JPS6197312A - Highly absorptive material - Google Patents

Highly absorptive material

Info

Publication number
JPS6197312A
JPS6197312A JP21814384A JP21814384A JPS6197312A JP S6197312 A JPS6197312 A JP S6197312A JP 21814384 A JP21814384 A JP 21814384A JP 21814384 A JP21814384 A JP 21814384A JP S6197312 A JPS6197312 A JP S6197312A
Authority
JP
Japan
Prior art keywords
water
graft
hydrolysis
polymer
hec
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21814384A
Other languages
Japanese (ja)
Other versions
JPH0613586B2 (en
Inventor
Isao Sakata
功 坂田
Namiko Miyata
宮田 奈美子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP59218143A priority Critical patent/JPH0613586B2/en
Publication of JPS6197312A publication Critical patent/JPS6197312A/en
Publication of JPH0613586B2 publication Critical patent/JPH0613586B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)

Abstract

PURPOSE:To heighten the water absorptivity of a material both for pure water and for isotonic solution to a level higher than that of the conventional, by partially hydrolyzing a graft polymer comprising hydroxyethylcellulose and a specified olefin monomer. CONSTITUTION:An olefin monomer having a substituent which forms a carboxylate salt (preferably, acrylate ester or acrylamide) upon hydrolysis is graft-polymerized, at about 30-50 deg.C with hydroxyethylcellulose (abbreviated as HEC) having an average molar degree of substitution of 1.2-8 and a viscos ity (as measured in a 2% aqueous solution) of about 20-100,000cP (with a Brookfield viscometer, 60rpm, 25 deg.C). This graft polymer is partially hydrolyzed by a usual process. The optimum degree of hydrolysis can be selected from a wide range of about 2-98% though it varies with the properties of HEC and the kind of a branch polymer used. The partially hydrolyzed graft polymer is useful as a material for disposable absorptive products such as diapers and sanitary napkins.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はヒドロキシエチルセルロースを幹ポリマーとす
るグラフト重合体からなる、高度の吸収性と特に含塩水
溶液に対して優れた吸収性を有する高吸収性素材に関す
るものである。
Detailed Description of the Invention (Industrial Application Field) The present invention is a highly absorbent polymer comprising a graft polymer having hydroxyethyl cellulose as a backbone polymer, which has high absorbency and particularly excellent absorbency for salt-containing aqueous solutions. It concerns sexual materials.

(従来の技術) 近年、おむつ、衛生ナプキンおよび外科用包帯類といっ
た使い捨て可能な吸収用製品のマーケットが急速に増大
している。これらの製品を製造するための原材料は、高
度の吸水性と共に体液などの含塩水溶液に対する吸収性
の優れていることが必要である。従来は主として紙、パ
ルプ、不織布などが使用されていたが、その吸収性能は
低(、とても満足できるものではなかった。
BACKGROUND OF THE INVENTION In recent years, the market for disposable absorbent products such as diapers, sanitary napkins, and surgical dressings has grown rapidly. The raw materials for manufacturing these products need to have a high degree of water absorption as well as excellent absorption of saline aqueous solutions such as body fluids. Conventionally, paper, pulp, nonwoven fabric, etc. have been mainly used, but their absorption performance has been low (and not very satisfactory).

最近このような高吸収性素材として、水溶性高分子の保
水性、吸水性を利用した新しい吸水性樹脂が種々提案さ
れ実用化されている。
Recently, as such highly absorbent materials, various new water-absorbing resins that utilize the water-retaining and water-absorbing properties of water-soluble polymers have been proposed and put into practical use.

例えば特公昭49−43395号公報は、デンプンにア
クリロニトリルをセリウム塩を重合触媒としてグラフト
重合したのち、アルカリ塩基の水性アルコール溶液で鹸
化して吸水性物質を得る方法を開示している。しかし、
このようにして得られたグラフト重合体の吸収性能は水
に対して25〜144m/g、尿に対して22〜55+
nl/gと極めて低いものである。
For example, Japanese Patent Publication No. 49-43395 discloses a method of graft polymerizing acrylonitrile onto starch using a cerium salt as a polymerization catalyst, followed by saponification with an aqueous alcoholic solution of an alkali base to obtain a water-absorbing material. but,
The absorption performance of the graft polymer thus obtained is 25 to 144 m/g for water and 22 to 55 m/g for urine.
It is extremely low at nl/g.

また、特公昭53−46199号公報には、デンプン、
セルロースなどを幹ポリマーとし、アクリル酸、アクリ
ルアミドなどの水溶性単量体又はアクリル酸メチル、ア
クリロニトリルなどの加水分解により水溶性となる単量
体およびN、N−メチレンビスアクリルアミドなどの架
橋剤を必須成分としてグラフト重合し、必要により加水
分解することによって得られる樹脂よりなる吸水剤また
は保水剤を開示している。しかしながらこの場合も液体
吸収能は、水に対してj       ゛°〜°゛°′
八、 0.5へ%jikj!水9対し″3°〜゛。
In addition, in Japanese Patent Publication No. 53-46199, starch,
Cellulose is the main polymer, and water-soluble monomers such as acrylic acid and acrylamide, monomers that become water-soluble by hydrolysis such as methyl acrylate and acrylonitrile, and crosslinking agents such as N, N-methylenebisacrylamide are essential. A water-absorbing agent or water-retaining agent comprising a resin obtained by graft polymerization as a component and hydrolysis if necessary is disclosed. However, in this case as well, the liquid absorption capacity is j ゛°~°゛°′
8.%jikj to 0.5! Water 9 to ″3°~゛.

ml / g、尿に対して30〜80+nZ/gであり
、まだ満足すべきものではない。
ml/g, 30-80+nZ/g for urine, which is still not satisfactory.

さらに特開昭56−70011号公報には、アクリル酸
及びアクリル酸アルカリ金属塩の中から選ばれた少なく
とも一種の単量体を40重四%以上含有する水溶液に、
セルロース、デンプン、グアガムなどの多ti類を存在
させ、水溶性ラジカル重合開始剤を用いて反応させる吸
水性グラフト重合体の製造法を開示している。ここには
、ヒドロキシエチルセルロースにアクリル酸とアクリル
酸ナトリウムの混合単量体を過硫酸カリウムを重合開始
剤としてグラフト重合させた実施例も示されているが、
得られたグラフト重合体の吸収性能はイオン交換水に対
して450 g/g 、0.9%食塩水に対して71g
/g、尿に対して52g/gであり、純水に対する吸収
能はかなり改善されているが、生理食塩水に対する吸収
能はまだ低いという欠点を有する。
Furthermore, JP-A-56-70011 discloses that an aqueous solution containing at least 40% by weight of at least one monomer selected from acrylic acid and alkali metal salts of acrylic acid,
This patent discloses a method for producing a water-absorbing graft polymer in which multi-Ti compounds such as cellulose, starch, and guar gum are present and reacted using a water-soluble radical polymerization initiator. This article also shows an example in which a mixed monomer of acrylic acid and sodium acrylate was graft-polymerized on hydroxyethyl cellulose using potassium persulfate as a polymerization initiator.
The absorption performance of the obtained graft polymer was 450 g/g for ion-exchanged water and 71 g for 0.9% saline.
/g and 52 g/g of urine, and although the absorption capacity for pure water has been considerably improved, the absorption capacity for physiological saline is still low.

(発明が解決しようとする問題点) 上記の如くこれまでデンプン系、セルロース系、合成高
分子系と各種の高吸水性樹脂が提案され開発されてきた
が、−Cに従来技術で得られた吸水性樹脂は、純水に対
しては100〜600g/g程度の吸水能を持つが、生
理食塩水や尿などの塩、イオンを含んだ溶液に対する吸
水能は30〜loOg/g程度に著しく低下する欠点が
あった。
(Problems to be solved by the invention) As mentioned above, various types of super absorbent resins such as starch-based, cellulose-based, and synthetic polymer-based resins have been proposed and developed. Water-absorbing resin has a water absorption capacity of about 100 to 600g/g for pure water, but its water absorption capacity for solutions containing salts and ions such as physiological saline and urine is extremely low at about 30 to 100g/g. There was a drawback that it decreased.

本発明の目的はこの欠点を改良し、純水に対して極めて
高い吸水能を持ち、しかも同時に生理食塩水に対しても
120 g7gを越える従来にない高い吸収能を示す高
吸収性素材を提供することにある。
The purpose of the present invention is to improve this drawback and provide a highly absorbent material that has an extremely high water absorption capacity for pure water, and also exhibits an unprecedentedly high absorption capacity for physiological saline, exceeding 120 g and 7 g. It's about doing.

(問題点を解決するための手段) すなわち、本発明はヒドロキシエチルセルロースに対し
、加水分解によりカルボキシル基を生成する置換基を有
するオレフィン系単量体をグラフト重合させたのち、部
分加水分解を行うことによって得られるグラフト重合体
よりなる高吸収性素材を提供するものである。
(Means for Solving the Problems) That is, the present invention involves graft polymerizing hydroxyethylcellulose with an olefinic monomer having a substituent that produces a carboxyl group by hydrolysis, and then subjecting it to partial hydrolysis. The present invention provides a highly absorbent material made of a graft polymer obtained by.

本発明で幹ポリマーとして用いるヒドロキシエチルセル
ロース(以下HECと略記)は、セルロースに水酸化ナ
トリウムなどのアルカリを反応させたアルカリセルロー
スにエチレンオキサイドを作用させるという、−Sに良
(知られた方法で製造されるものであるが、高い吸収性
能を得るためには、無水グルコース単位当り付加された
エチレンオキサイドの平均モル数で表わされる平均モル
置換度(以下MSと略記)が1.2〜8.0であって、
かつ2%水溶液の粘度が20〜100,000 cps
、 (B型粘度計、60 rpm、 25℃)の範囲の
ものであることが好ましい。
Hydroxyethylcellulose (hereinafter abbreviated as HEC) used as the backbone polymer in the present invention is manufactured using a known method for producing -S by reacting ethylene oxide with alkali cellulose obtained by reacting cellulose with an alkali such as sodium hydroxide. However, in order to obtain high absorption performance, the average molar substitution degree (hereinafter abbreviated as MS), expressed as the average number of moles of ethylene oxide added per anhydroglucose unit, must be 1.2 to 8.0. And,
and the viscosity of 2% aqueous solution is 20 to 100,000 cps
(Type B viscometer, 60 rpm, 25°C).

粘度が100,000 cpsより高いHECを幹ポリ
マーとすると粘度が高過ぎてグラフト重合が困難であり
、得られた重合体の部分加水分解物の吸収性能は低いも
のしか得られない。逆に20cps以下の低粘度のHE
Cを使用した場合も、吸収性能の高いグラフト重合体が
得られない。
If HEC, which has a viscosity higher than 100,000 cps, is used as the backbone polymer, the viscosity will be too high and graft polymerization will be difficult, and the obtained polymer will only have poor absorption performance for partial hydrolyzate. Conversely, HE with a low viscosity of 20 cps or less
Even when C is used, a graft polymer with high absorption performance cannot be obtained.

又使用するHECのMSが1.2より小さくなると水不
溶性となり、グラフト重合が均一に進まず、得られた重
合体の部分加水分解物の吸収性能は低い。一方MSが8
.0以上の高MSのHECは経済的に工業生産すること
が難しい。
If the MS of HEC used is less than 1.2, it becomes water insoluble, graft polymerization does not proceed uniformly, and the resulting polymer has poor absorption performance for partial hydrolyzate. On the other hand, MS is 8
.. HEC with a high MS of 0 or more is difficult to economically produce industrially.

本発明でHECに対し技ポリマーとしてグラフトされる
加水分解によりカルボキシル基を生成する置換基を有す
るオレフィン系単量体としては、例えばアクリル酸メチ
ル、アクリル酸エチル、アクリル酸ブチル、アクリル酸
−2−エチルヘキシルなどのアクリル酸エステル類、メ
タクリル酸メチル、メタクリル酸エチル、メタクリル酸
ブチル、メタクリル酸−2−エチルヘキシルなどのメタ
クリルエステル類、アクリロニトリル、メタクリロニト
リルなどのニトリル基を有する単量体、アクリルアミド
などアミド基を有する単量体が挙げられる。
Examples of the olefinic monomer having a substituent that generates a carboxyl group upon hydrolysis, which is grafted as a technical polymer to HEC in the present invention, include methyl acrylate, ethyl acrylate, butyl acrylate, and 2-acrylic acid. Acrylic esters such as ethylhexyl, methacrylic esters such as methyl methacrylate, ethyl methacrylate, butyl methacrylate, and 2-ethylhexyl methacrylate, monomers with nitrile groups such as acrylonitrile and methacrylonitrile, amides such as acrylamide Examples include monomers having groups.

グラフト重合方法は従来から知られているいかなる方法
でもよく、例えば放射線、電子線、紫外線などを照射す
る方法、第二セリウム塩、過酸化水素、過酸化ベンゾイ
ル、アゾビスブチロニトリル、過硫酸アンモニウムなど
のラジカル重合触媒を用いて重合させる方法などが挙げ
られるが、水または水とアルコールなどの親水性有機溶
剤との混合溶媒中で、硝酸第二セリウム塩を重合触媒と
するグラフト重合法が、グラフト重合率が高く、吸収性
能の優れたグラフト重合体が得られるので好ましい。
The graft polymerization method may be any conventionally known method, such as irradiation with radiation, electron beams, ultraviolet rays, ceric salt, hydrogen peroxide, benzoyl peroxide, azobisbutyronitrile, ammonium persulfate, etc. Graft polymerization using a ceric nitrate salt as a polymerization catalyst in water or a mixed solvent of water and a hydrophilic organic solvent such as alcohol This method is preferable because a graft polymer having a high polymerization rate and excellent absorption performance can be obtained.

重合温度は用いる重合触媒によって異なるが、通常10
〜100℃、好ましくは30〜50℃の範囲である。重
合後はメタノール、イソプロピルアルコール、アセトン
などの溶剤を添加して重合体を沈澱させる。得られた重
合体はそのままか、または水で未反応のNECを抽出除
去するか、水又はアセトンその他の有機溶剤で加水分解
によりカルボキシル基を生成する単量体のホモポリマー
を抽出除去したのち、部分加水分解を行う。
The polymerization temperature varies depending on the polymerization catalyst used, but is usually 10
-100°C, preferably 30-50°C. After polymerization, a solvent such as methanol, isopropyl alcohol, or acetone is added to precipitate the polymer. The obtained polymer is used as it is, or after extracting and removing unreacted NEC with water, or extracting and removing the homopolymer of monomers that generate carboxyl groups by hydrolysis with water or acetone or other organic solvent, Perform partial hydrolysis.

本発明においてはグラフト重合体を部分加水分解するこ
とが高い吸収性能を得るための必須要件である。加水分
解を行わないグラフト重合体および完全に加水分解を行
ったグラフト重合体では高い吸収性能が得られず、部分
的に加水分解されることが重要である。加水分解率は2
〜98%の広い範囲で選ぶことができるが、その最適の
加水分解率は使用する幹ポリマーのHECの性状、技ポ
リマーの種類に上って異なる。
In the present invention, partial hydrolysis of the graft polymer is an essential requirement for obtaining high absorption performance. Graft polymers that are not hydrolyzed and graft polymers that are completely hydrolyzed do not provide high absorption performance, so it is important that they are partially hydrolyzed. The hydrolysis rate is 2
It can be selected within a wide range of ~98%, but the optimum hydrolysis rate varies depending on the HEC properties of the backbone polymer used and the type of technical polymer.

例えばアクリルアミドをグラフトする場合は加水分解率
が40〜80%、好ましくは50〜70%のものが高い
吸収能を有する。
For example, when acrylamide is grafted, a hydrolysis rate of 40 to 80%, preferably 50 to 70%, has a high absorption capacity.

部分加水分解の方法は公知のいかなる方法によってもよ
いが、通常水又は水とアルコールの混合溶媒中で水酸化
ナトリウム、水酸化カリウムなどを用いて10〜180
℃の温度で行われる。
The partial hydrolysis may be carried out by any known method, but it is usually carried out using sodium hydroxide, potassium hydroxide, etc. in water or a mixed solvent of water and alcohol.
It is carried out at a temperature of °C.

部分加水分解後は、グラフト重合体を中和してアルカリ
金属塩となし、そのまま乾燥、粉砕して製品としてもよ
いが、次の後処理を行ってもよい。すなわち、部分加水
分解物にメタノール、イソプロピルアルコールなどの非
溶剤を加えて沈澱、決別後、再び純水に溶かし、塩酸そ
の他の酸で中和してカルボキシル基を酸型(−COOH
)とする。再びメタノール、イソプロピルアルコールな
どで沈澱、炉別後、水酸化ナトリウム又は水酸化カリウ
ムなどで中和し、アルカリ金属塩とする。次いでメタノ
ール、イソプロピルアルコールなどで再沈澱後、決別、
乾燥、粉砕して製品とする。
After partial hydrolysis, the graft polymer may be neutralized to form an alkali metal salt, dried and pulverized as it is to produce a product, or the following post-treatment may be performed. That is, the partial hydrolyzate is precipitated by adding a non-solvent such as methanol or isopropyl alcohol, and after separation, it is dissolved again in pure water and neutralized with hydrochloric acid or other acid to convert the carboxyl group into acid form (-COOH).
). After precipitation with methanol, isopropyl alcohol, etc. again, and furnace separation, it is neutralized with sodium hydroxide or potassium hydroxide to obtain an alkali metal salt. Next, after reprecipitation with methanol, isopropyl alcohol, etc., separation,
Dry and crush to make products.

乾燥は室温〜200℃の温度で、風乾、通風乾燥、減圧
乾燥、加熱乾燥など公知のいずれの方法でもよいが、高
吸収性能を得るためには可能な限り低温、短時間で乾燥
するのが望ましい。
Drying can be done at a temperature between room temperature and 200°C using any known method such as air drying, ventilation drying, reduced pressure drying, or heat drying, but in order to obtain high absorption performance, it is best to dry at the lowest possible temperature and in the shortest possible time. desirable.

本発明において架橋剤は使用する技ポリマーの種類によ
り必ずしも必要ではない。例えばアクリル酸エステル類
、メタクリル酸エステルなどをグラフト重合させる場合
は自己架橋により水不溶性のグラフト重合体が得られる
ので架橋剤は特に必要としない。一方、水に溶解するグ
ラフト重合体が生成するアクリルアミドなどをグラフト
重合する場合は、架橋剤の使用が望ましい。
In the present invention, a crosslinking agent is not necessarily required depending on the type of technical polymer used. For example, when graft polymerizing acrylic esters, methacrylic esters, etc., a water-insoluble graft polymer is obtained by self-crosslinking, so no crosslinking agent is particularly required. On the other hand, when graft polymerizing acrylamide or the like produced by a water-soluble graft polymer, it is desirable to use a crosslinking agent.

架橋剤としては、N、N−メチレンビスアクリルアミド
などのビスアクリルアミド類をはじめとする公知の架橋
剤で、グラフト重合体に反応して架橋させうるちのであ
ればいかなるものであってもよい。また架橋はグラフト
重合の際架橋剤を添加して行うことができるが、グラフ
ト重合後にグラフト重合体に対し架橋剤を反応させても
よい。
The crosslinking agent may be any known crosslinking agent, including bisacrylamides such as N,N-methylenebisacrylamide, as long as it reacts with the graft polymer to crosslink it. Further, crosslinking can be carried out by adding a crosslinking agent during graft polymerization, but a crosslinking agent may be reacted with the graft polymer after graft polymerization.

(実施例) 以下に本発明を実施例によりさらに詳しく説明するが、
本発明はこれらの実施例に限定されるものではない。尚
、実施例中の部数、%は重量部、重量%である。
(Examples) The present invention will be explained in more detail by examples below.
The present invention is not limited to these examples. Note that parts and percentages in the examples are parts by weight and percentages by weight.

実施例1〜6 HEC3部、アクリル酸メチル15部に硝酸セリウムア
ンモニウム8.3X10.−’モル/1、硝610.0
6モル/l及び水を加えて全溶液量を120部とし、窒
素気流中40℃においてグラフト重合させたのち、メタ
ノールで沈澱させた。この全重合物から水でHECを、
アセトンでポリアクリル酸メチル(以下PMAと略記)
を夫々抽出除去したものについて、0.5N−Na01
1水溶液を用いて100℃で5〜400分間部分加水分
解を行った。
Examples 1-6 3 parts of HEC, 15 parts of methyl acrylate, and 8.3×10. -'mol/1, nitrate 610.0
6 mol/l and water were added to make the total solution amount 120 parts, graft polymerization was carried out at 40° C. in a nitrogen stream, and then precipitation was performed with methanol. From this total polymer, HEC is extracted with water.
Polymethyl acrylate (hereinafter abbreviated as PMA) with acetone
0.5N-Na01
Partial hydrolysis was carried out using an aqueous solution of 1 at 100° C. for 5 to 400 minutes.

部分加水分解物はメタノールにより沈澱汲水へ再溶解し
、フェノールフタレインを指示薬として塩酸で中和し、
メタノールで再沈澱した0次いで水酸化ナトリウムでナ
トリウム塩とし、メタノールで沈澱、ip別後、室温に
て真空乾燥。
The partial hydrolyzate was redissolved in the precipitated water with methanol, neutralized with hydrochloric acid using phenolphthalein as an indicator,
0 was reprecipitated with methanol, then made into a sodium salt with sodium hydroxide, precipitated with methanol, separated by IP, and dried under vacuum at room temperature.

粉砕してグラフト重合体の部分加水分解物を得た。It was pulverized to obtain a partial hydrolyzate of the graft polymer.

幹ポリマーのHECのMSおよび粘度の種々異なるもの
について、上記方法で得られたグラフト重合体の部分加
水分解物の吸収性能を測定した結果を表1に示す。
Table 1 shows the results of measuring the absorption performance of the partial hydrolyzate of the graft polymer obtained by the above method for various HEC backbone polymers with different MS and viscosity.

吸収性能の測定は、試料0.1〜0.2gに純水または
濃度0.85%の生理食塩水を加え、24時間室温に放
置して充分に吸収させたのち、200メツシユの金網で
炉遇してろ液量を測定し、最初に加えた純水または生理
食塩水の量から吸水能を算出する濾過法によった。
To measure absorption performance, add pure water or physiological saline with a concentration of 0.85% to 0.1 to 0.2 g of the sample, leave it at room temperature for 24 hours to allow sufficient absorption, and then heat it in a furnace with a 200-mesh wire mesh. A filtration method was used in which the amount of filtrate was measured and the water absorption capacity was calculated from the amount of pure water or physiological saline added initially.

表      1 実施例7〜9 HEC2部、アクリルアミド4部に、N、N’−メチレ
ンビスアクリルアミドをアクリルアミドに対し0.3%
、硝酸セリウムアンモニウム8.3 Xl0−’モル/
l、硝酸0.06モル/lと水を加えて全溶液量を80
部とし、窒素気流中40’Cでグラフト重合後イソプロ
ピルアルコールで沈澱させた。得られた重合物を水で未
反応HE Cと水溶性ホモポリマーを除去した後、0.
5N−NaOH水溶液を用いて100℃、5〜120分
間部分加水分解した。これをメタノールで沈澱、炉別後
、室温にて真空乾燥、粉砕してグラフト重合体の部分加
水分解物を得た。
Table 1 Examples 7 to 9 2 parts of HEC, 4 parts of acrylamide, and 0.3% of N,N'-methylenebisacrylamide based on the acrylamide.
, cerium ammonium nitrate 8.3 Xl0-'mol/
1, add 0.06 mol/l nitric acid and water to bring the total solution volume to 80
After graft polymerization at 40'C in a nitrogen stream, the mixture was precipitated with isopropyl alcohol. After removing unreacted HEC and water-soluble homopolymer from the obtained polymer with water, 0.
Partial hydrolysis was carried out using a 5N-NaOH aqueous solution at 100°C for 5 to 120 minutes. This was precipitated with methanol, separated in a furnace, dried under vacuum at room temperature, and pulverized to obtain a partial hydrolyzate of the graft polymer.

幹ホリマーのHECのMSおよび粘度の種々異なるもの
について、上記方法で得られたグラフト重合体の部分加
水分解物について、実施例1と同様の方法で吸収性能を
測定した結果を表2に示す。
Table 2 shows the results of measuring the absorption performance in the same manner as in Example 1 for the partial hydrolysates of the graft polymers obtained by the above method, with various HEC MS and viscosities of the trunk polymers.

表     2 実施例1O HEC2部、アクリロニトリル8部に硝酸セリウムアン
モニウム1.0 X 10−’モル/It、硝#0.0
6モル/I!と水8部部を加え、窒素気流中40℃で4
時間グラフト重合後メタノールで沈澱させた。得られた
重合物から水で未反応HECを、ジメチルホルムアミド
でアクリロニトリルホモポリマーを抽出除去した後、0
.5N−Na011水溶液にて100℃、8時間部分加
水分解した。部分加水分解物はメタノールで沈’IB、
tP別後、室温にて真空乾燥、粉砕した。
Table 2 Example 1O 2 parts of HEC, 8 parts of acrylonitrile, 1.0 x 10-' mol/It of cerium ammonium nitrate, nitrate #0.0
6 mol/I! and 8 parts of water and heated at 40°C in a nitrogen stream.
After time graft polymerization, it was precipitated with methanol. After extracting and removing unreacted HEC with water and acrylonitrile homopolymer with dimethylformamide from the obtained polymer,
.. Partial hydrolysis was carried out in a 5N-Na011 aqueous solution at 100°C for 8 hours. The partial hydrolyzate was precipitated with methanol.
After separating the tP, it was vacuum dried at room temperature and pulverized.

得られたグラフト重合体のグラフト率は254゜2%、
加水分解率は82.2%であった。実施例1と同様の方
法で吸収性能を測定した結果を表3に示す。
The graft ratio of the obtained graft polymer was 254°2%,
The hydrolysis rate was 82.2%. Table 3 shows the results of measuring the absorption performance in the same manner as in Example 1.

表     3 比較例 市販のデンプン系およびセルロース系吸収剤について、
実施例1記載の方法で純水および生理食塩水の吸収性能
を測定した結果を表4に示す。
Table 3 Comparative Examples Regarding commercially available starch-based and cellulose-based absorbents,
Table 4 shows the results of measuring the absorption performance of pure water and physiological saline using the method described in Example 1.

表     4 (発明の効果) 本発明の高吸収性素材は従来の吸水性樹脂が純水に対し
て100〜600g/g程度の吸水能しか示さないのに
対し、1000〜3000g/g程度の驚異的な吸水能
を有し、しかも生理食塩水の吸収能が120〜400g
/gと極めて高く、従来の吸水性樹脂では生理食塩水の
吸収能が30〜100g/g程度に低下する欠点を克服
するものである。
Table 4 (Effects of the invention) The superabsorbent material of the present invention has an amazing water absorption capacity of about 1000 to 3000 g/g, whereas conventional water absorbent resins only exhibit a water absorption capacity of about 100 to 600 g/g for pure water. It has a water absorption capacity of 120 to 400g for physiological saline.
/g, which overcomes the drawback that conventional water-absorbing resins have a reduced ability to absorb physiological saline to about 30 to 100 g/g.

従ってかかる優れた特性を有する本発明の高吸収性素材
は、おむつ、衛生ナプキン、外科用包帯類など、体液な
どの含塩水溶液の吸収用製品の原料として極めて有効で
ある。
Therefore, the superabsorbent material of the present invention having such excellent properties is extremely effective as a raw material for products for absorbing saline aqueous solutions such as body fluids, such as diapers, sanitary napkins, and surgical bandages.

Claims (1)

【特許請求の範囲】 1 ヒドロキシエチルセルロースに対し、加水分解によ
りカルボキシル基を生成する置換基を有するオレフィン
系単量体をグラフト重合させたのち、部分加水分解を行
うことによって得られるグラフト重合体よりなる高吸収
性素材。 2 ヒドロキシエチルセルロースの平均モル置換度(M
S)が1.2〜8.0で、かつ2%水溶液の粘度が20
〜100,000cps(B型粘度計、60rpm、2
5℃)の範囲である特許請求の範囲第1項記載の高吸収
性素材。 3 加水分解によりカルボキシル基を生成する置換基を
有するオレフィン系単量体がアクリル酸エステル、アク
リルアミドから選ばれる少なくとも一種である特許請求
の範囲第1項又は第2項記載の高吸収性素材。
[Scope of Claims] 1. Consisting of a graft polymer obtained by graft polymerizing hydroxyethylcellulose with an olefinic monomer having a substituent that generates a carboxyl group by hydrolysis, followed by partial hydrolysis. Highly absorbent material. 2 Average molar degree of substitution of hydroxyethyl cellulose (M
S) is 1.2 to 8.0, and the viscosity of a 2% aqueous solution is 20
~100,000 cps (B-type viscometer, 60 rpm, 2
5°C). 3. The superabsorbent material according to claim 1 or 2, wherein the olefinic monomer having a substituent that generates a carboxyl group upon hydrolysis is at least one selected from acrylic esters and acrylamide.
JP59218143A 1984-10-17 1984-10-17 High absorbent material Expired - Lifetime JPH0613586B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59218143A JPH0613586B2 (en) 1984-10-17 1984-10-17 High absorbent material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59218143A JPH0613586B2 (en) 1984-10-17 1984-10-17 High absorbent material

Publications (2)

Publication Number Publication Date
JPS6197312A true JPS6197312A (en) 1986-05-15
JPH0613586B2 JPH0613586B2 (en) 1994-02-23

Family

ID=16715313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59218143A Expired - Lifetime JPH0613586B2 (en) 1984-10-17 1984-10-17 High absorbent material

Country Status (1)

Country Link
JP (1) JPH0613586B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01135115U (en) * 1988-03-11 1989-09-14
US4982793A (en) * 1989-03-10 1991-01-08 Halliburton Company Crosslinkable cellulose derivatives
US5067565A (en) * 1989-03-10 1991-11-26 Halliburton Company Crosslinkable cellulose derivatives
JP2013245526A (en) * 2012-05-29 2013-12-09 Toa Harbor Works Co Ltd Wet-curing sheet for concrete and concrete curing method using the same
CN107057251A (en) * 2017-05-26 2017-08-18 南京林业大学 A kind of Sodium Polyacrylate/nano cellulose crystal composite high-water-absorptivresin resin and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102589558B1 (en) * 2022-11-02 2023-10-17 한국원자력연구원 Manufacturing Method of Super Absorbent Substrate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114988A (en) * 1974-06-26 1976-02-05 Pulp Paper Res Inst
JPS51119825A (en) * 1975-04-14 1976-10-20 Personal Products Co Manufacture of cellulosed copolymer fiber and its manufacture
JPS51125648A (en) * 1975-04-25 1976-11-02 Nitto Electric Ind Co Method of building up matals in concaved steel plates

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114988A (en) * 1974-06-26 1976-02-05 Pulp Paper Res Inst
JPS51119825A (en) * 1975-04-14 1976-10-20 Personal Products Co Manufacture of cellulosed copolymer fiber and its manufacture
JPS51125648A (en) * 1975-04-25 1976-11-02 Nitto Electric Ind Co Method of building up matals in concaved steel plates

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01135115U (en) * 1988-03-11 1989-09-14
JPH0428646Y2 (en) * 1988-03-11 1992-07-13
US4982793A (en) * 1989-03-10 1991-01-08 Halliburton Company Crosslinkable cellulose derivatives
US5067565A (en) * 1989-03-10 1991-11-26 Halliburton Company Crosslinkable cellulose derivatives
JP2013245526A (en) * 2012-05-29 2013-12-09 Toa Harbor Works Co Ltd Wet-curing sheet for concrete and concrete curing method using the same
CN107057251A (en) * 2017-05-26 2017-08-18 南京林业大学 A kind of Sodium Polyacrylate/nano cellulose crystal composite high-water-absorptivresin resin and preparation method thereof

Also Published As

Publication number Publication date
JPH0613586B2 (en) 1994-02-23

Similar Documents

Publication Publication Date Title
CA1075233A (en) Highly absorbent modified polysaccharides
JP2005507466A (en) Production method of cellulose molded article having superabsorbency
JP2707089B2 (en) Water absorbing composition
JP2877255B2 (en) Manufacturing method of water absorbent resin with excellent durability
JPS6024807B2 (en) Method for producing super absorbent hydrogel
KR920002912B1 (en) Process for preparing the resin having bio-degradation and its mixture
US4025472A (en) Process for drying polymer-modified cellulose fibres and products produced thereby
JP2901368B2 (en) Method for producing salt-resistant water-absorbent resin
JPS6197312A (en) Highly absorptive material
JPS6140683B2 (en)
CN110734553A (en) Preparation method of degradable super absorbent resins
JP2554872B2 (en) Method for manufacturing water-absorbing starch
JPS6194655A (en) Water absorbing material excellent in brine resistance
JPH0555523B2 (en)
JPH04161431A (en) Production of highly water-absorbable cellulose derivative material
JP2901480B2 (en) Water-absorbing resin and method for producing the same
JP3533713B2 (en) Method for producing water-absorbing cellulose material
JP3446375B2 (en) Method for producing water-absorbing cellulose material
JPS6133846B2 (en)
JPS6195006A (en) Highly water-absorbing substance of starch-acrylonitrile-styrene system and its production
JPS6195014A (en) Water-absorbing material having improved salt water resistance
JPS634844B2 (en)
JPS6055522B2 (en) Method for producing superabsorbent graft copolymers using starch as the backbone polymer
JPS62921B2 (en)
JPH09310228A (en) Highly salt water-absorbing fiber having conjugate structure and its production