JPS60260842A - Heater temperature control circuit for air-fuel ratio sensor - Google Patents

Heater temperature control circuit for air-fuel ratio sensor

Info

Publication number
JPS60260842A
JPS60260842A JP59116466A JP11646684A JPS60260842A JP S60260842 A JPS60260842 A JP S60260842A JP 59116466 A JP59116466 A JP 59116466A JP 11646684 A JP11646684 A JP 11646684A JP S60260842 A JPS60260842 A JP S60260842A
Authority
JP
Japan
Prior art keywords
heater
temperature
resistor
control circuit
temperature control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59116466A
Other languages
Japanese (ja)
Inventor
Masayuki Miki
三木 政之
Kiyomitsu Suzuki
清光 鈴木
Takao Sasayama
隆生 笹山
Toshitaka Suzuki
敏孝 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59116466A priority Critical patent/JPS60260842A/en
Publication of JPS60260842A publication Critical patent/JPS60260842A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4067Means for heating or controlling the temperature of the solid electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/4065Circuit arrangements specially adapted therefor

Abstract

PURPOSE:To control the temp. in the heating part of a four-terminal type heater with good accuracy by providing a resistor for temp. setting in series to said heater and controlling the heater current in such a manner that the difference in the voltage drop between the heating part of the heater and the resistor for temp. setting is made zero. CONSTITUTION:The four-terminal type heater is constituted with the heating part (a) to heat an oxygen detecting part, lead parts (b), (c) for the part (a) and lead parts (d), (e) to detect the electric signal between the lead parts (b) and (c). The four-terminal type heater is connected in series to the resistor Rs for temp. setting. The resistor Rb in the lead part of the four-terminal type heater is connected at one end to the resistor Rs and the resistor Ra in the heating part of the four-terminal type heater is connected at one end to the lead part Rb. The resistor Rc at the lead part is connected at one end to the heating part Ra. The voltage drop of the temp. setting part Rs is connected to an operational amplifier 105 and the voltage drop of the heating part Ra is connected to an operational amplifier 110. The output voltages from these amplifiers are inputted to a differential amplifier 120 and the heater current is so controlled that the differential voltage between the resistor for temp. setting and the heating part is made zero.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は空燃比センサ用ヒータ温度制御回路に係り、特
に、ヒータと温度設定用抵抗器との電圧降下が等しくな
るよう制御する手段を簡単な回路構成で行い、高精度の
ヒータ温度制御を実現するに好適な空燃比センサ用ヒー
タ温度制御回路に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a heater temperature control circuit for an air-fuel ratio sensor, and in particular, to a simple means for controlling the voltage drops between the heater and the temperature setting resistor to be equal. The present invention relates to a heater temperature control circuit for an air-fuel ratio sensor suitable for realizing highly accurate heater temperature control using a circuit configuration.

〔発明の背景〕[Background of the invention]

排ガス中の酸素濃度を検出する空燃比センサ、特にSリ
ーン領域での酸素濃度を検出するり一ンセンサとして種
々の方式のキンサが検討され、特許も多数出願されてい
る。しかし、いずれの方式においてもセンサ特性に対し
、周囲温度影響が大きく使用時には高温度一定に加熱制
御する必要がある。
Various types of sensors have been studied as air-fuel ratio sensors for detecting the oxygen concentration in exhaust gas, particularly for detecting the oxygen concentration in the S-lean region, and many patents have been filed. However, in either method, the ambient temperature has a large effect on the sensor characteristics, and it is necessary to control heating to a constant high temperature during use.

第1図はリーンセンサの一例で単孔拡散方式リーンセン
サの原理を示す構造図で、これは厚膜プロセスで裏作、
される。
Figure 1 is an example of a lean sensor and is a structural diagram showing the principle of a single-hole diffusion type lean sensor.
be done.

図において、1はジルコニア固体電解質、2゜3#′i
白金電極、4は酸素基準室、dはガス拡散孔で、これら
が酸素検出部となる。5は酸素検出部を加熱するヒータ
、61−tヒータと酸素検出部を絶縁する絶縁層で、こ
れら全体が排ガス中にさらされる。
In the figure, 1 is a zirconia solid electrolyte, 2゜3#'i
A platinum electrode, 4 an oxygen reference chamber, and d a gas diffusion hole serve as an oxygen detection section. Reference numeral 5 denotes a heater that heats the oxygen detection section, and 61-t an insulating layer that insulates the heater and the oxygen detection section, all of which are exposed to exhaust gas.

排ガス中の酸素濃度検出は白金電極2,3間に一定電圧
を印加すると酸素ポンプ現象によりガス拡散孔d<介し
酸素基準室に拡散流入してくる酸素量から限界電流Ip
zが得られ、これは排ガス中の酸素濃度に対応したもの
である。限界電流Iptと排ガス中の一素濃度Po2と
の関係は次式で表わせる。
To detect the oxygen concentration in exhaust gas, when a constant voltage is applied between the platinum electrodes 2 and 3, the limit current Ip is determined from the amount of oxygen that diffuses into the oxygen reference chamber through the gas diffusion hole d due to the oxygen pump phenomenon.
z is obtained, which corresponds to the oxygen concentration in the exhaust gas. The relationship between the limiting current Ipt and the elemental concentration Po2 in the exhaust gas can be expressed by the following equation.

ここで、Fはファラディ定数、Dはガス拡散定数、Sは
拡散孔の横断面積、tはその長さ、Tは絶対温度である
。また、ガス拡散定数りは絶対温度Tと混合気全圧Pの
関数でo’c、i気圧下の拡散定数をDo とすると次
式で表わされる。
Here, F is the Faraday constant, D is the gas diffusion constant, S is the cross-sectional area of the diffusion hole, t is its length, and T is the absolute temperature. Further, the gas diffusion constant is a function of the absolute temperature T and the total mixture pressure P, and is expressed by the following equation, where Do is the diffusion constant under o'c and i atmospheric pressure.

+1)、 (2)式より明らかな如く、限界電流特性は
絶対温度Tの374乗に比例する温度依存性があり、ま
た、この方式での動作下限温度は700℃以上であるこ
とも一般に知られている。
+1), as is clear from equations (2), the limiting current characteristics have a temperature dependence proportional to the absolute temperature T to the 374th power, and it is also generally known that the lower limit temperature for operation in this method is 700°C or higher. It is being

そこで、これら温度影響の対処法として、酸素検出部と
一体化されたヒータ5により700 ’c以上のある一
定温度に制御する手段が考えられている。
Therefore, as a way to deal with these temperature effects, it has been considered to control the temperature to a certain constant temperature of 700'C or higher using a heater 5 integrated with the oxygen detection section.

第2図は第1図で示したリーンセンサの実装例を示す図
である。
FIG. 2 is a diagram showing an example of mounting the lean sensor shown in FIG. 1.

図において、10は第1図で示したリーンセンサ、11
は保護管、12は排気管に取付けるための取付はフラン
ジ、13はリーンセンサとその駆動部との接続を行うワ
イヤハーネス、14は電源、15はリーンセンサの駆動
回路、16′#す□−ンセンサの信号処理を行う例えば
マイクロ・プロセッサである。 ・ 実装されたり一ン、センサは取付はフランジ12を境い
に保護管11側は排気管内に、逆は大気側に位置する。
In the figure, 10 is the lean sensor shown in FIG.
12 is a protection tube, 12 is a flange for mounting on the exhaust pipe, 13 is a wire harness for connecting the lean sensor and its drive unit, 14 is a power supply, 15 is a drive circuit for the lean sensor, 16'#S - For example, it is a microprocessor that processes the sensor signals. - When mounted, the sensor is mounted on the protection pipe 11 side with the flange 12 as a border, inside the exhaust pipe, and on the other hand, the sensor is located on the atmosphere side.

運転状態においては排ガスの温度が900 ’C以上に
なる場合もあり、当然リーンセンサ本その温度に加熱さ
れ、また、大気側もそれに対応して高い温度となる。
In the operating state, the temperature of the exhaust gas may reach 900'C or more, and naturally the lean sensor itself is heated to that temperature, and the temperature on the atmospheric side is also correspondingly high.

ここで問題となるのは前述したリーンセンサ出力特性の
温度影響を対処するため、高温一定に保持するようヒー
タで温度制御をする。このときヒータは感温材料である
例えば白金を用いるため酸素検出部以外のリード部も同
様に加熱され抵抗値が変化し、この分酸素検出部の制御
温度に影響を及ぼす。すなわち、酸素検出部の温度制御
精度が悪くなる。
The problem here is that in order to deal with the aforementioned temperature effect on the lean sensor output characteristics, the temperature is controlled using a heater to maintain a constant high temperature. At this time, since the heater uses a temperature-sensitive material such as platinum, lead parts other than the oxygen detection part are similarly heated and the resistance value changes, which affects the control temperature of the oxygen detection part. That is, the temperature control accuracy of the oxygen detection section deteriorates.

第3図に2端子型ヒータの一例を、第4図に第3図のヒ
ータを制御するヒータ制御回路の一例を示す。
FIG. 3 shows an example of a two-terminal heater, and FIG. 4 shows an example of a heater control circuit for controlling the heater shown in FIG.

酸素検出部の温度側柵精度向上を図る手段としては酸素
検出部であるaとリード部すでの抵抗比がa)bとなる
ようaの抵抗集中率ヲ上げることが考えられる。(この
ときbの抵抗を零に近づけるのが理想である。)そのた
めにはプロセス工程でリード部のb間の断面積を大きく
するか、あるいは厚くするかにより抵抗値を小さくでき
るが、逆に白金材料の使用量も増加し、また、印刷工!
も増えることからコストアップにつながり、この抵抗集
中法にも限度がある。
As a means of improving the accuracy of the temperature-side fence of the oxygen detecting section, it is conceivable to increase the resistance concentration ratio of a so that the resistance ratio between a, which is the oxygen detecting section, and the lead section becomes a) b. (At this time, it is ideal to bring the resistance of b close to zero.) To achieve this, the resistance value can be reduced by increasing or thickening the cross-sectional area between b of the lead part in the process process, but conversely, The amount of platinum material used has also increased, and printing industry!
This increases the number of resistors, which leads to an increase in cost, and there are limits to this resistance concentration method.

次に、2端子型ヒータを用いてヒータ温度制御をする方
法としては第4図に示すようなブリッジ方式回路が一般
(知られている。
Next, as a method of controlling heater temperature using a two-terminal type heater, a bridge type circuit as shown in FIG. 4 is generally known.

図において、vI+は電源、TRはトランジスタ、50
.51.52は抵抗器、53は差動増幅器である。
In the figure, vI+ is a power supply, TR is a transistor, and 50
.. 51 and 52 are resistors, and 53 is a differential amplifier.

今、抵抗器50,51.52の抵抗値をそれぞれRso
+ Rs+、 R1121ヒータ5の抵抗値’eRis
と−するとこのブリッジ回路での平衡条件はRHll−
RSl=RIIO−Rs2であり、両辺が等しくなるよ
うヒータ5に電力を供給しヒータを加熱制御する。
Now, set the resistance values of resistors 50 and 51.52 to Rso
+Rs+, resistance value of R1121 heater 5'eRis
- Then the equilibrium condition in this bridge circuit is RHll-
RSl=RIIO-Rs2, and power is supplied to the heater 5 to control heating so that both sides are equal.

しかし、前述した如くヒータ5は酸素検出部の抵抗aの
他に、リード部での抵抗すが存在するため、几ssはa
 −4−bの抵抗値で平衡するように温度制御される。
However, as mentioned above, in addition to the resistance a of the oxygen detection section, the heater 5 has a resistance at the lead section, so the temperature ss is a.
The temperature is controlled so as to be balanced at a resistance value of -4-b.

したがって、例えば周囲温度が高くなるとリード部の抵
抗値すも大きくなり、平衡条件でのヒータ抵抗値RH5
は常に一定であるからその分aの抵抗値が低くなり、こ
れより酸素検出部の温度は目標制御温度より低くなり出
力特性に悪影響を及ぼす結果となる。
Therefore, for example, when the ambient temperature rises, the resistance value of the lead section also increases, and the heater resistance value RH5 under equilibrium conditions.
Since a is always constant, the resistance value of a becomes lower accordingly, which causes the temperature of the oxygen detection section to be lower than the target control temperature, which has a negative effect on the output characteristics.

〔発明の目的〕[Purpose of the invention]

本発明の目的は温度検出用リード部を有するヒータと直
列に温度設定用抵抗器を配し、互いの電圧降下の差が零
となるように制御させる簡単なヒータ制御回路を実現可
能とした空燃比センサ用ヒータ温度制御回路を提供する
にある。
The object of the present invention is to provide a simple heater control circuit in which a temperature setting resistor is arranged in series with a heater having a temperature detection lead, and the voltage drop difference between the two is controlled to be zero. The present invention provides a heater temperature control circuit for a fuel ratio sensor.

〔発明の概要〕[Summary of the invention]

厚膜プロセスで作られる空燃比センサは動作温度が高く
、また、゛特性の温度影響も大きいことから、センサと
一体化したヒータで一定温度に加熱し使用することが望
まれている。
Air-fuel ratio sensors manufactured using a thick film process have a high operating temperature, and their characteristics are greatly affected by temperature, so it is desirable to use a heater integrated with the sensor to heat the sensor to a constant temperature.

2端子型ヒータによる温度制御方法では加熱部の抵抗集
中率を上げることによるコストアップやリード部の抵抗
値温度影響で温度制御精度の低下などさけられない問題
がある。
The temperature control method using a two-terminal heater has unavoidable problems such as an increase in cost due to an increase in the resistance concentration ratio of the heating section and a decrease in temperature control accuracy due to the influence of temperature on the resistance value of the lead section.

これを対処するため、4端子型ヒータを用い、ヒータの
温度を加熱部よシ検出できるようにし、これよりリード
部の抵抗値温度影響を無視できるようにしたことで、セ
ンサの周囲温度の影響をうけず、高精度で温度制御が可
能となる。
To deal with this, we used a four-terminal heater to detect the temperature of the heater from the heating part, and by making it possible to ignore the temperature effect on the resistance value of the lead part, we were able to ignore the effect of the ambient temperature on the sensor. This makes it possible to control temperature with high precision without being affected by heat.

また、ヒータの温度制御を行うに最も回路部品点数が少
なく簡単と思われるブリッジ方式を用い、4端子型ヒー
タを制御させることは原理的に可能であるが、この場合
、ブリッジの両辺共同等の抵抗値で組まれるため、電力
供給が倍増し、すべての抵抗部が発熱することから実現
性がない。
In addition, it is theoretically possible to control a 4-terminal heater using the bridge method, which is considered to be the simplest method to control the temperature of the heater because it has the least number of circuit components. Since it is assembled using resistance values, the power supply is doubled and all the resistance parts generate heat, making it impractical.

上記背景をもとに、本発明ではそれらに対処するためヒ
ータの加熱部の抵抗一温度特性を知ることを条件として
、4端子型ヒータに温度設定用抵抗器を直列に設け、所
望する制御温度でヒータの加熱部に発生する電圧降下分
と温度設定用抵抗器部に発生する電圧降下分との電位差
が零になるように制御させることで、ヒータの加熱部の
温度を精度よく制御できるヒータ制御回路をも合わせて
実現可能とした。
Based on the above background, in order to deal with these problems, the present invention provides a four-terminal heater with a temperature setting resistor in series, on the condition that the resistance-temperature characteristics of the heating part of the heater is known, to set the desired control temperature. A heater that can accurately control the temperature of the heating part of the heater by controlling the potential difference between the voltage drop that occurs in the heating part of the heater and the voltage drop that occurs in the temperature setting resistor part to zero. This also made it possible to implement the control circuit.

〔発明の実施例〕[Embodiments of the invention]

第5図(a)に本発明となる空燃比センサ用ヒータ温度
制御回路に用いる厚膜プロセスで作られた4端子型ヒー
タの一例を、Q3)にヒータ制御回路の具体的一実施例
を示す。
FIG. 5(a) shows an example of a four-terminal heater made by a thick film process used in the heater temperature control circuit for an air-fuel ratio sensor according to the present invention, and Q3) shows a specific example of the heater control circuit. .

第5図(a)において、aは酸素検出部を加熱する加熱
部、b、cは加熱部aのリード部、d、eは加熱部a1
すなわち、リード部す、c間の電気信号を検出する検出
リード部で4端子型ヒータを構成する。上記4端子型ヒ
ータによれば加熱部aの加熱状態を検出リード部d、e
で電気信号として検出されるため、従来の2端子型ヒー
タで問題となっていた周囲温度によるリード部す、cの
抵抗値温度影響は無視でき、加熱部aでの加熱状態だけ
を検出することから高い温度精度での制御が可能となる
In FIG. 5(a), a is a heating part that heats the oxygen detection part, b and c are lead parts of heating part a, and d and e are heating part a1.
That is, a four-terminal type heater is configured by a detection lead part that detects an electric signal between leads A and C. According to the four-terminal heater described above, the heating state of the heating part a is detected by the lead parts d and e.
Since it is detected as an electrical signal in the heating area, the temperature effect on the resistance value of the leads A and C due to the ambient temperature, which was a problem with conventional two-terminal heaters, can be ignored, and only the heating state at the heating area A can be detected. This makes it possible to control the temperature with high accuracy.

第5図(b)において、VBは電源電圧、Trはコレク
タを電源電圧Viに接続するトランジスタ、R8は一端
をトランジスタTrのエミッタ端に接続される温度検出
用の抵抗器、Rbは一端を温度設定用抵抗器Rsに接続
される4端子型ヒータのリード部の抵抗、Raは一端を
リード部Rhに接続される4端子型ヒータの加熱部の抵
抗、Rcは一端を加熱部R,に、他端を接地するリード
部の抵抗、101は一端をトランジスタTrのエミッタ
に接続される抵抗器、102は一端を抵抗器101に、
他端を接地する抵抗器、103は一端を温度設定用抵抗
器R1!に接続された抵抗器、104は一端を抵抗器1
03に接続された抵抗器、105はプラス入力端を抵抗
器101,102の中点に、マイナス入力端を抵抗器1
03,104の中点に、出力端を抵抗器104に接続さ
れた差動増幅器、106は一端をヒータの加熱部の抵抗
器、に接続される抵抗器、107は一端を抵抗器106
に、他端を接地する抵抗器、108は一端をヒータのリ
ード部の抵抗Rcに接続された抵抗器、109は一端を
抵抗器108に接続された抵抗器、110はプラス入力
端を抵抗器106゜107の中点に、マイナス゛入力端
を抵抗器108゜109の中点に、出力端を抵抗器10
9の一端に接続された差動増幅器、120はプラス入力
端を差動増幅器105の出力端に、マイナス端を差動増
幅器110の出力端に、出力端をトランジスタTrのベ
ースに接続された差動増幅器でヒータ制御回路を構成す
る。
In FIG. 5(b), VB is the power supply voltage, Tr is a transistor that connects its collector to the power supply voltage Vi, R8 is a temperature detection resistor whose one end is connected to the emitter end of the transistor Tr, and Rb is a temperature detection resistor whose one end is connected to the power supply voltage Vi. The resistance of the lead part of the four-terminal heater connected to the setting resistor Rs, Ra is the resistance of the heating part of the four-terminal heater whose one end is connected to the lead part Rh, Rc is the resistance of the heating part of the four-terminal heater connected to the lead part Rh, and Rc is the resistance of the heating part of the four-terminal heater connected to the lead part Rh. A resistance of a lead part whose other end is grounded, 101 is a resistor whose one end is connected to the emitter of the transistor Tr, 102 is a resistor whose one end is connected to the resistor 101,
The other end of the resistor is grounded, and one end is the temperature setting resistor R1! The resistor 104 has one end connected to the resistor 1
The resistor 105 connected to 03 has its positive input end connected to the midpoint of resistors 101 and 102, and its negative input end connected to resistor 1.
At the midpoint of 03 and 104, a differential amplifier whose output end is connected to the resistor 104, 106 is a resistor whose one end is connected to the resistor of the heating part of the heater, and 107 is a resistor whose one end is connected to the resistor 106.
, a resistor whose other end is grounded, 108 is a resistor whose one end is connected to the resistor Rc of the lead part of the heater, 109 is a resistor whose one end is connected to the resistor 108, and 110 is a resistor whose positive input end is connected to the resistor 108. Connect the minus input end to the midpoint of resistor 108°109, and the output end to resistor 10.
A differential amplifier 120 has a positive input terminal connected to the output terminal of the differential amplifier 105, a negative terminal to the output terminal of the differential amplifier 110, and an output terminal connected to the base of the transistor Tr. Configure the heater control circuit with a dynamic amplifier.

ここでの動作は次の通りである。The operation here is as follows.

一般に知られるように白金を材料として作られたヒータ
の抵抗値Riと周囲温度Tの関係は次式%式% (3) ここで、RIHoは零度におけるヒータの抵抗値、αは
白金の温度係数である。
As is generally known, the relationship between the resistance Ri of a heater made of platinum and the ambient temperature T is expressed by the following formula (3) where RIHo is the resistance of the heater at zero degrees, and α is the temperature coefficient of platinum. It is.

本発明ではヒータ製作後ヒータの抵抗値RHと周囲温度
Tとの関係特に加熱部の抵抗R,の特性があらかじめわ
かっているものとする。
In the present invention, it is assumed that after the heater is fabricated, the relationship between the resistance value RH of the heater and the ambient temperature T, particularly the characteristics of the resistance R of the heating section, are known in advance.

したがって、ヒータ加熱部の制御温度を決定することで
その時のヒータ抵抗値R1も決定される。
Therefore, by determining the control temperature of the heater heating section, the heater resistance value R1 at that time is also determined.

いま、制御温度t”Tstに決定すると、ヒータの抵抗
値は(3)式よりRm丁となり、ヒータ制御回路では加
熱部の抵抗値が几1丁一定になるように制御するが、こ
のとき、加熱部の抵抗値をBJaTに制御する制御目標
は温度設定用抵抗器R8の電圧降下による差電圧の信号
を用いる。
Now, when the control temperature is determined to be t"Tst, the resistance value of the heater becomes Rm from equation (3), and the heater control circuit controls the resistance value of the heating part to be constant for 1, but at this time, The control target for controlling the resistance value of the heating section to BJaT uses a signal of a voltage difference caused by a voltage drop across the temperature setting resistor R8.

温度設定用抵抗器R8と加熱部の抵抗R,には同じヒー
タ電流IIが流れることから、これよりそれぞれの以下
に示す電圧降下が発生する。
Since the same heater current II flows through the temperature setting resistor R8 and the heating section resistor R, the following voltage drops occur in each of them.

温度設定用抵抗器での電圧降下による差電圧V Rsは Vns = Rm ・II −−−(4)加熱部の抵抗
R,の電圧降下による差電圧Vy+aは VR−=R−・In ・・・・・・・・・ (5)とな
る。
The differential voltage V Rs due to the voltage drop across the temperature setting resistor is Vns = Rm ・II --- (4) The differential voltage Vy+a due to the voltage drop across the resistor R of the heating section is VR-=R-・In... ...... (5).

したがって、(4)、 (5)式より制御温度時の両式
の差電圧Vns HVisa が等しくなると加熱部の
抵抗比a?と温度設定用抵抗R1が同値となり、加熱部
は制御目標温度で制御されたこととなる。よって、ヒー
タ制御回路ではVns 、 VRTHの差が零になるよ
うにフィードバックコントa−ルすればよい。
Therefore, from equations (4) and (5), if the differential voltages Vns HVisa of both equations at the control temperature are equal, the resistance ratio a of the heating section? and the temperature setting resistor R1 have the same value, and the heating section is controlled at the control target temperature. Therefore, the heater control circuit should perform feedback control so that the difference between Vns and VRTH becomes zero.

101〜105による演算増幅器1.106〜110に
よる演算増幅器2.120の差動増幅器はこれを行うた
めのものである。
The operational amplifiers 101 to 105, the operational amplifiers 2110 to 110, and the differential amplifiers 120 are for this purpose.

演算増幅器1の出力v1は抵抗器101〜104の抵抗
値を各々Riot + Rsoz * R103、RI
04とし更に&o+ = R103=几t R162=
ルー14 = Rzとすると ここで、elは抵抗器R,,,側に、e2は抵抗器R1
oll 側に入力される入力電圧である。
The output v1 of the operational amplifier 1 has the resistance value of the resistors 101 to 104 respectively as Riot + Rsoz * R103, RI
04 Toshinashi &o+ = R103=几t R162=
Let 14 = Rz, where el is on the resistor R,,,, e2 is on the resistor R1
This is the input voltage input to the oll side.

したがって、R+ −R鵞 とすれば増幅率lの差動増
幅器となる。
Therefore, if R+ -R is set, it becomes a differential amplifier with an amplification factor of l.

また、106〜110で構成する演算増幅器2の出力電
圧v2も同様である。
The same applies to the output voltage v2 of the operational amplifier 2 composed of 106 to 110.

この出力電圧V1r Vz +すなわち温度設定用抵抗
器R3と加熱部の差電圧が零になるよ)゛にするため差
動増幅器120は動作するもので、その出力電圧V3は
Vl 、V2の差が犬である程高い電圧を示し、トラン
ジスタTrのコレクターエミッタ間電流、すなわち、ヒ
ータ電流IR値を増加させ、ヒータ部を加熱し逆に電位
差が逆転すれはヒータ電流°をなくすようにくり返し制
御しVI+V2の電位差が零となる、すなわち、加熱部
の抵抗値を制御温度時の抵抗値一定となるようにする。
The differential amplifier 120 operates to make this output voltage V1r Vz + (that is, the difference voltage between the temperature setting resistor R3 and the heating section becomes zero), and its output voltage V3 is equal to the difference between Vl and V2. The higher the voltage, the higher the voltage, the collector-emitter current of the transistor Tr, that is, the heater current IR value, is increased, heating the heater part, and conversely, when the potential difference is reversed, the heater current is repeatedly controlled to eliminate VI+V2. The potential difference between the heating parts is made zero, that is, the resistance value of the heating section is kept constant at the controlled temperature.

また、ヒータを高温で加熱制御する場合、それに見合っ
てヒータ電流Isiも増加する。したかって、温度設定
用抵抗器R1も発熱するためパワーのロスとなる。した
がって、温度設定用抵抗器R11の抵抗値は小さい方が
効率がよい。これを実現するには演算増幅器のゲインを
調整〔(6)式のR*/Rt)をすることで解消できる
。すなわち、温度設定抵抗器R3の抵抗値を小さくした
分を補正するように演算増幅器1のGAINe大きくす
ればよい。
Further, when heating the heater at a high temperature, the heater current Isi also increases accordingly. Therefore, the temperature setting resistor R1 also generates heat, resulting in power loss. Therefore, the smaller the resistance value of the temperature setting resistor R11, the better the efficiency. This problem can be solved by adjusting the gain of the operational amplifier (R*/Rt in equation (6)). That is, GAINe of the operational amplifier 1 may be increased to compensate for the reduction in the resistance value of the temperature setting resistor R3.

第6図にリーンセンサの出力−空気過剰率特性の温度依
存性を示す。
FIG. 6 shows the temperature dependence of the lean sensor output-excess air ratio characteristic.

図において、横軸は空気過剰率λ、縦軸はポンプ電流I
P金示す。また図中、Tt # Tz r Tsはリー
ンセンサの温度を示し、その大小関係はTs >T2 
>T3 となる。
In the figure, the horizontal axis is the excess air ratio λ, and the vertical axis is the pump current I.
Show P money. In addition, in the figure, Tt # Tz r Ts indicates the temperature of the lean sensor, and the magnitude relationship is Ts > T2
>T3.

これより明らかなように、リーンセンサの出力ポンプ電
流Itは過気過剰率λがλ≧1で比例関係となるが、(
2)式で示した如くその出力は絶対温度Tの3z4乗に
比例することから温度Tが高くなると特性も増加、また
逆に低くなると特性を低下する温度依存性を有する。
As is clear from this, the output pump current It of the lean sensor has a proportional relationship when the excess air ratio λ is λ≧1, but (
As shown in equation 2), the output is proportional to the 3z4th power of the absolute temperature T, so that it has temperature dependence such that as the temperature T increases, the characteristics increase, and conversely, as the temperature T decreases, the characteristics decrease.

第7図に従来及び本発明におけるリーンセンサの出力一
温度特性の比較例を示す。
FIG. 7 shows a comparative example of the output-temperature characteristics of lean sensors in the prior art and in the present invention.

図中、横軸にリーンセンサの温度を、縦軸にリーンセン
サの出力値を示す。また、図中Xはヒータなしの場合、
yは2端子型ヒータで温度制御した場合、Zは4端子型
ヒータで温度制御した場合で、この測定では周囲の雰囲
気ガスを一定に保持し温度を可変したものである。なお
、ヒータ有の特性y1 zはヒータの制御温度を800
℃として調整したものである。
In the figure, the horizontal axis shows the temperature of the lean sensor, and the vertical axis shows the output value of the lean sensor. In addition, in the figure, X is without a heater,
y is the case when the temperature is controlled by a two-terminal heater, and Z is the case when the temperature is controlled by a four-terminal heater. In this measurement, the surrounding atmospheric gas was held constant and the temperature was varied. In addition, the characteristic y1 z with heater is the control temperature of heater 800
It was adjusted as °C.

この結果、前述した如くリーンセンサの出力は絶対温度
の374乗に比例する温度影響があり、ヒータなしの特
性xJd動作下限温度約60(1以上で出力値が大きく
変化し、動作下限温度以下では雰囲気酸素に感応しなく
なる。
As a result, as mentioned above, the output of the lean sensor is affected by temperature in proportion to the 374th power of the absolute temperature, and the characteristic without a heater x Jd lower operating limit temperature is approximately 60 (1 or more, the output value changes greatly, and below the lower operating limit temperature Becomes insensitive to atmospheric oxygen.

また、2端子型ヒータを用いて制御したyの場合は周囲
温度SOOυの特性に比し、周囲温度800℃以上で出
力低下、以下で出力増加する特性となる。これはヒータ
リード部の抵抗値の温度影響であり、800t以、上で
はリード部の抵抗が増加しその分検出部の制御温度が低
下する、逆に800″C以下ではリード部の抵抗値が低
下するため検出部の制御温度が上昇し特性が増加す名こ
とによる。
Furthermore, in the case of y controlled using a two-terminal heater, compared to the characteristics of the ambient temperature SOOυ, the output decreases when the ambient temperature is 800° C. or higher, and the output increases when the ambient temperature is 800° C. or lower. This is due to the temperature effect of the resistance value of the heater lead part. Above 800T, the resistance of the lead part increases and the control temperature of the detection part decreases accordingly. Conversely, below 800"C, the resistance value of the lead part increases. This is due to the fact that the control temperature of the detection section increases as the temperature decreases, and the characteristics increase.

その点、本発明の4端子ヒータを用いて温度制御したZ
の特性は制御目標温度800℃以上ではその出力は増加
するものの、周囲温度800℃以下の全温度範囲にわた
り出カ一定となり、リーンセンサ出力への温度影響はな
くなる。これは、加熱部の制御温度検出を第5図(a)
に示す検出リードより行うためリード部の温度影響を無
視できることで可能となる。
On that point, Z
Although the output increases when the control target temperature is 800° C. or higher, the output remains constant over the entire temperature range below the ambient temperature of 800° C., and there is no temperature influence on the lean sensor output. This is the control temperature detection of the heating part as shown in Figure 5(a).
This is possible because the temperature effect on the lead part can be ignored since it is performed using the detection lead shown in FIG.

第8図に4端子型ヒータを制御するヒータ制御回路の他
の実施例を示す。
FIG. 8 shows another embodiment of a heater control circuit for controlling a four-terminal heater.

図において、200は定電流源、201は定電流源20
0に接続されるスイッチ、202fi電圧源、203は
電圧源202に接続されるスイッチ、204はのこぎり
波発生回路、205は演算増幅器110の出力に接続す
るスイッチ、206はスイッチ205に接続されるコン
デンサ、207はコンデンサ206に接続する抵抗、2
08は抵抗207に接続するコンデンサ、209は抵抗
207、コンデンサ208に接続される演算増幅器、2
10はヒータの制御温度を決定する情報を入力する入力
端で207〜210で積分器を構成する、211は演算
増幅器209及びのこぎり波発生回路204に接続され
る比較器、212は比較器211に接続されるインバー
タ素子、81.82はスイッチ203.201t−コン
トロールスルコントロール信号でパルス加熱方式ヒータ
制御回路を構成する。
In the figure, 200 is a constant current source, 201 is a constant current source 20
0, 202fi voltage source, 203 a switch connected to voltage source 202, 204 a sawtooth wave generation circuit, 205 a switch connected to the output of operational amplifier 110, 206 a capacitor connected to switch 205. , 207 is a resistor connected to the capacitor 206, 2
08 is a capacitor connected to the resistor 207, 209 is an operational amplifier connected to the resistor 207 and the capacitor 208, 2
10 is an input terminal for inputting information for determining the control temperature of the heater; 207 to 210 constitute an integrator; 211 is a comparator connected to the operational amplifier 209 and the sawtooth wave generation circuit 204; and 212 is an input terminal to the comparator 211. The connected inverter elements 81 and 82 constitute a pulse heating type heater control circuit using the switches 203 and 201t - control signal.

ここでの動作は次の通りである。The operation here is as follows.

制御目標温度TsFi加熱部の抵抗値R,と定電流源2
00より供給される定電施工1の積で決定され、これに
見合った温度制御用電圧V?は入力端210より積分器
に入力される。
Control target temperature TsFi heating section resistance value R, and constant current source 2
It is determined by the product of constant voltage construction 1 supplied from 00, and the corresponding temperature control voltage V? is input to the integrator from the input terminal 210.

センサの周囲温度が制御目標温度Tsより低いとき電源
を投入すると比較器211では積分器の出力Vlとのこ
ぎり波発生回路204よりある周期でくり返し発生され
るのこぎり波高値VNとレベル比較がされ、その出力は
VN>Vlのとき” High ” Vへk、VlI<
Vlのとき”LOW”レベルとなり、これが−周期内で
のon−off信号(パルス幅時間比=デュテー比)と
なる。
When the power is turned on when the ambient temperature of the sensor is lower than the control target temperature Ts, the comparator 211 compares the level of the output Vl of the integrator with the sawtooth wave height value VN repeatedly generated at a certain period by the sawtooth wave generation circuit 204. The output goes to "High" V when VN>Vl, VlI<
When it is Vl, it becomes a "LOW" level, and this becomes an on-off signal (pulse width time ratio=duty ratio) within a - period.

スイッチ201,202はコントロール信号S1,8z
が°)ligh’レベルのとき導通状態、”LOW“レ
ベルのとき非導通状態となるもので、比較器211の出
力が゛)iigh”レベルのときスイッチ203が導通
、“LOW’レベルのときスイッチ201が導通状態と
なる。
Switches 201 and 202 are control signals S1 and 8z
When the output of the comparator 211 is at the ``)iigh'' level, the switch 203 is conductive, and when it is at the ``LOW'' level, the switch 203 is conductive, and when it is at the ``LOW'' level, the switch 203 is conductive. 201 becomes conductive.

今、比較器211の出力が°)ligh”レベルのとき
、スイッチ203が導通し電圧源202よりヒータに電
力が供給されヒータは加熱される。その後、比較器21
1の出力は”LOW“レベルとなるため、スイッチ20
3は非導通となり、逆にスイッチ201が導通状態とな
り、ヒータに定電流■1を供給する。そして106〜1
10よりなる演算増幅器は加熱部の抵抗Raの電位差を
横用−七、その出力はスイッチ201と同時に導通状態
となるスイッチ205を介してコンデンサ206に充電
される。この充電された値がヒータ加熱部の抵抗値、す
なわち、温度に対応するもので、入力端210より入力
される制御目標温度に対応した制御電圧と比較され、積
分器では両方の差分を積分し出力するものであシ、この
差分が大きいときは積分器の出力も高く、逆に、小さい
ときは出−力が低くなる。したがって、積分器の出力の
変化によってヒータを加熱する電力を供給する加熱時間
幅が変化し、温度差が大きい程加熱時間幅としゃ断時間
幅のデユティ比は犬きくなる。また、逆ζ、目標温度に
近ずく程加熱時間幅は短くなる。
Now, when the output of the comparator 211 is at the "°)high" level, the switch 203 is turned on and power is supplied to the heater from the voltage source 202, heating the heater.
Since the output of switch 1 is at "LOW" level, switch 20
3 becomes non-conductive, and conversely, the switch 201 becomes conductive, supplying constant current ■1 to the heater. and 106-1
The operational amplifier 10 uses the potential difference across the resistor Ra of the heating section -7, and its output charges the capacitor 206 via the switch 205 which becomes conductive at the same time as the switch 201. This charged value corresponds to the resistance value of the heater heating section, that is, the temperature, and is compared with the control voltage corresponding to the control target temperature input from the input terminal 210, and the integrator integrates the difference between the two. When this difference is large, the output of the integrator is high, and conversely, when it is small, the output is low. Therefore, the heating time width for supplying electric power to heat the heater changes depending on the change in the output of the integrator, and the duty ratio between the heating time width and the cutoff time width becomes narrower as the temperature difference becomes larger. In addition, inverse ζ, the closer the temperature is to the target temperature, the shorter the heating time width becomes.

以上述べたことは、のこぎり波−周期内での動作である
が、前述した如くのこぎり波発生回路よりのこぎり波は
くり返し発生されるもので以上述べた動作をくり返えし
温度制御をするものである。
What has been described above is the operation within the sawtooth wave cycle, but as mentioned above, the sawtooth wave from the sawtooth wave generation circuit is generated repeatedly, and temperature control is performed by repeating the above-mentioned operation. be.

よって、パルス加熱方式によるヒータ制御回路において
も4端子型ヒータを用い加熱部だけの信号を検出できる
ようにしたことで、ヒータリード部の周囲温度影響を無
視でき高精度の温度側@を実現できる。
Therefore, even in a heater control circuit using the pulse heating method, by using a 4-terminal heater and making it possible to detect signals from only the heating section, the influence of the ambient temperature on the heater lead section can be ignored and highly accurate temperature measurements can be achieved. .

〔発明の効果〕〔Effect of the invention〕

本発明によれば以下に示す効果がある。 According to the present invention, there are the following effects.

(1) 4端子ヒータと直列に温度検出用抵抗を配し、
この抵抗の電圧降下分にヒータ加熱部での電圧降下分が
等しくなるよう制御させるようにしたことで簡単な回路
構成でヒータ制御が実現できる効果がある。
(1) Place a temperature detection resistor in series with the 4-terminal heater,
By controlling the voltage drop at the heater heating section to be equal to the voltage drop across the resistor, heater control can be achieved with a simple circuit configuration.

(2) 温度検出用抵抗での電圧降下検出部の検出感度
を自由に調整できるように構成したことで、この抵抗で
の発熱を防止しヒータ以外でのパワーロスをなくす効果
がある。
(2) The configuration allows the detection sensitivity of the voltage drop detection unit at the temperature detection resistor to be freely adjusted, which has the effect of preventing heat generation at this resistor and eliminating power loss at sources other than the heater.

(3)パルス加熱ヒータ制御回路においても4端子ヒー
タと加熱部の信号を検出する回路を付加することで温度
制御精度向上とともにぐヒータ以外でのパワーロスを低
減できる効果がある。
(3) Also in the pulse heating heater control circuit, adding a four-terminal heater and a circuit for detecting signals from the heating section has the effect of improving temperature control accuracy and reducing power loss in areas other than the heater.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は厚膜プロセスで作られたリーンセンサの原理構
造図、第2図はリーンセンサの実装タイプの一例を示す
図、第3図は従来の2端子型ヒータを示す図、第4図は
2端子型ヒータを制御する制御回路図、第5図(a)r
/′i本発明での4端子型ヒータを示す図、Φ)は4端
子型ヒータを制御する本発明でのヒータ制御回路図、第
6図はリーンセンサ゛特性の周囲温度依存性を示す図、
第7図はヒータ温度制御精度がリーンセンサ特性に及ぼ
す影響を示す図、第8図は4端子型ヒータの制御回路の
応用例を示す図である。 a・・・加熱部、b、c・・・リード部、d、e・・・
検出リード部、VB・・・電源電圧、Tr・・・トラン
ジスタ、Rs ・・・抵賦器、101〜104・・・抵
抗器、105・・・差動増゛、gilI器。 #1 虐 事2図 第3 A 婆4固 嚢S圀 (L) 端乙 区 1品k 度 T C′Cノ
Fig. 1 is a diagram showing the principle structure of a lean sensor made using a thick film process, Fig. 2 is a diagram showing an example of the mounting type of a lean sensor, Fig. 3 is a diagram showing a conventional two-terminal heater, and Fig. 4 is a control circuit diagram for controlling a two-terminal heater, Fig. 5(a)r
/'i A diagram showing a four-terminal type heater according to the present invention, Φ) is a heater control circuit diagram according to the present invention that controls a four-terminal type heater, and Fig. 6 is a diagram showing the ambient temperature dependence of lean sensor characteristics.
FIG. 7 is a diagram showing the influence of heater temperature control accuracy on lean sensor characteristics, and FIG. 8 is a diagram showing an application example of a control circuit for a four-terminal heater. a... Heating part, b, c... Lead part, d, e...
Detection lead section, VB...Power supply voltage, Tr...Transistor, Rs...Resistor, 101-104...Resistor, 105...Differential amplifier, Gil I device. #1 Atrocities 2 Diagram 3 A Granny 4 Hard Sac S 圀(L) End Otsu Ward 1 Item k degree T C'Cノ

Claims (1)

【特許請求の範囲】 1、 ヒータの温度制御精度向上を図るため特別に設け
られた温度検出用リード部を有するヒータとこれを制御
する手段とから成るヒータ温度制御回路において、ヒー
タに温度設定用抵抗器を直列に配し、両者の電圧降下が
同値となるようフィードバック制御させる簡単な制御回
路構成でヒータの温度制御精度の向上が図れることを特
徴とする空燃比センサ用ヒータ温度制御回路。 2、特許請求の範囲第1項において、温度設定用抵抗器
での電圧降下の検出感度t−−整可能としたことで、前
記抵抗器の発熱を防止し、ヒータ、パワートランジスタ
以外でのパワーロスを除去でき、小型化、低コスト化も
図れることを特徴とする空燃比センサ用ヒータ温度制御
回路。 3、特許請求の範囲第1項において、パルス加熱方式に
よるヒータ制御時でも加熱部の信号を検出する検出回路
を付加することで高精度の温度制御が実現出来るととも
にヒータ以外でのパワーロスをなくすことができること
を特徴とした空燃比センサ用ヒータ温度制御回路。
[Claims] 1. In a heater temperature control circuit consisting of a heater having a temperature detection lead part specially provided in order to improve temperature control accuracy of the heater and means for controlling the heater, the heater has a temperature setting function. A heater temperature control circuit for an air-fuel ratio sensor, characterized in that the accuracy of temperature control of the heater can be improved with a simple control circuit configuration in which resistors are arranged in series and feedback control is performed so that the voltage drop between the two is the same value. 2. In claim 1, by making it possible to adjust the detection sensitivity t of the voltage drop in the temperature setting resistor, heat generation in the resistor is prevented, and power loss in areas other than the heater and the power transistor is reduced. 1. A heater temperature control circuit for an air-fuel ratio sensor, which is characterized by being able to eliminate this, and to achieve miniaturization and cost reduction. 3. In claim 1, by adding a detection circuit that detects the signal of the heating part even when controlling the heater using a pulse heating method, high-precision temperature control can be realized and power loss other than the heater can be eliminated. A heater temperature control circuit for an air-fuel ratio sensor.
JP59116466A 1984-06-08 1984-06-08 Heater temperature control circuit for air-fuel ratio sensor Pending JPS60260842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59116466A JPS60260842A (en) 1984-06-08 1984-06-08 Heater temperature control circuit for air-fuel ratio sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59116466A JPS60260842A (en) 1984-06-08 1984-06-08 Heater temperature control circuit for air-fuel ratio sensor

Publications (1)

Publication Number Publication Date
JPS60260842A true JPS60260842A (en) 1985-12-24

Family

ID=14687797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59116466A Pending JPS60260842A (en) 1984-06-08 1984-06-08 Heater temperature control circuit for air-fuel ratio sensor

Country Status (1)

Country Link
JP (1) JPS60260842A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63275949A (en) * 1987-05-08 1988-11-14 Ngk Insulators Ltd Electrochemical apparatus
JPH0559303U (en) * 1992-01-16 1993-08-06 株式会社リケン Gas detector
JP2003322631A (en) * 2002-04-30 2003-11-14 Ngk Spark Plug Co Ltd Oxygen sensor
JP2004085493A (en) * 2002-08-28 2004-03-18 Kyocera Corp Oxygen sensor element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63275949A (en) * 1987-05-08 1988-11-14 Ngk Insulators Ltd Electrochemical apparatus
JPH0559303U (en) * 1992-01-16 1993-08-06 株式会社リケン Gas detector
JP2003322631A (en) * 2002-04-30 2003-11-14 Ngk Spark Plug Co Ltd Oxygen sensor
JP2004085493A (en) * 2002-08-28 2004-03-18 Kyocera Corp Oxygen sensor element

Similar Documents

Publication Publication Date Title
US4399697A (en) Gas flow measuring apparatus
JP2669699B2 (en) Air-fuel ratio sensor
US4609453A (en) Engine air/fuel ratio sensing device
US4769124A (en) Oxygen concentration detection device having a pair of oxygen pump units with a simplified construction
US4357830A (en) Gas flow measuring apparatus
US4796587A (en) Air/fuel ratio control system for internal combustion engine
JP2505459B2 (en) Adjustment method of oxygen concentration measuring device
US4471655A (en) Gas flow rate measuring apparatus
KR960006308B1 (en) Thermosetting flowmeter
US6763697B2 (en) Method and device for operating a linear lambda probe
JPS6140924B2 (en)
JPS60260842A (en) Heater temperature control circuit for air-fuel ratio sensor
JPH0133763B2 (en)
JPH08507376A (en) Current replication circuit and oxygen monitoring in exhaust
JP2019070552A (en) Sensor control device and sensor unit
JPH0680426B2 (en) Air-fuel ratio detector
CN111458384A (en) Catalytic combustion type gas sensor
JPH07117527B2 (en) Oxygen concentration detector
JPH10148557A (en) Flow rate sensor circuit, and method for adjusting its sensor output
JP3622619B2 (en) Element resistance detector for oxygen concentration sensor
JP2000249683A (en) Gas-detecting apparatus
JPH07117526B2 (en) Oxygen concentration detector
JP2774100B2 (en) Oxygen concentration detector
JP2573033B2 (en) Water level detector
JPS6013446B2 (en) Gas flow measuring device