JPS6197630A - Logical element of optical fiber - Google Patents

Logical element of optical fiber

Info

Publication number
JPS6197630A
JPS6197630A JP59217281A JP21728184A JPS6197630A JP S6197630 A JPS6197630 A JP S6197630A JP 59217281 A JP59217281 A JP 59217281A JP 21728184 A JP21728184 A JP 21728184A JP S6197630 A JPS6197630 A JP S6197630A
Authority
JP
Japan
Prior art keywords
optical
fiber
optical fiber
analyzer
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59217281A
Other languages
Japanese (ja)
Other versions
JPS626212B2 (en
Inventor
Yasuro Kimura
康郎 木村
Kenichi Kitayama
研一 北山
Yoshiyuki Aomi
青海 恵之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59217281A priority Critical patent/JPS6197630A/en
Publication of JPS6197630A publication Critical patent/JPS6197630A/en
Publication of JPS626212B2 publication Critical patent/JPS626212B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an optical logical element which is operated by an optical signal only and high in responding speed and reliability, by synthesizing two optical pulses and making the result incident to a polarized light maintaining optical fiber at a plane of polarization angle of other than 45 deg. from the main axis of the fiber, then, detecting the outgoing light by means of an analyzing element. CONSTITUTION:Pulse light coming out from a light source 11 are divided into two parts by means of a half mirror 4 and the one part reflected by the mirror 4 is passed through an attenuator 5 and synthesized with the other part transmitted through the mirror 4 at another half mirror 4. Then the plane of polarization of the optical pulse is adjusted to the main axis of the double refraction of an optical fiber 7 (at an angle of other than 45 deg. from the main axis) and the optical pulse is made incident to the polarized light maintaining optical fiber 7 after the optical pulse is stopped by an objective lens 6. Outgoing pulses are made incident to an analyzer 8 and, when the input optical pulse to the fiber 7 is weak, transmitted light is extinguished.. When the input optical pulse is strong, the plane of polarization is turned in the fiber 7 and the outgoing lights pass through the analyzer 8 and are detected by a photodetector 10. Therefore, AND operation (a monochromator 9 is not required) is realized.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光ファイバ中で生じる非線形光学効果を利用し
て、光入力−光出力の論理演算を行わせる光論理演算用
ファイバ素子に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a fiber element for optical logic operations that performs optical input-optical output logic operations using nonlinear optical effects occurring in optical fibers. be.

(従来の技術) 従来この種の素子はファプリペロー共振器を使用して、
共振器内部に可飽和吸収特性あるいは光力−(Kerr
 )効果をも持つ媒質を挿入してそこで得られる光双安
定動作を利用して論理演算を行わせていた。
(Prior art) Conventionally, this type of element uses a Farpry-Perot resonator,
Saturable absorption characteristics or optical power inside the resonator (Kerr
) By inserting a medium that also has an effect, logical operations were performed using the optical bistable operation obtained there.

(発明が解決しようとする問題点) しかしファプリペロー共振器を使用するため、共振器長
の選択、ミラーの位置合せに高精度が要求され、また共
振器自体もサイズが大きくその取り扱いは不便であると
いう欠点をもっていた。
(Problem to be solved by the invention) However, since the Fabry-Perot resonator is used, high precision is required in selecting the resonator length and aligning the mirror, and the resonator itself is large and inconvenient to handle. It had a drawback.

(問題点を解決するための手段) 本発明のひとつの特徴は、偏波保持光ファイバと、二つ
の光入力端と、該入力端からの入射パルス光を合波する
手段と、合波された入射パルス光を直線偏光として、前
記偏波保持光ファイバに該偏波保持ファイバの主軸と妬
、。以外の角度で光学的に結合する手段と、該偏波保持
光ファイバからの出射光を検光する検光素子と、該検光
素子からの出力をとり出す出力端からなる光ファイバ論
理素子にある。
(Means for Solving the Problems) One feature of the present invention is that a polarization maintaining optical fiber, two optical input ends, a means for multiplexing input pulse light from the input ends, and a multiplexing optical fiber are provided. The input pulsed light is linearly polarized, and the main axis of the polarization-maintaining optical fiber is connected to the polarization-maintaining optical fiber. an optical fiber logic element consisting of a means for optically coupling at an angle other than that of the polarization maintaining optical fiber, an analyzer for analyzing the light emitted from the polarization maintaining optical fiber, and an output end for taking out the output from the analyzer. be.

(作 用) 上記構成により、光力−効果を利用して、論理積、論理
和、否定等の論理演算を行うことができ、高速動作で高
信頼度の光論理素子が得られる。
(Function) With the above configuration, logical operations such as logical product, logical sum, and negation can be performed using the optical force effect, and an optical logic element with high speed operation and high reliability can be obtained.

(実施例) 第1図は本発明の光ファイバ論理素子の動作を確認する
ために行った実験の構成図であり単一の光源1)からの
パルス光をハーフミラ−4で2つに分離し再び合波して
光ファイバに入射している。
(Example) Figure 1 is a block diagram of an experiment conducted to confirm the operation of the optical fiber logic element of the present invention. Pulse light from a single light source 1) is separated into two by a half mirror 4. It is combined again and input into the optical fiber.

1は光入力パルス■、2は先入力パルス■、3はλ/2
板位相子、4はハーフミラ−15は減衰器、6は対物レ
ンズ、7は偏波保存光ファイバ、8は検光子(グラント
ムソイプリズム)、9はモノクロメータ、lOは光検出
器、1)は光源である。この系においてAND(論理積
)動作するには■、■の光入力パルスの偏波面を3の位
相子を通して入射光の偏波面を7の光ファイバの複屈折
の主軸に合わせ、60対物レンズで絞って光ファイバに
入射させる。入射光の偏光方向は光ファイバ7の主軸つ
の偏波が均一に伝播することになるので本発明のAND
動作は実現されない。このとき光入力パルス■、■は位
相が互いに一致しておりかつ十分可干渉長の長い、ある
いは可干渉長が両人力信号の光路長差に比べて十分短か
く干渉を生じないことが必要である。また第1図の構成
で両人力の光路長差による遅延時間差は本発明の素子の
2つの入力端に入射するパルスの時間ずれに相当しこれ
は入射光パルス幅に比べて十分短かくなければならない
。7の光ファイバに入射した光パルスは光強度が強い場
合には光力−効果に起因する複屈折性の光強度依存性の
ために光ファイバ伝搬後の入力光パルスの偏波状態が変
化する。8の検光子を入力光パルス強度の十分に弱い状
態でその透過光が消光するように調整しておくと、光パ
ルス強度が強い状態のときに偏波面が回転して光パルス
の一部が8の検光子を透過して10の光検出器で受光さ
れる。ただし、AND動作では9のモノクロメータは不
要である。上記の光強度に依存した複屈折特性を得るた
めには、入射光を偏波面が光ファイバ主軸に対し″′C
45°以外の角度になるよう入射させなければならず、
入射光の光ファイバの主軸に対するずれが大きいほど低
い入射光パワーから出力パワーの非線形性が現われる。
1 is optical input pulse ■, 2 is prior input pulse ■, 3 is λ/2
Plate phase shifter, 4 is a half mirror, 15 is an attenuator, 6 is an objective lens, 7 is a polarization maintaining optical fiber, 8 is an analyzer (Glantom Soy prism), 9 is a monochromator, 1O is a photodetector, 1) is a light source. To perform an AND (logical product) operation in this system, the polarization plane of the optical input pulses ① and ② is passed through the phase shifter 3, and the polarization plane of the incident light is aligned with the principal axis of birefringence of the optical fiber 7, and the objective lens 60 is used. It is focused and introduced into an optical fiber. Since the polarization direction of the incident light is the same as that of the main axis of the optical fiber 7, the AND of the present invention
The action is not realized. At this time, it is necessary that the optical input pulses ■ and ■ have the same phase with each other and have a sufficiently long coherent length, or the coherent length must be sufficiently short compared to the optical path length difference between the two human input signals so that no interference occurs. be. Furthermore, in the configuration shown in Figure 1, the delay time difference due to the difference in optical path length between the two operators corresponds to the time difference between the pulses incident on the two input terminals of the element of the present invention, and this must be sufficiently short compared to the input optical pulse width. No. When the light intensity of the light pulse incident on the optical fiber 7 is strong, the polarization state of the input light pulse changes after propagation through the optical fiber due to the light intensity dependence of birefringence caused by the optical force effect. . If the analyzer in step 8 is adjusted so that the transmitted light is quenched when the input optical pulse intensity is sufficiently weak, the plane of polarization will rotate when the optical pulse intensity is strong, causing part of the optical pulse to disappear. The light passes through 8 analyzers and is received by 10 photodetectors. However, in the AND operation, the 9 monochromators are not necessary. In order to obtain the above-mentioned birefringence characteristics that depend on the light intensity, the polarization plane of the incident light must be
It must be incident at an angle other than 45°,
The larger the deviation of the incident light from the principal axis of the optical fiber, the more nonlinearity of the output power appears from a low input light power.

第2図は、入射パワーに対する上記非線形光学効果によ
って生じる検光子透過光パルスのパワーを示す実験結果
である。光源はQスイッチを付加したNd : YAG
レーザであり、発振波長は1000μmであり、入力光
パルスの偏波面はファイバ主軸に一致させている。なお
、木偏波保存ファイバはファイバ長1)mの楕円コア単
一モードファイバテする。光パルス出力は入力光パルス
のパワーの3乗に比例している。第2図で例えば入力光
パルスの尖頭値パワーをLOWとすると、入力がどちら
か片方のみのときには透過光パワーは縦軸の任意目盛で
約0.9であるが、互いに強度の等しい光パルスが両方
同時に入力したときには入力パワーは20Wであるから
、出力は約7となる。この様子を模式的に示すと第3図
のようになる。したがって光ファイバ中に生じる光力−
効果による複屈折の光強度依存性、即ち偏波面が光強度
に応じて回転する現象を利用することによって、2つの
入力光パルスと、透過光パルスの間で論理演算のAND
動作が行える。第4図は本AND動作の実験データであ
る。ia)は左からそれぞれ入力光パルス■のみ、入力
光パルス■のみ、入力■+■に対する検光子透過光のパ
ルス波形を示している。入力光パルス■のみおよび■の
みの状態は第1図で一方の光路を遮断することにより実
現した。個々の入力光パルスの尖頭値パワーは30Wで
あり、入力パルス波形は第4図(C)に示す通りである
。第4図(a)の中に示す”O1)レベル(OFF’状
態)に対して入力■+■に対する出力尖頭値は約10倍
となり、これを1”レベル(ON状態)と見なしたとき
の0N10FF比は約10倍確保できている。これに対
して入力光パルスの尖頭値が0.3 Wと極めてlJ・
さい第4図(blの場合には、入力■+■に対する出力
パルスの尖頭値は単独人力■、■に対する出力の和とな
っているため十分な0N10FF比は得られず、AND
動作は行えない。
FIG. 2 shows experimental results showing the power of the analyzer-transmitted light pulse caused by the above-mentioned nonlinear optical effect with respect to the incident power. The light source is Nd: YAG with a Q switch added.
It is a laser, the oscillation wavelength is 1000 μm, and the polarization plane of the input optical pulse is made to coincide with the main axis of the fiber. Note that the tree polarization maintaining fiber is an elliptical core single mode fiber with a fiber length of 1) m. The optical pulse output is proportional to the cube of the power of the input optical pulse. In Figure 2, for example, if the peak power of the input optical pulse is LOW, when only one of the inputs is input, the transmitted optical power is about 0.9 on the arbitrary scale of the vertical axis, but the optical pulses with equal intensity mutually When both are input at the same time, the input power is 20W, so the output is about 7. This situation is schematically shown in FIG. 3. Therefore, the optical power generated in the optical fiber −
By utilizing the light intensity dependence of birefringence due to the effect, that is, the phenomenon in which the plane of polarization rotates according to the light intensity, a logical AND operation can be performed between two input light pulses and a transmitted light pulse.
Can perform movements. FIG. 4 shows experimental data for this AND operation. ia) shows, from the left, the pulse waveforms of the light transmitted through the analyzer for input optical pulses only, input optical pulses only, and inputs ■+■, respectively. The states of only input optical pulses (■) and (2) were realized by blocking one of the optical paths in FIG. 1. The peak power of each input optical pulse is 30 W, and the input pulse waveform is as shown in FIG. 4(C). The output peak value for the input ■+■ was approximately 10 times the "O1" level (OFF' state) shown in Figure 4 (a), and this was considered to be the 1" level (ON state). The 0N10FF ratio at that time was approximately 10 times higher. On the other hand, the peak value of the input optical pulse is extremely low at 0.3 W.
Figure 4 (In the case of bl, the peak value of the output pulse for the input
No action is possible.

次に第5図に示すOR動作には光出力の飽和性が必要で
ある。この飽和特性を得る一つの方法として誘導ラマン
散乱による入力光パルスの減衰が利用できる。第6図の
5.5mの他のタイプの偏波保存ファイバ(PANDA
ファイバ)の実験結果では入力光パルスのパワーが30
0 W以上では透過光強度が飽和してくる。さらに入射
強度を増しても入力パワーは誘導ラマン散乱のストーク
ス光へ移るため、検光子透過光をモノクロメータで波長
選択して、入力光波長のパワーのみを受光すれば、透過
光強度は成る一定値以上にはならないのでOR。
Next, the OR operation shown in FIG. 5 requires saturation of the optical output. Attenuation of the input optical pulse by stimulated Raman scattering can be used as one method to obtain this saturation characteristic. Figure 6 shows 5.5 m of other types of polarization maintaining fiber (PANDA
According to the experimental results of the optical fiber), the power of the input optical pulse is 30
At 0 W or more, the transmitted light intensity becomes saturated. Furthermore, even if the incident intensity is increased, the input power will shift to Stoke's light of stimulated Raman scattering, so if you select the wavelength of the analyzer transmitted light with a monochromator and receive only the power of the input light wavelength, the transmitted light intensity will remain constant. OR because it will not exceed the value.

動作に適した所要の先入カー光出力特性が実際に得られ
ていることがわかる。第7図は本PANDAファイバの
透過光パルス波形の実験結果であり、(b)のファイバ
長5,5mで330W、 480Wの入力パワーに対す
る出力パルス波形には明らかに飽和が見られる。
It can be seen that the required pre-input Kerr light output characteristics suitable for operation are actually obtained. FIG. 7 shows the experimental results of the transmitted light pulse waveform of this PANDA fiber, and clearly saturation is seen in the output pulse waveform for input powers of 330 W and 480 W at the fiber length of 5.5 m in (b).

第8図はAND動作が可能な素子を光ファイバのみで構
成した場合であり、12は検光子として働(絶対単一偏
波保存光ファイバである。光源として上記実験のように
光源として直線偏波のレーザ光を用いれば、7の偏波保
存ファイバを回転させることによって入射光の偏波面と
ファイバ主軸を一致させられるので、7の光ファイバ入
射端のλ、々板位相子は取り除ける。また検光子の後の
モノクロメータもAND動作の場合には誘導ラマン散乱
光の影響は無視できるので不要であるから、第8図に示
した構成が可能となる。第9図は絶対単一偏波保存ファ
イバ(PANDAファイバ)の断面図であり、13はコ
ア、14は応力付与部である。このファイバの直交する
2つの偏波の曲げ損失波長特性の測定値を第10図に示
す。曲げ径は約40龍φ、ファイバ長は約10mである
。本実験に用いたNd:YAGレーザ光源波長である1
、064μmではY軸偏波はほとんど透過せず、X軸偏
波のみを透過するので、7の偏波保存ファイバの主軸と
本ファイバの主軸を合わせて接続することによって本フ
ァイバを検光子として用いることができる。第1)図(
a)、(b)は2mと6mの楕円ファイバとこのファイ
バ検光子を接続した全ファイバ素子におけるAND動作
の実験値を示す。(a)、(blいずれの結果もグラン
トムソンプリズムを検光子として用いた結果(第4図(
a))と比べてほぼ同等のON10 F F比が得られ
ており、全ファイバAND素子が実現できている。
Figure 8 shows a case in which the element capable of AND operation is composed only of optical fibers, and numeral 12 acts as an analyzer (absolutely single polarization maintaining optical fiber). If a wave laser beam is used, the polarization plane of the incident light and the main axis of the fiber can be made to coincide by rotating the polarization-maintaining fiber 7, so the λ plate retarder at the input end of the optical fiber 7 can be removed. A monochromator after the analyzer is also unnecessary in the case of AND operation because the influence of stimulated Raman scattered light can be ignored, so the configuration shown in Figure 8 is possible. Figure 9 shows absolute single polarization. This is a cross-sectional view of a storage fiber (PANDA fiber), in which 13 is a core and 14 is a stress-applying part.The measured values of the bending loss wavelength characteristics of two orthogonal polarized waves of this fiber are shown in Fig. 10.Bending diameter is approximately 40 mmφ and the fiber length is approximately 10 m.The wavelength of the Nd:YAG laser light source used in this experiment is 1
, 064 μm, almost no Y-axis polarized waves are transmitted, and only X-axis polarized waves are transmitted, so this fiber can be used as an analyzer by connecting the main axis of the polarization-maintaining fiber in step 7 with the main axis of this fiber. be able to. 1) Figure (
Figures a) and (b) show experimental values of AND operations in all fiber elements connected to 2 m and 6 m elliptical fibers and this fiber analyzer. (a), (bl) Both results were obtained using a Glan-Thompson prism as an analyzer (Fig. 4 (
Compared to a)), almost the same ON10 FF ratio was obtained, and an all-fiber AND element was realized.

(発明の効果) 以上説明したように本光論演算素子は、電気信号を一切
使用せず光信号のみで動作するので電子回路を除去でき
、また光力−効果の応答が10”bit/s程度と極め
て速いため、高速応答が可能となり、ファプリペロー共
振器を用いないので素子の信頼性を向上できる。とくに
全光ファイバ素子は素子間の接続を光ファイバで容易に
行えるので、電子回路で生じるような遅延もはとんどな
い。さらに光ファイバを用いているため電磁誘導等の外
部じよう乱に強(、かつ小型・軽量という利点があり、
将来光コンピュータ等に用いられる光論理演算素子とし
て有望である。
(Effects of the Invention) As explained above, this optical arithmetic element does not use any electrical signals and operates only with optical signals, so the electronic circuit can be eliminated, and the optical force-effect response is 10"bit/s. Because it is very fast and extremely fast, it enables a high-speed response, and since it does not use a Farpley-Perot resonator, it can improve the reliability of the device.In particular, all-optical fiber devices can easily connect devices with optical fibers, so they are less susceptible to problems that occur in electronic circuits. Furthermore, since it uses optical fiber, it is resistant to external disturbances such as electromagnetic induction (and has the advantage of being small and lightweight).
It is promising as an optical logic operation element to be used in future optical computers.

また本実施例では石英系光ファイバを用いた実施例を示
したが、光力−効果の定数が石英系ファイバより大きい
材料をファイバ化することによって、入力光パワーの閾
値を低減することができる。
Furthermore, although this example shows an example using a silica-based optical fiber, the threshold value of the input optical power can be reduced by making the fiber into a material whose optical power-effect constant is larger than that of the silica-based fiber. .

実際に実現されているファイバの中にも、例えばゲルマ
ニウムコアファイバでは石英系ファイバの約10倍、C
82充填液体コアファイバでは約200の光力−効果定
数をもつものが存在する。
Among the fibers that have actually been realized, for example, germanium core fiber has a carbon content of about 10 times that of silica fiber.
Some 82-filled liquid core fibers have optical power-effect constants of about 200.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本実施例の素子の構成図、第2図は光入出力特
性を示す図、第3図はAND動作の模式図、第4図はA
ND動作の実験結果を示す図、第5図はOR動作の模式
図、第6図は飽和のある光入出力特性を示す図、第7図
は透過光パルス波形、第8図は全ファイバ素子の構成図
、第9図は絶対単一偏波保存ファイバの断面図、第1O
図はX、Y偏波の曲げ損失波長特性を示す図、第1)図
は全ファイバ素子のAND動作の実験結果を示す図であ
る。 l・・・先入カハルス■、 2・・・先入カハルス■、
3・・・λ/2板位相子、  4・・・ハーフミラ−1
5・・・減衰器、      6・・・対物レンズ、7
・・・偏波保存ファイバ、 8・・・検光子(グラントムソンプリズム)、9・・・
モノクロメータ、 10・・・光検出器、1)・・・光
源、       12・・・ファイバ検光子、13・
・・コア、14・・・応力付与部。
Figure 1 is a block diagram of the device of this example, Figure 2 is a diagram showing optical input/output characteristics, Figure 3 is a schematic diagram of AND operation, and Figure 4 is A
Figure 5 shows the experimental results of ND operation, Figure 5 is a schematic diagram of OR operation, Figure 6 shows the optical input/output characteristics with saturation, Figure 7 shows the transmitted light pulse waveform, and Figure 8 shows the entire fiber element. Fig. 9 is a cross-sectional view of an absolutely single polarization maintaining fiber, No. 1O
The figure shows the bending loss wavelength characteristics of X and Y polarized waves, and Figure 1) shows the experimental results of AND operation of all fiber elements. l...First-in Cajals■, 2...First-in Cajals■,
3...λ/2 plate retarder, 4...Half mirror 1
5... Attenuator, 6... Objective lens, 7
...Polarization maintaining fiber, 8...Analyzer (Glan-Thompson prism), 9...
Monochromator, 10... Photodetector, 1)... Light source, 12... Fiber analyzer, 13...
... Core, 14... Stress applying part.

Claims (4)

【特許請求の範囲】[Claims] (1)偏波保持光ファイバと、二つの光入力端と、該入
力端からの入射パルス光を合波する手段と、合波された
入射パルス光を前記偏波保持光ファイバに主軸と45°
以外の角度で光学的に結合する手段と、該偏波保持光フ
ァイバからの出射光をそのまま又は直線偏光とした後検
光する検光素子と、該検光素子からの出力をとり出す出
力端からなることを特徴とする光ファイバ論理素子。
(1) A polarization-maintaining optical fiber, two optical input ends, a means for combining the input pulsed light from the input ends, and a main axis and a 45-degree polarization-maintaining optical fiber. °
means for optically coupling at an angle other than the above, an analyzer that analyzes the light emitted from the polarization-maintaining optical fiber as it is or after converting it into linearly polarized light, and an output end that takes out the output from the analyzer. An optical fiber logic element comprising:
(2)検光素子が検光子からなり、AND動作をするこ
とを特徴とする特許請求の範囲第1項記載の光ファイバ
論理素子。
(2) The optical fiber logic element according to claim 1, wherein the analyzing element is an analyzer and performs an AND operation.
(3)検光素子が検光子とモノクロメータからなり、O
R動作をすることを特徴とする特許請求の範囲第1項記
載の光ファイバ論理素子。
(3) The analysis element consists of an analyzer and a monochromator, and
The optical fiber logic element according to claim 1, characterized in that it performs R operation.
(4)検光子がファイバ検光子からなることを特徴とす
る特許請求の範囲第1項、又は第2項記載の光ファイバ
論理素子。
(4) The optical fiber logic device according to claim 1 or 2, wherein the analyzer is a fiber analyzer.
JP59217281A 1984-10-18 1984-10-18 Logical element of optical fiber Granted JPS6197630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59217281A JPS6197630A (en) 1984-10-18 1984-10-18 Logical element of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59217281A JPS6197630A (en) 1984-10-18 1984-10-18 Logical element of optical fiber

Publications (2)

Publication Number Publication Date
JPS6197630A true JPS6197630A (en) 1986-05-16
JPS626212B2 JPS626212B2 (en) 1987-02-09

Family

ID=16701676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59217281A Granted JPS6197630A (en) 1984-10-18 1984-10-18 Logical element of optical fiber

Country Status (1)

Country Link
JP (1) JPS6197630A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0721601B2 (en) * 1986-09-16 1995-03-08 ブリティシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニ Optical element
JP2002303835A (en) * 2001-04-03 2002-10-18 Kansai Electric Power Co Inc:The Method and device for light signal delay differentiation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0721601B2 (en) * 1986-09-16 1995-03-08 ブリティシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニ Optical element
JP2002303835A (en) * 2001-04-03 2002-10-18 Kansai Electric Power Co Inc:The Method and device for light signal delay differentiation

Also Published As

Publication number Publication date
JPS626212B2 (en) 1987-02-09

Similar Documents

Publication Publication Date Title
US4932739A (en) Ultra-fast optical logic devices
JPH03150535A (en) Combined optical logic element
US4632518A (en) Phase insensitive optical logic gate device
Trillo et al. Observation of ultrafast nonlinear polarization switching induced by polarization instability in a birefringent fiber rocking filter
US5111326A (en) Integrated Kerr shutter and fiber laser optical modulation
CN105301319A (en) Mode-locked laser type all-fiber current transformer
Vinegoni et al. Measurement of nonlinear polarization rotation in a highly birefringent optical fibre using a Faraday mirror
JPS6197630A (en) Logical element of optical fiber
US7147388B2 (en) Method for fabrication of an all fiber polarization retardation device
JP2007534978A (en) All-optical polarization rotation switch using loop configuration
WO1986001007A1 (en) Phase insensitive optical logic gate device
Pohl Self-Focusing of T E 01 and T M 01 Light Beams: Influence of Longitudinal Field Components
JPS61171225A (en) Optical fiber logical operating element
JPH01147334A (en) Double refractive index measuring instrument for polarization maintaining optical fiber
Kuzyk et al. All-optical and photomechanical devices in polymer optical fibers
JPS60237425A (en) Method and device for compressing light pulse width
JPH05224249A (en) Nonlinear optical device
Garvey et al. Characterization of the switching properties of a singlemode polymer optical fiber
JPH05500276A (en) Quantum non-destructive light extraction
CN117578173A (en) Full polarization-maintaining O-shaped ultrashort pulse mode-locked fiber laser
JPS619606A (en) Improvement of extinction ratio of optical fiber and communication equipment utilizing said fiber
Fernandes et al. Femtosecond laser direct fabrication of integrated optical wave plates in fused silica
JPH0378731A (en) Optical logic gate
JPS6110337A (en) Compressing method of optical pulse width
STEGEMAN Nonlinear surface polaritons(Final Report, 15 Nov. 1984- 14 Nov. 1987)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees