JPS6199852A - Air-fuel ratio detector - Google Patents

Air-fuel ratio detector

Info

Publication number
JPS6199852A
JPS6199852A JP59220439A JP22043984A JPS6199852A JP S6199852 A JPS6199852 A JP S6199852A JP 59220439 A JP59220439 A JP 59220439A JP 22043984 A JP22043984 A JP 22043984A JP S6199852 A JPS6199852 A JP S6199852A
Authority
JP
Japan
Prior art keywords
resistor
air
heater
fuel ratio
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59220439A
Other languages
Japanese (ja)
Other versions
JPH0680426B2 (en
Inventor
Minoru Osuga
稔 大須賀
Nobushige Ooyama
宣茂 大山
Sadayasu Ueno
上野 定寧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59220439A priority Critical patent/JPH0680426B2/en
Publication of JPS6199852A publication Critical patent/JPS6199852A/en
Publication of JPH0680426B2 publication Critical patent/JPH0680426B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4065Circuit arrangements specially adapted therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To improve the interchangeability with circuits by providing a variable resistor which corrects the variance in the resistance value of a diffused resistor and electrode and a variable resistor which corrects the variance in the resistance value of an added heater within an external circuit including a driving circuit. CONSTITUTION:The constant voltage or constant current from a circuit 29 in a circuit board M is supplied to the heater 3. The compensating resistor 27 for the heater is provided on the S part side of a connector C part in the mid-way in the case of connecting a sensor S part and the M part. The variance of the resistance value of the heater 3 can be compensated on the S part side by regulating the resistance value of the resistor 27. The specified voltage is supplied from the terminals 33, 34 in the circuit 30 to a solid electrolyte 4 and the current value flowing to the electrolyte 4 is detected by the terminals 32, 33 as the voltage value at both terminals of the resistor 28 for compensating the solid electrolyte. The variance of the electrolyte 4 is compensatable by regulating the resistance value of the resistor 28. The interchangeability with the circuits is thus improved without the need for compensating the variance on the circuit side.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は空燃比検出器に係り、特に燃焼器等に使用する
ために好適な空燃比検出器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an air-fuel ratio detector, and particularly to an air-fuel ratio detector suitable for use in a combustor or the like.

〔発明の背景〕[Background of the invention]

従来、空燃比検出器の拡散抵抗体や電極の抵抗値の製造
上のばらつきは、特開昭59−34432号公報に示さ
れているように、外部回路例えばマイクロコンピュータ
内に設けた抵抗値を調整することによシ調整していた。
Conventionally, manufacturing variations in the resistance values of diffusion resistors and electrodes of air-fuel ratio detectors have been solved by changing the resistance values provided in external circuits, such as microcomputers, as shown in Japanese Unexamined Patent Publication No. 59-34432. I was adjusting it by adjusting it.

しかし、このような補正方法を採用した場合、回路と検
出器一体で調整しなければならず、空燃比検出器の互換
性が無くなり、量産性、コスト、メンテナンスの点で極
めて不都合が生じるという欠点があった。
However, when such a correction method is adopted, the circuit and the detector must be adjusted together, making the air-fuel ratio detector incompatible, which is extremely inconvenient in terms of mass production, cost, and maintenance. was there.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、互換性が向上し、さらにメンテナンス
費、およびコストの低減を促進できる空燃比検出器を提
供することにある。
An object of the present invention is to provide an air-fuel ratio detector that has improved compatibility and can further reduce maintenance costs and costs.

〔発明の概要〕[Summary of the invention]

本発明は、空燃比検出器の拡散抵抗体や電極の抵抗値の
ばらつきを補正するための第1の可変抵抗体と、空燃比
検出器に付加されたヒータの抵抗値のばらつきを補正す
るための第2の可変抵抗体を、空燃比検出器の駆動回路
を含む外部回路内に設けたものである。
The present invention provides a first variable resistor for correcting variations in resistance values of a diffusion resistor and an electrode of an air-fuel ratio detector, and a first variable resistor for correcting variations in resistance value of a heater added to an air-fuel ratio detector. The second variable resistor is provided in an external circuit including a drive circuit of the air-fuel ratio detector.

〔発明の実施例〕[Embodiments of the invention]

第1図は、本発明による空燃比検出器のセンサ本体1の
一実施例を示す断面図である。
FIG. 1 is a sectional view showing an embodiment of a sensor main body 1 of an air-fuel ratio detector according to the present invention.

第1図において、2は保護管、3はヒータ、4は固体電
解質、5はワッシャ、6は栓体、7および8はワッシャ
、9は充填剤、10はスペーサ、11はワッシャ、12
は金網、13は金属ケース、14は金属パイプ、15は
コイルバネ、16は金属ケース、17および18.19
は絶縁碍子、20は皿ばね、21はグロメット、22は
ヒータ用のリード線、23は固体電解質用のリード線で
ある。
In FIG. 1, 2 is a protective tube, 3 is a heater, 4 is a solid electrolyte, 5 is a washer, 6 is a stopper, 7 and 8 are washers, 9 is a filler, 10 is a spacer, 11 is a washer, 12
is a wire mesh, 13 is a metal case, 14 is a metal pipe, 15 is a coil spring, 16 is a metal case, 17 and 18.19
20 is an insulator, 20 is a disc spring, 21 is a grommet, 22 is a lead wire for a heater, and 23 is a lead wire for a solid electrolyte.

このような構造のセンサ本体は、栓体6によシ燃焼器の
排気管に取シ付けられる。固体電解質4は、ヒータ3に
よシ加熱され、活性化される。加熱された固体電解質4
は、保温性も考慮された保護管2によシ保護されている
。固体電解質4の外側は、排気にさらされており、ヒー
タ5側には大気が導かれている。また、リード線として
は、ヒーター用のリード線22が2本、固体電解質用の
リード線23が2木取シ出されている。
The sensor main body having such a structure is attached to the exhaust pipe of the combustor through the plug body 6. The solid electrolyte 4 is heated and activated by the heater 3. heated solid electrolyte 4
is protected by a protective tube 2 that also takes heat retention into consideration. The outside of the solid electrolyte 4 is exposed to exhaust gas, and the atmosphere is introduced to the heater 5 side. Further, as lead wires, two heater lead wires 22 and two solid electrolyte lead wires 23 are provided.

第2図は、空燃比センサの検出原理を示す図である。固
体電解質4の大気側と排気側にA電極25とE電極24
が設けてあシ、排気側にはさらに拡散抵抗体26が設け
られている。A電極25を正極、E電極24を負極とし
て電圧を印加すると、排気中の酸素が固体電解質4内を
通って排気側から大気側に流れる。この酸素の流れを拡
散抵抗体26により律すると、排気中の酸素濃度に比例
した限界電流が得られる。この電流値を電圧値に変換し
た場合の空燃比検出器の出力特性を第3図に実線で示し
ているが、空気過剰率λが排気中の酸素濃度に比例する
ため、空気過剰率λに比例した出力電圧が得られる。
FIG. 2 is a diagram showing the detection principle of the air-fuel ratio sensor. An A electrode 25 and an E electrode 24 are placed on the atmosphere side and the exhaust side of the solid electrolyte 4.
A diffusion resistor 26 is further provided on the exhaust side. When a voltage is applied using the A electrode 25 as a positive electrode and the E electrode 24 as a negative electrode, oxygen in the exhaust gas passes through the solid electrolyte 4 and flows from the exhaust side to the atmosphere side. When this flow of oxygen is regulated by the diffusion resistor 26, a limiting current proportional to the oxygen concentration in the exhaust gas is obtained. The output characteristics of the air-fuel ratio detector when this current value is converted into a voltage value are shown by the solid line in Figure 3. Since the excess air ratio λ is proportional to the oxygen concentration in the exhaust gas, the excess air ratio λ Proportional output voltage is obtained.

ここで、拡散抵抗体26やE電極24の厚さが厚いか、
または気孔率が小さい場合は、出力電力は第3図(イ)
の破線に示すように低くなってしまう。
Here, whether the thickness of the diffused resistor 26 or the E electrode 24 is thick,
Or, if the porosity is small, the output power is as shown in Figure 3 (a).
as shown by the broken line.

また、拡散抵抗体4やE電極24の厚さが薄いか、また
は気孔率が大きい場合には、第3図(ロ)の破線で示す
ように出力電圧が高くガってしまう。このような製造上
のばらつきは、厳密には避けることができない。従って
、このばらつきを補正しなければならない。
Further, if the thickness of the diffused resistor 4 or the E electrode 24 is thin or the porosity is large, the output voltage will be high and deviated as shown by the broken line in FIG. 3(b). Such manufacturing variations cannot be strictly avoided. Therefore, this variation must be corrected.

一方、固体電解質4をヒータ3で加熱し活性化するが、
この際に固体電解質4の温度が設定値よシ高いと、第3
図(ロ)の破線のように出力電圧が高くなり、逆に温度
が低いと第3図(イ)の破線のように出力電圧が低くな
る。従って、ヒータ3の抵抗値が製造段階でばらついた
のでは、正確な温度制御はできない。このため、ヒータ
3の抵抗値のばらつきも補正しなければならない。
On the other hand, the solid electrolyte 4 is heated and activated by the heater 3;
At this time, if the temperature of the solid electrolyte 4 is higher than the set value, the third
The output voltage becomes high as shown by the broken line in FIG. 3(B), and conversely, when the temperature is low, the output voltage becomes low as shown by the broken line in FIG. 3(B). Therefore, if the resistance value of the heater 3 varies during the manufacturing stage, accurate temperature control cannot be achieved. For this reason, it is also necessary to correct variations in the resistance value of the heater 3.

第4図はこの補正のための回路の一実施例を示すもので
アシ、固体電解質4、ヒータ3、ヒータ用補償抵抗27
、固体電解質用補償抵抗28、ヒータ用回路29、固体
電解質用回路30、回路基板部31の構成を示している
。同図においてヒータ3には、回路基板M部(マイ□ク
ロコンピユータも含む)内の回路29から定電圧′また
は定電流が供給される。ヒータ用補償抵抗体27は、セ
ンサ部(8部)と、前記M部を結線する場合の途中のコ
ネクタ部(0部)のS部側に設けられている。
FIG. 4 shows an embodiment of a circuit for this correction.
, a solid electrolyte compensation resistor 28, a heater circuit 29, a solid electrolyte circuit 30, and a circuit board section 31. In the figure, a constant voltage' or a constant current is supplied to the heater 3 from a circuit 29 in a circuit board M section (including a microcomputer). The heater compensation resistor 27 is provided on the S section side of the intermediate connector section (0 section) when connecting the sensor section (8 section) and the M section.

このため、0部の切シ放し部は、図4中の矢印部よシ左
側となる。このヒータ用補償抵抗体27の抵抗値を調整
することによシ、ヒータ3の抵抗値とヒータ用補償抵抗
体27の抵抗値との和が全ての製品で一定となるように
する。このようにすることにより、ヒータ3の抵抗値の
ばらつきをS部側で補償できる。なお、補償抵抗体27
の抵抗値の調整の仕方は、例えばレーザートリミングや
ポテンションメーターなどを用いる方法が考えられる。
Therefore, the uncut portion of part 0 is on the left side of the arrow part in FIG. By adjusting the resistance value of the heater compensation resistor 27, the sum of the resistance value of the heater 3 and the resistance value of the heater compensation resistor 27 is made constant for all products. By doing so, variations in the resistance value of the heater 3 can be compensated for on the S section side. Note that the compensation resistor 27
Possible methods for adjusting the resistance value include, for example, using laser trimming or a potentiometer.

一方、固体電解質4には、回路30内の端子33.34
より一定の電圧が供給されておシ、このとき固体電解質
4に流れる電流値が、固体電解質用補償用抵抗体28の
両端の電圧値として端子32.33で検出される。との
検出電圧値が第3図で示した検出器の出力電圧となる。
On the other hand, the solid electrolyte 4 has terminals 33 and 34 in the circuit 30.
A more constant voltage is supplied, and the current value flowing through the solid electrolyte 4 at this time is detected at the terminals 32, 33 as the voltage value across the solid electrolyte compensation resistor 28. The detected voltage value becomes the output voltage of the detector shown in FIG.

この場合、補償用抵抗体28の抵抗値を変化させること
によシ、その出力電圧は第3図(イ)、(ロ)のように
自由に変化する。すなわち、出力電圧のゲインの調整が
可能になる。そこで、固体電解質4の排気にさらされる
部分を既知の酸素濃度ふん囲気中に置き、第5図で示す
ようにある設定電圧Vs  を端子35゜36に印加し
、そのときの端子36.37間の電圧VTが全ての製品
で一定になるように補償用抵抗体28の抵抗値を調整す
る。これにより、固体電解質4の製造上のばらつきを補
償できる。なお、既知の酸素濃度とは、例えば大気中の
酸素濃度でもよい。また、補償用抵抗体28の抵抗値の
調整の方法は、抵抗体28の場合と同様に、例えばレー
ザートリミングやポテンションメータでもよい。
In this case, by changing the resistance value of the compensating resistor 28, its output voltage can be freely changed as shown in FIGS. 3(a) and 3(b). That is, it becomes possible to adjust the gain of the output voltage. Therefore, the part of the solid electrolyte 4 exposed to the exhaust gas is placed in an atmosphere with a known oxygen concentration, and a certain set voltage Vs is applied to the terminals 35° and 36 as shown in FIG. The resistance value of the compensation resistor 28 is adjusted so that the voltage VT is constant for all products. Thereby, manufacturing variations in the solid electrolyte 4 can be compensated for. Note that the known oxygen concentration may be, for example, the oxygen concentration in the atmosphere. Further, the resistance value of the compensating resistor 28 may be adjusted by, for example, laser trimming or a potentiometer, as in the case of the resistor 28.

第6図は、第4図の回路を製品化した場合の実際の概観
図であシ、センサ部(8部)よシ、4本のリード線22
.23が取シ出されておシ、コネクタ部(0部)に接続
されている。コネクタ部(0部)は、センサ部(8部)
側のコネクタ38と回路部(M部)側のコネクタ39と
から構成されており、ヒータ用補償抵抗体27と固体電
解質用補償抵抗体28は、センサ側のコネクタ38内に
設置されている。
Figure 6 is an actual overview diagram when the circuit shown in Figure 4 is commercialized, including the sensor section (8 parts) and the four lead wires 22.
.. 23 is taken out and connected to the connector part (part 0). The connector part (0 parts) is the sensor part (8 parts)
It consists of a connector 38 on the side and a connector 39 on the side of the circuit section (M section), and the compensation resistor 27 for the heater and the compensation resistor 28 for the solid electrolyte are installed in the connector 38 on the sensor side.

第7図は、ヒータ用回路29の詳細図である。FIG. 7 is a detailed diagram of the heater circuit 29.

同図において、40はマイクロコンピュータ、41はト
ランジスタ、42はコイル、43はスイッチである。マ
イクロコンピュータ40から出力される信号によりトラ
ンジスタ41が通電状態になると、コイル42に電圧V
Dが作用し、スイッチ43がON状態となシ、ヒータ3
に電圧VDが印加される。逆に、マイクロコンピュータ
40からOFF信号が出力された場合には、トランジス
タ41がOFF状態となり、スイッチ43もOFFとな
シ、ヒータ3には電圧VDは印加されなくなる。
In the figure, 40 is a microcomputer, 41 is a transistor, 42 is a coil, and 43 is a switch. When the transistor 41 is turned on by a signal output from the microcomputer 40, a voltage V is applied to the coil 42.
D acts, the switch 43 is turned on, and the heater 3
A voltage VD is applied to. Conversely, when the microcomputer 40 outputs an OFF signal, the transistor 41 is turned off, the switch 43 is also turned off, and the voltage VD is no longer applied to the heater 3.

質 第8図は、固体型−〇回路30の詳細図である。quality FIG. 8 is a detailed diagram of the solid-state type circuit 30.

同図において、44はオペアンプ、45はオペアンプ、
46はトランジスタ、47.48は抵抗である。この回
路30では、オペアンプ44とトラ 1ンジスタ46と
によシ、固体電解質4に印加される電圧が抵抗47.4
8で分圧された一定電圧値になるように制御されている
。また、補償用抵抗体28に流れる電流値を検出してオ
ペアンプ45で増幅し、検出出力■。。tとして送出し
ている。この回路30では、補償用抵抗体28でゲイン
調整をしているために回路側での調整が不要となる。
In the same figure, 44 is an operational amplifier, 45 is an operational amplifier,
46 is a transistor, and 47.48 is a resistor. In this circuit 30, the voltage applied to the solid electrolyte 4 is applied to the resistor 47.4 by the operational amplifier 44 and the transistor 46.
It is controlled to have a constant voltage value divided by 8. Furthermore, the value of the current flowing through the compensation resistor 28 is detected and amplified by the operational amplifier 45, resulting in a detection output (■). . It is sent as t. In this circuit 30, the gain is adjusted by the compensation resistor 28, so no adjustment is required on the circuit side.

第9図は、ヒータ用コネクタ部と回路との接続関係の応
用例を示す図であり、ヒータ3に流れる電流を補償用抵
抗体27の両端の電圧値として検出し、ヒータ3に流れ
る電流値が常に一定になるように、オペアンプ49、ト
ランジスタ50によシ制御するものである。との構成に
よれば、コネクタ部(0部)の回路側端子は3端子とな
る。
FIG. 9 is a diagram showing an application example of the connection relationship between the heater connector part and the circuit, in which the current flowing through the heater 3 is detected as a voltage value across the compensation resistor 27, and the current flowing through the heater 3 is detected as a voltage value across the compensating resistor 27. It is controlled by an operational amplifier 49 and a transistor 50 so that it is always constant. According to the configuration, the connector part (part 0) has three circuit side terminals.

第10図は、一定電流を固体電解質4に励起し、0〜1
v間で変化する電圧値を0.5Vになるように制御して
、空燃比を制御するタイプのセンサの較正法を示した図
である。同図において、コネクタ部(0部)には、固体
電解質4と並列に可変抵抗52が設けられておシ、固体
電解質4を既知の酸素濃度ふん囲気中に置いた状態で固
体電解質4に一定電流I8を流し、第11図に示すよう
に、0〜1■間で変化し、0.5V付近で落着くように
抵抗52を調整する(固体電解質4に流れる電流QA を調整するのと同じ)。これによシ、センサのばらつき
を補正できる。なお、第10図における53は定電流発
生回路、54は電圧検出器である。
FIG. 10 shows that a constant current is excited to the solid electrolyte 4, and
FIG. 3 is a diagram illustrating a method of calibrating a type of sensor that controls the air-fuel ratio by controlling the voltage value that changes between v to 0.5V. In the figure, a variable resistor 52 is provided in the connector part (part 0) in parallel with the solid electrolyte 4, and when the solid electrolyte 4 is placed in an atmosphere with a known oxygen concentration, Flow the current I8 and adjust the resistor 52 so that it varies between 0 and 1V and settles around 0.5V as shown in Figure 11 (same as adjusting the current QA flowing through the solid electrolyte 4). ). This allows correction of sensor variations. Note that 53 in FIG. 10 is a constant current generating circuit, and 54 is a voltage detector.

第12図は、第10図における回路54の一例を示す図
であシ、センサの起電力変化(O〜IV)をオペアンプ
55によって検出し、設定空燃比を境いとしてON、O
FFする出力信号が送出される。
FIG. 12 is a diagram showing an example of the circuit 54 in FIG. 10, in which changes in the electromotive force of the sensor (O to IV) are detected by the operational amplifier 55, and the ON, O
An FF output signal is sent out.

第13図は、空燃比の検出法の応用例を示したもので、
空気過剰率λが1.0よりも小さい領域でも測定できる
方法である。すなわち、λ<1.0では、第13図(a
)に示すように、電圧■B1を印加することによシ拡散
抵抗体26内に酸素を送シ込む。
Figure 13 shows an application example of the air-fuel ratio detection method.
This method allows measurement even in a region where the excess air ratio λ is smaller than 1.0. That is, when λ<1.0, Fig. 13 (a
), by applying the voltage {circle around (2)}B1, oxygen is introduced into the diffusion resistor 26.

次に、この送シ込んだ酸素と排気中の一酸化炭素とが拡
散抵抗体26内で反応して残った酸素量を、電圧Vll
(VB、とは逆極性)を印加することによシ検出する。
Next, the amount of oxygen remaining after the injected oxygen reacts with the carbon monoxide in the exhaust gas inside the diffusion resistor 26 is determined by the voltage Vll
Detection is performed by applying (opposite polarity to VB).

そこで、この検出された電流値を積分すると、第14図
の実線(a)のよう々特性となる。
Therefore, when this detected current value is integrated, a characteristic as shown by the solid line (a) in FIG. 14 is obtained.

すなわち、この場合は第13図中)に示すように固体電
解質4に極性の異なった■8とvIIIの電圧を時分割
的に印加する必要がある。
That is, in this case, as shown in FIG. 13), it is necessary to time-divisionally apply voltages (18) and (vIII) having different polarities to the solid electrolyte 4.

λ〉1.0では、排気中に酸素が存在するので、拡散抵
抗体26内に酸素を送シ込む必要がなく、大気側に移動
させるだけでよい。このときの■8が印加されている状
態での電流値を電圧値に変換すると、第14図の実線(
1))のような特性となる。
When λ>1.0, oxygen is present in the exhaust gas, so there is no need to send oxygen into the diffusion resistor 26, and it is only necessary to move it to the atmosphere side. When converting the current value with ■8 being applied at this time to a voltage value, the solid line in Figure 14 (
1)).

第15図は、第13図で説明した検出方法を実現するた
めの回路の一実施例を示すもので、56〜58はトラン
ジスタ、59〜61はコイル、62〜64はスイッチ、
65はオペアンプである。
FIG. 15 shows an embodiment of a circuit for realizing the detection method explained in FIG. 13, in which 56 to 58 are transistors, 59 to 61 are coils, 62 to 64 are switches,
65 is an operational amplifier.

マイクロコンピュータ40の出力信号により、トランジ
スター56〜58をそれぞれ適時ON。
The transistors 56 to 58 are turned on at appropriate times according to the output signal of the microcomputer 40.

OF’F状態にし、コイル59〜61にそれぞれ適時電
圧VDを印加する。とれにより、スイッチ62〜64が
ON、OFFして、第13図の)、 (d)の電圧信号
を時分割的に作シ出し、固体電解質4に印加する。また
、補償用抵抗体28の両端の電圧を検出し、オペアンプ
65で増幅し、検出出力■。□とじて送出する。
The coils 59 to 61 are brought into the OFF'F state, and voltage VD is applied to each of the coils 59 to 61 at appropriate times. As a result, the switches 62 to 64 are turned ON and OFF, and the voltage signals shown in FIG. In addition, the voltage across the compensation resistor 28 is detected and amplified by the operational amplifier 65, resulting in a detection output (■). □Fold and send.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように本発明によれば、固体電
解質の拡散抵抗体や電極、さらにはヒータの抵抗値の製
造上のばらつきを補償するための可変抵抗体をセンサ本
体と接続されているコネクタ内に設けたので、回路側で
ばらつきを補償する必要は彦くなシ、回路に対する互換
性が向上し、量産性が増し、さらにコストメンテナンス
費の削減が容易と彦るなどの効果がある。
As is clear from the above description, according to the present invention, a variable resistor is connected to the sensor body to compensate for manufacturing variations in the resistance values of the solid electrolyte's diffused resistor, electrodes, and heater. Since it is installed inside the connector, there is no need to compensate for variations on the circuit side, and there are benefits such as improved compatibility with the circuit, increased mass production, and easier reduction of cost and maintenance costs. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いるセンサ本体の断面図、第2図は
固体電解質の断面図、第3図はセンサ特性図、第4図は
外部回路、コネクタ、センサ部の結線図、第5図はばら
つき較正時の特性図、第6用例を示す図、第10図は固
体電解質用回路の応用例を示す図、第11図は特性較正
時の特性図、第12図は第10図の回路54詳細図、第
13図は空燃比測定法の他の例を示す原理図、第14図
は第13図の方法を用いて得られる特性図、第15図は
第13図の測定方法を実現するための回路図である。 3・・・ヒーター、4・・・固体電解質、26・・・拡
散抵抗体、27.28・・・補償用抵抗体、29・・・
ヒーター用回路、30・・・固体電解質用回路、38.
39・・・第 1 m 茅2 口 茅3 目 !・0 小−人□入 茅4 固 茅 l 用 茅7 目 茅q 口 坤  0部 茅lO目 Iθ2  ・ 第12 目 茅13  月 悼)             (C)(b)    
         (d)茅14−固 小一人一丸
Fig. 1 is a sectional view of the sensor body used in the present invention, Fig. 2 is a sectional view of the solid electrolyte, Fig. 3 is a sensor characteristic diagram, Fig. 4 is a wiring diagram of the external circuit, connector, and sensor section, and Fig. 5 Figure 10 is a diagram showing an application example of a solid electrolyte circuit, Figure 11 is a characteristic diagram when calibrating characteristics, Figure 12 is the circuit shown in Figure 10. 54 detailed diagram, Fig. 13 is a principle diagram showing another example of the air-fuel ratio measurement method, Fig. 14 is a characteristic diagram obtained using the method shown in Fig. 13, and Fig. 15 realizes the measurement method shown in Fig. 13. FIG. 3... Heater, 4... Solid electrolyte, 26... Diffusion resistor, 27.28... Compensating resistor, 29...
Heater circuit, 30...Solid electrolyte circuit, 38.
39... 1st m 2nd kuchihaya 3rd!・0 small person □ Entering the grass 4 Hard grass l Use the grass 7 Eye grass q Mouth 0 part grass 10 eyes Iθ2 ・ 12th Eye grass 13 Moon mourning) (C) (b)
(d) Kaya 14-Each student and student

Claims (2)

【特許請求の範囲】[Claims] 1. 排気ガスにより燃焼器の空燃比を検出する空燃比
検出器において、空燃比検出器の拡散抵抗体や電極など
の抵抗値のばらつきを補正するための第1の可変抵抗体
と、空燃比検出器に付加されたヒータの抵抗値のばらつ
きを補正するための第2の可変抵抗体とを、空燃比検出
器の駆動回路を含む外部回路内に設けたことを特徴とす
る空燃比検出器。
1. In an air-fuel ratio detector that detects the air-fuel ratio of a combustor using exhaust gas, the air-fuel ratio detector includes a first variable resistor for correcting variations in resistance of a diffusion resistor, an electrode, etc. of the air-fuel ratio detector, and an air-fuel ratio detector. An air-fuel ratio detector, characterized in that a second variable resistor for correcting variations in resistance value of a heater added to the heater is provided in an external circuit including a drive circuit of the air-fuel ratio detector.
2. 第1および第2の可変体は空燃比検出器と外部回
路とを接続する空燃比検出器側のコネクタ内に設けたこ
とを特徴とする特許請求の範囲第1項記載の空燃比検出
器。
2. 2. The air-fuel ratio detector according to claim 1, wherein the first and second variable bodies are provided in a connector on the air-fuel ratio detector side that connects the air-fuel ratio detector and an external circuit.
JP59220439A 1984-10-22 1984-10-22 Air-fuel ratio detector Expired - Lifetime JPH0680426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59220439A JPH0680426B2 (en) 1984-10-22 1984-10-22 Air-fuel ratio detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59220439A JPH0680426B2 (en) 1984-10-22 1984-10-22 Air-fuel ratio detector

Publications (2)

Publication Number Publication Date
JPS6199852A true JPS6199852A (en) 1986-05-17
JPH0680426B2 JPH0680426B2 (en) 1994-10-12

Family

ID=16751124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59220439A Expired - Lifetime JPH0680426B2 (en) 1984-10-22 1984-10-22 Air-fuel ratio detector

Country Status (1)

Country Link
JP (1) JPH0680426B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302356A (en) * 1987-01-27 1988-12-09 Ngk Insulators Ltd Apparatus of measuring oxygen concentration
JPH0261545A (en) * 1988-08-26 1990-03-01 Honda Motor Co Ltd Exhaust density detector
EP0482366A2 (en) * 1990-10-22 1992-04-29 Mitsubishi Denki Kabushiki Kaisha A heater control device for an air-fuel ratio sensor
JP2000081415A (en) * 1998-07-16 2000-03-21 Magneti Marelli Spa Oxygen linear sensor examination device
EP1890139A3 (en) * 1998-02-20 2009-09-09 NGK Spark Plug Co., Ltd. NOx sensor control circuit unit and NOx sensor system using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5686349A (en) * 1979-12-18 1981-07-14 Nissan Motor Co Ltd Production of substrate for gas sensor with heater
JPS58205849A (en) * 1982-05-26 1983-11-30 Toyota Motor Corp Oxygen concentration detector
JPS5934432A (en) * 1982-08-23 1984-02-24 Toyota Motor Corp Air-fuel ratio controller of internal-combustion engine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5686349A (en) * 1979-12-18 1981-07-14 Nissan Motor Co Ltd Production of substrate for gas sensor with heater
JPS58205849A (en) * 1982-05-26 1983-11-30 Toyota Motor Corp Oxygen concentration detector
JPS5934432A (en) * 1982-08-23 1984-02-24 Toyota Motor Corp Air-fuel ratio controller of internal-combustion engine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302356A (en) * 1987-01-27 1988-12-09 Ngk Insulators Ltd Apparatus of measuring oxygen concentration
JPH0261545A (en) * 1988-08-26 1990-03-01 Honda Motor Co Ltd Exhaust density detector
EP0482366A2 (en) * 1990-10-22 1992-04-29 Mitsubishi Denki Kabushiki Kaisha A heater control device for an air-fuel ratio sensor
US5279145A (en) * 1990-10-22 1994-01-18 Mitsubishi Denki K.K. Heater control device for an air-fuel ratio sensor
EP1890139A3 (en) * 1998-02-20 2009-09-09 NGK Spark Plug Co., Ltd. NOx sensor control circuit unit and NOx sensor system using the same
JP2000081415A (en) * 1998-07-16 2000-03-21 Magneti Marelli Spa Oxygen linear sensor examination device
JP4531885B2 (en) * 1998-07-16 2010-08-25 マグネティ・マレッリ・エス・ピー・エー Control device for oxygen linear sensor

Also Published As

Publication number Publication date
JPH0680426B2 (en) 1994-10-12

Similar Documents

Publication Publication Date Title
JP2674876B2 (en) Adjusting branch power supply
EP0152293A2 (en) Engine air/fuel ratio sensing device
JPH0355660B2 (en)
JPH02177566A (en) Semiconductor distortion detection device
US5121064A (en) Method and apparatus for calibrating resistance bridge-type transducers
JPS58154016A (en) Action control circuit device for regulator
JPS6199852A (en) Air-fuel ratio detector
JPH0412422B2 (en)
JPH06100125B2 (en) Air-fuel ratio controller
US4762604A (en) Oxygen concentration sensing apparatus
JPH0826911B2 (en) Electromagnetic clutch current controller for automobile
JP2000081414A (en) Element resistance detecting device for gas concentration sensor
JPH04249717A (en) Heat sensitive flow rate sensor
JPH06174489A (en) Temperature compensating circuit
JP2505399B2 (en) Air-fuel ratio control device
JPS60260842A (en) Heater temperature control circuit for air-fuel ratio sensor
JPH037268B2 (en)
JPH0720155A (en) Temperature coefficient measuring method for hall element and temperature compensation method for current detector
JP2005156161A (en) Heater control circuit
JP2000180406A (en) Heating type sensor
JPH0519796Y2 (en)
JPS6017349A (en) Device for controlling air-fuel ratio
JP2589974Y2 (en) Angular velocity detection circuit
JPH08247814A (en) Heat-sensitive flow rate sensor
JP2705927B2 (en) Electronic governor