JPS6198940A - Air/fuel ratio control of engine - Google Patents

Air/fuel ratio control of engine

Info

Publication number
JPS6198940A
JPS6198940A JP22088884A JP22088884A JPS6198940A JP S6198940 A JPS6198940 A JP S6198940A JP 22088884 A JP22088884 A JP 22088884A JP 22088884 A JP22088884 A JP 22088884A JP S6198940 A JPS6198940 A JP S6198940A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
engine
light load
economic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22088884A
Other languages
Japanese (ja)
Other versions
JPH0341672B2 (en
Inventor
Koichi Kobayashi
弘一 小林
Yoji Sato
洋司 佐藤
Kenichi Inoguchi
猪口 憲一
Yoichi Iwakura
洋一 岩倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisan Industry Co Ltd
Daihatsu Motor Co Ltd
Original Assignee
Aisan Industry Co Ltd
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisan Industry Co Ltd, Daihatsu Motor Co Ltd filed Critical Aisan Industry Co Ltd
Priority to JP22088884A priority Critical patent/JPS6198940A/en
Publication of JPS6198940A publication Critical patent/JPS6198940A/en
Publication of JPH0341672B2 publication Critical patent/JPH0341672B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1486Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor with correction for particular operating conditions
    • F02D41/1488Inhibiting the regulation
    • F02D41/1491Replacing of the control value by a mean value
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of The Air-Fuel Ratio Of Carburetors (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

PURPOSE:To achieve highly accurate control, in economic air/fuel ratio control under light load operation, by calculating the theoretical air/fuel ratio which will be a referential level in economic air/fuel ratio control on the basis of average air/fuel ratio to be obtained when controlling under light load operating region with theoretical air/fuel ratio. CONSTITUTION:When controlling an air-bleed control valve 25 through a step motor 26 thus to control to an economic air/fuel ratio under light load operation, ECU59 will first decide whether the cooling water temperature has exceeded over predetermined level corresponding with completion of warming operation. Upon decision of YES, it is decided whether the car is operating under light load and if the answer of YES, it is decided whether it is within setting cooling water temperature after completion of warming to normal travel. Upon decision of YES, it is feedback controlled to theoretical air/fuel ratio while to learn the average level of moving position of step motor 26 and upon exceeding of said setting cooling water temperature, air/fuel ratio is controlled on the basis of the economic air/fuel ratio to be set on the basis of said average value.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は車両の軽負荷運転時において混合気の空燃比を
経済空燃比に制御するエンジンの空燃比制御方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an engine air-fuel ratio control method for controlling the air-fuel ratio of an air-fuel mixture to an economical air-fuel ratio during light load operation of a vehicle.

(従来の技術) 従来、混合気の空燃比を車両の軽負荷運転時において経
済空燃比で制御するに際して、該経済空燃比はエンジン
を理論空燃比で制611した場合のJアープリードコン
トロールバルブのアクチュエータ移動位置を基準にして
設定しているが、この場合において理論空燃比に対応し
たエアーブリードコントロールバルブのアクチュエータ
移動位置【;L第2図にアクチュエータのステップ位置
として示すように車両の軽負荷域、中負荷域、高0伺域
によって大幅に異なる他、エンジンの経口1変化、気化
器の性能のバラツキ等によっても大幅に異なることから
、経済空燃比の設定値も一定l!ヂ、従って第2図の場
合において高負荷域での理論空燃比を基準にして一定定
数を加えて経済空燃比を設定した場合には燃″f1特性
は向上ヒず、反面、軽く1荷域での理論空燃比を基準に
して一定定数を加えて経済空燃比を設定した場合には猫
背特性は向上するものの空燃比が稀薄過ぎてエンストす
るおそれがある等の欠点があった。
(Prior Art) Conventionally, when controlling the air-fuel ratio of the air-fuel mixture at an economical air-fuel ratio during light load operation of a vehicle, the economic air-fuel ratio is determined by controlling the air-fuel ratio of the J-arp reed control valve when the engine is controlled at the stoichiometric air-fuel ratio. The actuator movement position is set as a reference, but in this case, the actuator movement position of the air bleed control valve corresponding to the stoichiometric air-fuel ratio [ ; The set value of the economic air-fuel ratio is also constant because it varies greatly depending on the medium load range and high zero load range, as well as due to changes in engine performance, variations in carburetor performance, etc. Therefore, in the case of Figure 2, if the economic air-fuel ratio is set by adding a certain constant to the stoichiometric air-fuel ratio in the high load range, the fuel f1 characteristics will not improve, but on the other hand, it will slightly improve the 1 load range. If the economic air-fuel ratio is set by adding a certain constant to the stoichiometric air-fuel ratio, although the hunched back characteristic is improved, there are drawbacks such as the air-fuel ratio being too lean and the engine stalling.

(発明が解決しようとする問題点) 本発明は車両の軽負荷運転中における空燃比を理論空燃
比よりも大きい経済空燃比とするとともに、該経済空燃
比を経時変化、気化器の特性のバラツキ等に影響される
ことなく高精度に制御することにある。
(Problems to be Solved by the Invention) The present invention makes the air-fuel ratio during light load operation of a vehicle an economical air-fuel ratio that is larger than the stoichiometric air-fuel ratio, and also changes the economic air-fuel ratio from changes over time and from variations in characteristics of the carburetor. The aim is to control with high precision without being influenced by

(問題点を解決するための手段) 本発明は第1図に示すように、エンジン運転状態に対応
した各種センサからの信号1こ基づいたエアーブリード
コントロールバルブのアクチュエータ駆動によるブリー
ドエア量の制御によって車両の軽負荷運転時における混
合気の空燃比を経済空燃比に制御するに際して、ステッ
プ801でエンジンの冷却水温度が暖機運転終了に対応
した例えば60°Cを越えたか否かを判別し、60℃を
越えた場合においてステップSO2で車両が軽負荷運転
状態か否かを判別し、軽負荷域でない中あるいは高負荷
域での車両運転状態においてステップS03で混合気を
各負荷域に対応した空燃比でフィードバック制御し、軽
負荷運転状態においてステップSO4で暖機運転を終了
してから通常走行に至るまでの安定したエンジン運転状
態、例えばエンジン冷却水温度が75℃以内か否かを判
別し、75℃以内において、ステップSO5でエンジン
を理論空燃比でフィードバック制御するとともに該理論
空燃比でのフィードバック制御途上の軽負荷運転時にお
けるエアーブリードコン1− o−ルバルブのアクチュ
エータ移動位置の平均値を学習し、75℃を越えた場合
においてステップS06で該゛学習されたアクチュエー
タ移動位置の平均値に基づいて軽負荷運転時における経
済空燃比を設定するとともに該経済空燃比でエンジンを
制iするエンジンの空燃比制御方法にある。
(Means for Solving the Problems) As shown in FIG. 1, the present invention controls the amount of bleed air by driving an actuator of an air bleed control valve based on signals from various sensors corresponding to engine operating conditions. When controlling the air-fuel ratio of the air-fuel mixture to an economical air-fuel ratio during light load operation of the vehicle, it is determined in step 801 whether the engine cooling water temperature has exceeded, for example, 60° C., which corresponds to the end of warm-up operation; If the temperature exceeds 60°C, it is determined in step SO2 whether the vehicle is operating under a light load or not, and when the vehicle is operating in a medium or high load range other than a light load range, the air-fuel mixture is adjusted to correspond to each load range in step S03. Feedback control is performed using the air-fuel ratio, and it is determined whether the engine is in a stable engine operating state from the end of warm-up operation in step SO4 to normal driving in a light load operating state, for example, whether the engine cooling water temperature is within 75 degrees Celsius. , within 75°C, the engine is feedback-controlled at the stoichiometric air-fuel ratio in step SO5, and the average value of the actuator movement position of the air bleed control valve 1 during light load operation in the middle of feedback control at the stoichiometric air-fuel ratio is calculated. and when the temperature exceeds 75°C, in step S06, the engine sets an economical air-fuel ratio during light load operation based on the average value of the learned actuator movement position, and controls the engine at the economical air-fuel ratio. In the air-fuel ratio control method.

〈実施例) 次に本発明の一実施例の構成を第3図〜第6図によって
説明する。
<Embodiment> Next, the configuration of an embodiment of the present invention will be described with reference to FIGS. 3 to 6.

エンジンに気化器2からの燃料を供給する吸気通路3に
はアクセルペダルの踏込量に対応して開くスロットルバ
ルブ4が図示省略スプリングでバルブ閉方向に付勢され
た状態で取付けられ、スロットルバルブ4のバルブ閉位
置はスロットルバルブ4の@If 5に固着された操作
レバー6がアクチュエータ7、この場合、可逆運転可能
なりCモータ8とギヤ列9を介してネジ棒10を正・逆
回転させて円周方向移動が規制されたネジ棒10とネジ
嵌合した出力l11111を前後動させるアクチュエー
タ7先端のタッチヘッド12に当接することによって定
まるとともに、タッチヘッド12に対する操作レバー6
の当接はこの当接でスプリング13の付勢力に抗して出
力軸11とともにファイナルギヤ14が僅かに後退する
ことによるアイドルスイッチ15のオンによって検出さ
れ、出力軸110ストロークエンドは出力軸11上のド
ッグ16がリミットスイッチ17のレバー18に当接す
ることによって検出される。
A throttle valve 4 that opens in response to the amount of depression of the accelerator pedal is attached to an intake passage 3 that supplies fuel from the carburetor 2 to the engine, and is biased in the valve closing direction by a spring (not shown). The valve closed position is determined by the actuator 7, in which the operating lever 6 fixed to @If 5 of the throttle valve 4 rotates the threaded rod 10 in the forward and reverse directions via the C motor 8 and the gear train 9, which is capable of reversible operation. The movement in the circumferential direction is determined by contact with the touch head 12 at the tip of the actuator 7 that moves the output l11111, which is fitted with a threaded rod 10 and screwed back and forth, in the circumferential direction, and the operation lever 6 for the touch head 12.
This contact is detected when the idle switch 15 is turned on due to the final gear 14 moving slightly backward together with the output shaft 11 against the biasing force of the spring 13, and the stroke end of the output shaft 110 is detected when the output shaft 110 reaches the top of the output shaft 11. is detected when the dog 16 contacts the lever 18 of the limit switch 17.

この気化器2には、吸気通路3の小ベンチユリ19に形
成されたメインノズル20に対する燃J’F+供給をノ
ーンジェット21位置でカッ1−するためのメインカッ
ト電磁弁22と、吸気通路3のスロットルバルブ4付近
に形成されたス[コーボート23に対する燃料供給をカ
ットするためのスロー7Jツト電磁弁24と、メイン及
びスロー系に対するブリードエア調整用エアーブリード
コントロールバルブ25、この場合、電気アクチュエー
タのステッパモータ26を介してナツト体27を正・逆
回転させて円周方向移動が規制されたネジ棒28ととも
にニードル弁29を前後動させることによって大気孔3
0から各エア通路31.32をとおってメイン系及びス
ロー県名燃料通路33.34に供給されるブリードエア
量を調整するエアーブリードコントロールバルブ25ど
、エンジン始動及び加速時等においてエンジンに対づる
燃ね供給量を増大させる補助燃料ポンプ35、この場合
、ソレノイドコイル36のオン・オフ作動とスプリング
37の付勢力とによるプランジ1738を介してのピス
トン39の往復動によって気化器2の)ロー1−室40
からの燃料を吸入側チェックバルブ41をとおって−H
シリンダ室42に吸入した後、吐出側チェックバルブ4
3から大ベンチュリ44上方位置に形成された補助ノズ
ル45をとおって吸気通路3に供給する補助燃料ポンプ
35とのそれぞれが取付けられている。
This carburetor 2 includes a main cut solenoid valve 22 for cutting the fuel J'F+ supply to the main nozzle 20 formed in the small bench lily 19 of the intake passage 3 at the non-jet 21 position, and A slow solenoid valve 24 for cutting the fuel supply to the squaw boat 23 formed near the throttle valve 4, and an air bleed control valve 25 for adjusting bleed air for the main and slow systems, in this case an electric actuator stepper. By rotating the nut body 27 forward and backward via the motor 26 and moving the needle valve 29 back and forth together with the threaded rod 28 whose movement in the circumferential direction is regulated, the air hole 3 is opened.
The air bleed control valve 25 adjusts the amount of bleed air supplied from 0 through each air passage 31.32 to the main system and slow fuel passage 33.34, etc. The auxiliary fuel pump 35 increases the amount of fuel supplied, in this case, the low 1 of the carburetor 2 by the reciprocating movement of the piston 39 via the plunger 1738 due to the on/off operation of the solenoid coil 36 and the biasing force of the spring 37. -Room 40
-H through the intake side check valve 41.
After suction into the cylinder chamber 42, the discharge side check valve 4
3 to an auxiliary fuel pump 35 that supplies the air to the intake passage 3 through an auxiliary nozzle 45 formed above the large venturi 44.

このように構成された気化器2において、アクチュエー
タ7のDCモータ8と、各スイッチ15.17と、燃料
カット用各電磁弁22.24と、エアブリードコントロ
ールバルブ25のステッパモータ26と、補助燃料ポン
プ35のソレノイドコイル36と、気化器2に取付けら
れてスロットルバルブ4の開度に対応した出力を発生さ
せるスロットル開度センサ46と、エンジンのウォータ
ジャケットに取付けられた水温センサ47と、イグニッ
ションコイル等のエンジン回転数センナ48と、車両の
速度に対応した出力を発生させる車速センサ49と、排
気通路に取付1ノられて酸素濃度に対応した出力を発生
させるo2センサ50と、クラッチオフとニュートラル
状態のときに出力を変化させるクラッチ・ニュートラル
検出センリ51と、サイドランプオン時に出力を発生さ
せるサイドランプスイッチ52と、エコノミ及びダイア
グ時に点灯するエコノミ・ダイアグランプ53ど、エア
コンスイッチ54と、スタータスイッチ55と、イグニ
ッションキースイッチ56と、オルタネータ制御回路5
7とのそれぞれは、バッテリ58からの電源供給がイグ
ニッションキースイッチ56によってオン・オフ制御さ
れる通称ECUのエンジン制御用電気制御回路59に接
続されている。
In the carburetor 2 configured in this way, the DC motor 8 of the actuator 7, each switch 15.17, each fuel cut solenoid valve 22.24, the stepper motor 26 of the air bleed control valve 25, and the auxiliary fuel A solenoid coil 36 of the pump 35, a throttle opening sensor 46 that is attached to the carburetor 2 and generates an output corresponding to the opening of the throttle valve 4, a water temperature sensor 47 that is attached to the water jacket of the engine, and an ignition coil. an engine speed sensor 48 such as the engine speed sensor 48, a vehicle speed sensor 49 that generates an output corresponding to the speed of the vehicle, an O2 sensor 50 that is attached to the exhaust passage and generates an output corresponding to the oxygen concentration, and a clutch off and neutral sensor. A clutch/neutral detection sensor 51 that changes the output when the side lamp is on, a side lamp switch 52 that generates an output when the side lamp is on, an economy/diagnosis lamp 53 that lights up during economy and diagnosis, an air conditioner switch 54, and a starter switch. 55, ignition key switch 56, and alternator control circuit 5
7 are connected to an electric control circuit 59 for engine control, commonly known as an ECU, in which power supply from a battery 58 is controlled on and off by an ignition key switch 56.

次に第4図は電気制御回路5つの具体例であって、記憶
回路ROMのプログラムに従って制御されるマイクロコ
ンピュータCPUには、波形整形器60を介してエンジ
ン回転数センサ48からのエンジン回転数に対応した周
波数のパルス信号が入力される他、水温センサ47から
のエンジン冷却水温度に対応したアナログ信号とスロツ
1−ル聞度センサ46からのスロットルバルブ4の開度
に対応したアナログ信号と02センサ50からの酸素濃
度に対応したアナログ信号とのそれぞれがA/D変換器
61を介してデジタル信号に変換された状態で入力ポー
トロ2を介して入力され、かつ、アイドルスイッチ15
とクラ°ツチ・ニュートラル検出スイッチ57とエアコ
ンスイッチ54とパルス出力の車速センサ49とイグニ
ッションキースイッチ56とスタータスイッチ55とサ
イドランプスイッチ52とのそれぞれからのオン・オフ
信号が入力ポートロ3を介して入力され、又、マイクロ
コンピュータCPUの出力ポートロ4には、各駆動回路
65〜6つを介してアクチュエータ7のDCモータ8と
補助燃料ポンプ35のソレノイドコイル36とメインカ
ットz 61弁22とスローカット電磁弁24とオルタ
ネータ制御回路57とのそれぞれが接続されている他、
出力ポードア0にtよ駆動回路71を介してエアーブリ
ードコントロールバルブ25のステッパモータ26が接
続されている。
Next, FIG. 4 shows a specific example of five electric control circuits, in which the microcomputer CPU, which is controlled according to the program in the storage circuit ROM, receives the engine speed from the engine speed sensor 48 via the waveform shaper 60. In addition to inputting a pulse signal with a corresponding frequency, an analog signal corresponding to the engine cooling water temperature from the water temperature sensor 47 and an analog signal corresponding to the opening degree of the throttle valve 4 from the throttle level sensor 46 are input. The analog signal corresponding to the oxygen concentration from the sensor 50 is inputted via the input port 2 after being converted into a digital signal via the A/D converter 61, and the idle switch 15
On/off signals from the clutch/neutral detection switch 57, air conditioner switch 54, pulse output vehicle speed sensor 49, ignition key switch 56, starter switch 55, and side lamp switch 52 are sent via the input port 3. In addition, the output port 4 of the microcomputer CPU is supplied with the DC motor 8 of the actuator 7, the solenoid coil 36 of the auxiliary fuel pump 35, the main cut valve 22, and the slow cut valve 22 of the auxiliary fuel pump 35 through each drive circuit 65 to 6. In addition to being connected to the solenoid valve 24 and the alternator control circuit 57,
A stepper motor 26 of an air bleed control valve 25 is connected to the output port door 0 via a drive circuit 71.

次に、本実施例の作用について説明する。Next, the operation of this embodiment will be explained.

このように構成されたエンジン制御装置、この場合、特
に電子制御チョークレス気化器のエンジン制御装置にお
いて、エンジンに供給される混合気の空燃比は第5図の
フローチャートにより制御される。
In the engine control device configured as described above, in this case, in particular, the engine control device for an electronically controlled chokeless carburetor, the air-fuel ratio of the air-fuel mixture supplied to the engine is controlled according to the flowchart shown in FIG.

即ち、エンジン運転状態に対応した各秤センサからの信
号に基づいたエアーブリードコントロールバルブ25の
アクチュエータ、この場合、ステッパモータ26の駆動
によるブリードエフ1Bの11制御によって車両の軽負
荷運転時にJ3 L−Jる混合気の空燃比を経済空燃比
に制御するに際して、ステップ101でエンジンの冷却
水温度がWAIR運転終了に対応した例えば60℃を越
えたか否かを判別し、60℃を越えた場合においてステ
ップ102で車両が軽負荷運転状態か否かを判別し、軽
負荷域でない中あるいは高負荷域での車両運転状態にお
いてステップ103で混合気を各負伺域に対応した空燃
比の例えば理論空燃比でフィードバック制vIlし、軽
負荷運転状態においてステップ゛104で暖機運転を終
了してから通h1走行に至るまでのエンジン冷却水温度
の任意の設定温度の例えば75℃以内か否かを判別し、
任意の設定温度範囲内において、ステップ105で1ン
ジンを理論空燃比でフィードバック制御するとともに、
ステップ106で該理論空燃比でのフィードバック制御
途上の軽負荷運転時におけるエアーブリードコントロー
ルバルブ25のステッパモータ268動位置の平均値を
学習し、任意の設定温度範囲を越えた場合において、ス
テップ107で該学習されたステッパモータ25移動位
置の平均値に基づいて軽負荷運転時における経済空燃比
を設定、例えば第6図に示すように学習された平均値に
定数のαを加算した経済空燃比を設定するとともにエン
ジンに供給される混合気の空燃比を該経済空燃比で制御
する。
That is, the actuator of the air bleed control valve 25 is controlled based on the signals from each scale sensor corresponding to the engine operating state, in this case, the bleed F 1B is controlled by the stepper motor 26 during light load operation of the vehicle. When controlling the air-fuel ratio of the air-fuel mixture to an economical air-fuel ratio, it is determined in step 101 whether the engine cooling water temperature has exceeded, for example, 60°C, which corresponds to the end of WAIR operation, and if it has exceeded 60°C, In step 102, it is determined whether or not the vehicle is in a light load operating state, and in step 103, when the vehicle is operating in a medium or high load range other than a light load range, the air-fuel mixture is adjusted to an air-fuel ratio corresponding to each load range, e.g. Feedback control is performed based on the fuel ratio, and it is determined whether or not the engine cooling water temperature is within an arbitrary set temperature, for example, 75°C, from the end of warm-up operation in step 104 to the first running in the light load operating state. death,
Within an arbitrary set temperature range, one engine is feedback-controlled at the stoichiometric air-fuel ratio in step 105, and
In step 106, the average value of the stepper motor 268 dynamic position of the air bleed control valve 25 during light load operation during feedback control at the stoichiometric air-fuel ratio is learned, and if the temperature exceeds an arbitrary set temperature range, in step 107 The economic air-fuel ratio during light load operation is set based on the learned average value of the movement position of the stepper motor 25. For example, as shown in FIG. 6, the economic air-fuel ratio is set by adding a constant α to the learned average value. At the same time, the air-fuel ratio of the air-fuel mixture supplied to the engine is controlled using the economic air-fuel ratio.

なお、本実施例においては暖機運転終了後の安定したエ
ンジン運転状態検出にエンジンの冷却水温を用いたが、
暖機運転終了後の一定時間で検出することもできる。
In addition, in this example, the engine cooling water temperature was used to detect the stable engine operating state after the warm-up operation was completed.
It can also be detected at a certain time after the warm-up operation is completed.

(発明の効果) 本発明は車両の軽負荷運転中における混合気の空燃比を
理論空燃比よりも大きい経済空燃比にするに際して、該
経済空燃比制御の基準になる理論空燃比を、制御する軽
負荷運転域を理論空燃比で制御した場合に得られる空燃
比の平均1m t’ 忰出することによって、該経済空
燃比を経時変化、気化器の特性のバラツキ等に影響され
ることなく高精度に安定制御することができる効果があ
る。
(Effects of the Invention) The present invention controls the stoichiometric air-fuel ratio, which is a reference for economic air-fuel ratio control, when the air-fuel ratio of the air-fuel mixture is made to be an economical air-fuel ratio that is larger than the stoichiometric air-fuel ratio during light load operation of a vehicle. By increasing the average air-fuel ratio by 1m t' which is obtained when controlling the light-load operating range using the stoichiometric air-fuel ratio, the economic air-fuel ratio can be increased without being affected by changes over time, variations in carburetor characteristics, etc. This has the effect of stably controlling accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を明示するフローチャート図、第
2図は気化器の空燃比特性図、第3図は本発明の一実施
例の説明図、第4図はその電気回路図、第5図はそのフ
ローチャー1−図、第6図はその動作特性図である。 S01〜806・・・ステップ
Fig. 1 is a flowchart clearly showing the method of the present invention, Fig. 2 is an air-fuel ratio characteristic diagram of a carburetor, Fig. 3 is an explanatory diagram of an embodiment of the present invention, Fig. 4 is an electric circuit diagram thereof, and Fig. 4 is an electric circuit diagram thereof. FIG. 5 is a flowchart 1-diagram, and FIG. 6 is a diagram showing its operating characteristics. S01~806...Step

Claims (1)

【特許請求の範囲】[Claims] エンジン運転状態に対応した各種センサからの信号に基
づいたエアーブリードコントロールバルブのアクチュエ
ータ駆動によるブリードエア量の制御によって車両の軽
負荷運転時における混合気の空燃比を経済空燃比に制御
するに際して、暖機運転終了後にエンジンを理論空燃比
でフィードバック制御するとともに、該理論空燃比での
フィードバック制御途上の軽負荷運転時におけるエアー
ブリードコントロールバルブのアクチュエータ移動位置
の平均値を学習し、該学習されたアクチュエータ移動位
置の平均値に基づいて軽負荷運転時における経済空燃比
を設定し、かつ、該経済空燃比設定後の軽負荷運転時に
おいてエンジンを前記経済空燃比でエンジンを制御する
ことを特徴とするエンジンの空燃比制御方法。
When controlling the air-fuel ratio of the air-fuel mixture to an economical air-fuel ratio during light load operation of the vehicle by controlling the amount of bleed air by driving the actuator of the air bleed control valve based on signals from various sensors corresponding to the engine operating state, After the machine operation is completed, the engine is feedback-controlled at the stoichiometric air-fuel ratio, and the average value of the actuator movement position of the air bleed control valve during light-load operation during feedback control at the stoichiometric air-fuel ratio is learned, and the learned actuator is The present invention is characterized by setting an economic air-fuel ratio during light load operation based on the average value of the moving positions, and controlling the engine at the economic air-fuel ratio during light load operation after setting the economic air-fuel ratio. Engine air-fuel ratio control method.
JP22088884A 1984-10-20 1984-10-20 Air/fuel ratio control of engine Granted JPS6198940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22088884A JPS6198940A (en) 1984-10-20 1984-10-20 Air/fuel ratio control of engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22088884A JPS6198940A (en) 1984-10-20 1984-10-20 Air/fuel ratio control of engine

Publications (2)

Publication Number Publication Date
JPS6198940A true JPS6198940A (en) 1986-05-17
JPH0341672B2 JPH0341672B2 (en) 1991-06-24

Family

ID=16758105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22088884A Granted JPS6198940A (en) 1984-10-20 1984-10-20 Air/fuel ratio control of engine

Country Status (1)

Country Link
JP (1) JPS6198940A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108202738A (en) * 2016-12-16 2018-06-26 现代自动车株式会社 The method that hybrid vehicle is controlled in the case where MHSG transmission belts slide
US10752088B2 (en) 2016-12-09 2020-08-25 Tesla, Inc. Infotainment system with air-vent control

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59224451A (en) * 1983-06-01 1984-12-17 Daihatsu Motor Co Ltd Air fuel ratio control system for carburetor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59224451A (en) * 1983-06-01 1984-12-17 Daihatsu Motor Co Ltd Air fuel ratio control system for carburetor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10752088B2 (en) 2016-12-09 2020-08-25 Tesla, Inc. Infotainment system with air-vent control
CN108202738A (en) * 2016-12-16 2018-06-26 现代自动车株式会社 The method that hybrid vehicle is controlled in the case where MHSG transmission belts slide

Also Published As

Publication number Publication date
JPH0341672B2 (en) 1991-06-24

Similar Documents

Publication Publication Date Title
EP0239095B1 (en) A control system and method for internal combustion engines
JP3603398B2 (en) Control device for internal combustion engine
US4721082A (en) Method of controlling an air/fuel ratio of a vehicle mounted internal combustion engine
US4747386A (en) Method and apparatus for augmenting fuel injection on hot restart of engine
US4375797A (en) Air/fuel ratio feedback control system for internal combustion engines
US4753209A (en) Air-fuel ratio control system for internal combustion engines capable of controlling air-fuel ratio in accordance with degree of warming-up of the engines
US4401080A (en) Air/fuel ratio control system for internal combustion engines, having air/fuel ratio control function at engine acceleration
JPS6198940A (en) Air/fuel ratio control of engine
RU2000115304A (en) METHOD AND DEVICE FOR CONTROL OF OPERATION AND FOR CONTROL OF INTERNAL COMBUSTION ENGINE
US4630589A (en) Exhaust gas recirculation method for internal combustion engines
US4558677A (en) Air-fuel ratio control system
KR20010050302A (en) Method for operating of engine
JPH08144867A (en) Exhaust gas recirculating system for diesel engine
JPS6176735A (en) Idle rotating number control method of engine
JPS6453041A (en) Air-fuel ratio controller for internal combustion engine
JPS6198943A (en) Engine idle rotation control
JP2021099068A (en) Engine control device
JPS6176737A (en) Method of controlling idle rotational speed of engine
JPS6198944A (en) Engine idle rotation control
JPS61261648A (en) Method for controlling air-fuel ratio of engine
JPH0310359Y2 (en)
JPH0324849Y2 (en)
JPS56132428A (en) Controller of intake air amount to internal combustion engine
JPS6221735Y2 (en)
JPS61223249A (en) Electric controller for diesel engine