVC
Fの一例を示す説明図である。 A 商用電源       B 交流出力C整流器  
      D  DCフィルターE インバータ  
     F  ACフィルタG 光電器      
  H電池 I サイリスタスイッチ  J 周波数発振器K 位相
制御       L!圧制御1i1F、池槽    
    2 正極用端子3 負極用端子      4
 集排板5.5a 塩累極      6,6a 亜鉛
極7 バイポーラ電極 8a、8b、8c、8d  電池室 9 石英ガラスパイプ  1o 紫外線ランプ第1図 の 5060 第2図 t j(!丙*ff (kg/cm21第3図 内部圧(kg/cm21
FIG. 1 is an explanatory diagram showing an example of the method of the present invention, FIGS. 2 and 3 are explanatory diagrams each showing the relationship between battery tank internal pressure and charging current density in an embodiment of the method of the present invention, and FIG. 4 is an explanatory diagram showing an example of the method of the present invention.
It is an explanatory view showing an example of F. A Commercial power supply B AC output C rectifier
D DC filter E Inverter
F AC filter G Photoelectric equipment
H battery I thyristor switch J frequency oscillator K phase control L! Pressure control 1i1F, pond tank
2 Terminal for positive electrode 3 Terminal for negative electrode 4
Collection/discharge plate 5.5a Salt electrode 6,6a Zinc electrode 7 Bipolar electrode 8a, 8b, 8c, 8d Battery chamber 9 Quartz glass pipe 1o Ultraviolet lamp 5060 in Fig. 2 t j (! C * ff (kg) /cm21 Figure 3 Internal pressure (kg/cm21

Claims (2)

【特許請求の範囲】[Claims] (1)塩素極を正極、亜鉛極を負極とし、電解液に塩化
亜鉛を主成分とする水溶液を用いた密閉構造の短時間高
出力用電池の充電において、電池槽内の圧力を検知し、
該圧力によつて充電電流密度を制御することを特徴とす
る短時間高出力用亜鉛−塩素電池の充電法。
(1) Detecting the pressure inside the battery tank when charging a short-time, high-output battery with a sealed structure using a chlorine electrode as a positive electrode and a zinc electrode as a negative electrode, and using an aqueous solution containing zinc chloride as the main component as an electrolyte,
A method for charging a short-time, high-output zinc-chlorine battery, characterized in that the charging current density is controlled by the pressure.
(2)充電電流密度を槽内圧力が低いときは自己腐食電
流密度帯より高くし、槽内圧力が高いときは自己腐食電
流密度帯近傍とし、槽内圧力が更に高いときは充電を停
止する特許請求の範囲第1項記載の短時間高出力用亜鉛
−塩素電池の充電法。
(2) Set the charging current density higher than the self-corrosion current density band when the tank pressure is low, set it near the self-corrosion current density band when the tank pressure is high, and stop charging when the tank pressure is even higher. A method for charging a short-time, high-output zinc-chlorine battery according to claim 1.
JP60241032A 1985-10-28 1985-10-28 Charging method for zinc-chlorine cell for high output in short time Pending JPS62100952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60241032A JPS62100952A (en) 1985-10-28 1985-10-28 Charging method for zinc-chlorine cell for high output in short time

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60241032A JPS62100952A (en) 1985-10-28 1985-10-28 Charging method for zinc-chlorine cell for high output in short time

Publications (1)

Publication Number Publication Date
JPS62100952A true JPS62100952A (en) 1987-05-11

Family

ID=17068309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60241032A Pending JPS62100952A (en) 1985-10-28 1985-10-28 Charging method for zinc-chlorine cell for high output in short time

Country Status (1)

Country Link
JP (1) JPS62100952A (en)

Similar Documents

Publication Publication Date Title
JPS62200668A (en) Battery device
CN102013726A (en) Backup power supply device in wind turbine pitch system
CN109066749A (en) Energy Management System applied to photovoltaic energy storage system
JP2015042016A (en) Solar charger
CN108649685A (en) A kind of battery sharing ups system and method for supplying power to
JPS62100952A (en) Charging method for zinc-chlorine cell for high output in short time
JPH0965582A (en) Power supply system utilizing solar cell
CN110095727A (en) A kind of lithium battery method for measuring charged
JPH0946926A (en) Distributed power unit
CN113258637A (en) Control system of high-performance pulse type charger
JP2836286B2 (en) Uninterruptible power system
CN218386891U (en) Low-temperature charge and discharge system of lead-acid storage battery
JP2008005616A (en) Backup power-supply unit
JPH06217473A (en) Uninterruptible power supply
CN104796066A (en) Domestic solar power supply method and device thereof
JP3584955B2 (en) Pass / fail judgment method and pass / fail judgment device for gas-absorbing sealed lead-acid battery
Tuphorn Valve-regulated lead/acid batteries: systems, properties and applications
CN113655382B (en) Method for predicting UPS battery fault based on hydrogen generation rate ratio
JP2844906B2 (en) Uninterruptible power system
CN209247994U (en) Battery group open circuit on-line measuring device
JP2003111291A (en) Control method for charging secondary battery used in fuel battery power generating system
JPS60175381A (en) Small-sized secondary battery for high output for short time
JPH03291866A (en) Storage battery
JPS6142233A (en) Solar battery power source system
JPS63128573A (en) Zinc-chlorine battery with high output power in short time