JPS6197123A - Method for recovering co from gaseous mixture containing co - Google Patents

Method for recovering co from gaseous mixture containing co

Info

Publication number
JPS6197123A
JPS6197123A JP59220266A JP22026684A JPS6197123A JP S6197123 A JPS6197123 A JP S6197123A JP 59220266 A JP59220266 A JP 59220266A JP 22026684 A JP22026684 A JP 22026684A JP S6197123 A JPS6197123 A JP S6197123A
Authority
JP
Japan
Prior art keywords
gas
gaseous mixture
reactor
recovering
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59220266A
Other languages
Japanese (ja)
Inventor
Kenichi Nagai
長井 健一
Masayoshi Ichiki
正義 市来
Toshio Hama
利雄 濱
Junichi Takai
順一 高井
Joji Saruwatari
猿渡 譲治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP59220266A priority Critical patent/JPS6197123A/en
Publication of JPS6197123A publication Critical patent/JPS6197123A/en
Pending legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To recover economically CO from a gaseous mixture contg. CO by a dry process in a high yield by treating the gaseous mixture by a specified two-stage system. CONSTITUTION:A gaseous mixture contg. CO such as a gaseous mixture consisting of about 20% CO, about 20% CO2 and about 60% N2 exhausted from a blast furnace in an iron mill is introduced into a reactor 1 packed with a catalyst such as Ni supported on alumina, and C is deposited by a reaction represented by equation I. The treated gas is introduced into a separator 2 to remove N2, and it is fed to the reactor 1 after adding CO2 from an external source in a joining part 3 as required. In the reactor 1, a reaction represented by equation II is carried out to recover CO.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、たとえば製鉄所の高炉から排出する高炉排
ガスのように、COガス約20%、CO2ガス約20%
およびN2ガス約60%を主成分とするCO含有混合ガ
スから乾式法によりCOガスを収率よく回収する方法に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention is applicable to blast furnace exhaust gas discharged from a blast furnace in a steel mill, for example, where CO gas is about 20% CO gas and CO2 gas is about 20%
The present invention also relates to a method for recovering CO gas in a high yield from a CO-containing mixed gas containing about 60% N2 gas as a main component by a dry method.

従来技術とその問題点 製鉄所の高炉から多量排出されるCO含有混合ガスは、
現在主として燃料として利用されているだけであって、
その他に特に有効な利用法は見出されていない。そこで
同混合ガスから利用価値の高いCOガスだけを分離回収
することが注目を集めている。しかしこのようなCO回
回収−法の具体的手段はまだ開発されていないのが実情
である。
Conventional technology and its problems The CO-containing mixed gas discharged in large quantities from blast furnaces in steel plants is
Currently, it is mainly used as fuel,
No other particularly effective use has been found. Therefore, separating and recovering only CO gas with high utility value from the mixed gas is attracting attention. However, the reality is that specific means for such CO recovery methods have not yet been developed.

したがって、この発明の目的は、CO含有混合ガスから
乾式法によりCOガスを収率よく回収する方法を提供す
ることにある。
Therefore, an object of the present invention is to provide a method for recovering CO gas from a CO-containing mixed gas by a dry method with a high yield.

なお、この明細書において、割合を表わす%は、特別の
ことわり書きがない限り、すべて容量基準で計算したも
のである。
In this specification, all percentages representing percentages are calculated on a capacity basis unless otherwise specified.

問題点の解決手段 この発明によるCO回収方法は、反応式2式%() によりCO金含有混合ガス中COガスからCを析出させ
、ついで析出CをCO2雰囲気に置き、反応式 %式%() によりCからCOガスを生成させることを特徴とするも
のである。
Means for Solving Problems In the CO recovery method according to the present invention, C is precipitated from CO gas in a CO gold-containing mixed gas according to the reaction formula 2 (% ()), and then the precipitated C is placed in a CO2 atmosphere, and the reaction formula % ( ) is characterized in that CO gas is generated from C.

上記反応式(I)(If)の反応はいずれも触媒の存在
下に行なわれる。触媒としては、好ましくはNi1Fe
1Coが用いられ、さらにはWlMOlRu、Pt1R
hなどの金属が用いられる。またこれら金属は、好まし
くは、ガスとの接触効率を増すためにアルミナその他の
多孔質担体に担持された形態で使用される。
The reactions of the above reaction formulas (I) and (If) are all carried out in the presence of a catalyst. As a catalyst, preferably Ni1Fe
1Co is used, and further WlMOlRu, Pt1R
Metals such as h are used. Further, these metals are preferably used in the form of being supported on a porous carrier such as alumina in order to increase the efficiency of contact with gas.

反応式(I)によりCOガスからCを析出させる反応条
件は、混合ガスの組成割合により決まるが、析出Cを安
定化させ1.析出Cが溶解して触媒内部に浸入するのを
防ぐためには、反応圧力を高くし、反応温度を可及的に
低くする方が好ましい。
The reaction conditions for precipitating C from CO gas according to reaction formula (I) are determined by the composition ratio of the mixed gas, but 1. In order to prevent the precipitated C from dissolving and penetrating into the catalyst, it is preferable to increase the reaction pressure and lower the reaction temperature as much as possible.

析出CをCO2雰囲気に置いて反応式(I)により析出
CからCOガスを生成せしめるには、反応器への流通ガ
スをCO含有混合ガス流からCO2ガス流に切り変える
方法(添附図面に基いて後述する)や、析出Cを触媒と
ともにCO含有混合ガス流下から取り出してCO2ガス
流下に移す方法などがとられる。
In order to generate CO gas from precipitate C by placing precipitate C in a CO2 atmosphere according to reaction formula (I), there is a method of switching the gas flowing to the reactor from a CO-containing mixed gas flow to a CO2 gas flow (based on the attached drawing). (described later), or a method in which the precipitated C is taken out from the downstream of the CO-containing mixed gas together with the catalyst and transferred to the downstream of the CO2 gas.

反応式(II)の反応系には目的とするCOガスのほか
にCO2ガスの過剰分が含まれているので、同反応系の
混合ガスを塩基性のCO2吸収液で処理して同波にCO
2ガスを吸収させ、COガスのみを分離回収する。
Since the reaction system of reaction formula (II) contains an excess of CO2 gas in addition to the target CO gas, the mixed gas of the same reaction system is treated with a basic CO2 absorption liquid to produce the same wave. C.O.
2 gases are absorbed, and only CO gas is separated and recovered.

この発明によるCO回収方法の理想的フローを添附図面
に示す。
The ideal flow of the CO recovery method according to the present invention is shown in the accompanying drawings.

同図において、(1)は触媒を充填した反応器、(2)
は反応ガスからCO2ガスを分離する分離装置、(3)
は系外からの補給CO2を上記分1!i CO2に合わ
せる合流部である。そして図中の実線は、CO含有混合
ガスを反応器(1)に通して、前記反応式(I>により
Cを析出させ、副生じたC O2ガスと反応に関与しな
いN2ガスを分離装置(2)で分離し、分離CO2を回
収するフローを示している。また破線は、分離CO2(
必要に応じてこれに系外から補給CO2が合流部(3)
において加えられる)を反応器(1)に通して、前記反
応式(n)によりCOガスを生成させるフローを示して
いる。
In the figure, (1) is a reactor filled with catalyst, (2)
is a separation device that separates CO2 gas from the reaction gas, (3)
The amount of CO2 supplied from outside the system is 1! i It is a confluence section that matches CO2. The solid line in the figure indicates that the CO-containing mixed gas is passed through the reactor (1) to precipitate C according to the reaction formula (I), and the by-produced CO2 gas and the N2 gas not involved in the reaction are separated by the separation device (1). 2) shows the flow of separating CO2 and recovering the separated CO2.The broken line shows the flow of separating CO2 (2) and recovering the separated CO2.
If necessary, supplementary CO2 from outside the system joins this part (3)
The flowchart shows a flow in which CO gas is produced by passing CO gas (added in step 1) through the reactor (1) according to the reaction formula (n).

発明の効果 この発明によるCO回収方法は以上のとおり構成されて
いるので、製鉄所の高炉排ガスなどのco含有混合ガス
から利用価値の高いCOガスを収率よく回収することが
できる。
Effects of the Invention Since the CO recovery method according to the present invention is configured as described above, CO gas having high utility value can be recovered in high yield from a co-containing mixed gas such as blast furnace exhaust gas in a steel plant.

実  施  例 8〜14メツシユ・パス大に破砕された活性アルミナを
0.5モル/lのNt(Now)z水溶液に浸漬するこ
とにより、Ni(NOa)2をNiとして約5重量%担
持したNiアルミナ触媒を調製した。ついで同触媒20
Qを、外径約15II1111で長さ300111[1
1の鋼製のシリンダー形反応器に充填し、1気圧のH2
ガス流下に温度4o o ’cで4時間触媒を処理し、
活性化させた。
Examples 8 to 14 Activated alumina crushed into mesh pass size was immersed in a 0.5 mol/l Nt(Now)z aqueous solution to support approximately 5% by weight of Ni(NOa)2 as Ni. A Ni alumina catalyst was prepared. Then the same catalyst 20
Q has an outer diameter of approximately 15II1111 and a length of 300111[1
A steel cylindrical reactor is filled with H2 at 1 atm.
Treat the catalyst for 4 hours at a temperature of 4o'c under gas flow,
Activated.

ついでこの反応器にCOガス20%とN2ガス80%よ
りなるCO含有混合ガスを流ff1ll/分で1気圧で
温度400℃で2時間流した。
Then, a CO-containing mixed gas consisting of 20% CO gas and 80% N2 gas was flowed into the reactor at a flow rate of 1 liter/min at 1 atmosphere and a temperature of 400° C. for 2 hours.

その結果触媒上にCが析出した。反応器のガス出口にお
ける非分散型赤外分光分析計による00211度の測定
の結果、Cの析出量は0.13gであることがわかった
As a result, C was deposited on the catalyst. As a result of measuring 00211 degrees using a non-dispersive infrared spectrometer at the gas outlet of the reactor, it was found that the amount of C precipitated was 0.13 g.

つぎに、この反応器にCO2ガスを流量0゜5//分で
1気圧で温度400℃で流した。反応器の出口ガスを分
析してCOガスの生成を確認した後、反応器の後流側に
設けられた洗気びん(約20%メタノールアミン水溶液
よりなるCO2吸収液を満たしたもの)に反応ガスを通
した。通過後のガスをガスクロマトグラフィで分析した
ところ、これは98%以上のCOガスであることが確認
された。このCO生成操作を4時間続けたところ、上記
純度のCOガスが約0.151回収された。
Next, CO2 gas was flowed into the reactor at a flow rate of 0°5/min at 1 atmosphere and a temperature of 400°C. After analyzing the outlet gas of the reactor and confirming the production of CO gas, the reaction is carried out in an air washing bottle (filled with a CO2 absorption liquid consisting of approximately 20% methanolamine aqueous solution) installed on the downstream side of the reactor. Passed the gas. When the gas after passing was analyzed by gas chromatography, it was confirmed that it was 98% or more CO gas. When this CO generation operation was continued for 4 hours, about 0.151 of CO gas of the above purity was recovered.

【図面の簡単な説明】[Brief explanation of drawings]

図面はCO回収方法を示すフローシートである。 (1)・・・反応器、(2)・・・分離装置。 以  上 外4名 The drawing is a flow sheet showing the CO recovery method. (1)...Reactor, (2)...Separation device. that's all 4 people outside

Claims (1)

【特許請求の範囲】 反応式 2CO→C+CO_2…( I ) によりCO含有混合ガス中のCOガスからCを析出させ
、ついで析出CをCO_2雰囲気に置き、反応式 C+CO_2→2CO…(II) によりCからCOガスを生成させることを特徴とする、
CO含有ガスからのCO回収方法。
[Claims] C is precipitated from CO gas in a CO-containing mixed gas by the reaction formula 2CO→C+CO_2...(I), then the precipitated C is placed in a CO_2 atmosphere, and C is precipitated by the reaction formula C+CO_2→2CO...(II). characterized by generating CO gas from
A method for recovering CO from CO-containing gas.
JP59220266A 1984-10-18 1984-10-18 Method for recovering co from gaseous mixture containing co Pending JPS6197123A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59220266A JPS6197123A (en) 1984-10-18 1984-10-18 Method for recovering co from gaseous mixture containing co

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59220266A JPS6197123A (en) 1984-10-18 1984-10-18 Method for recovering co from gaseous mixture containing co

Publications (1)

Publication Number Publication Date
JPS6197123A true JPS6197123A (en) 1986-05-15

Family

ID=16748486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59220266A Pending JPS6197123A (en) 1984-10-18 1984-10-18 Method for recovering co from gaseous mixture containing co

Country Status (1)

Country Link
JP (1) JPS6197123A (en)

Similar Documents

Publication Publication Date Title
RU2166546C1 (en) Method of combination of blast furnace and direct reduction reactor with use of cryogenic rectification
CA2575537C (en) Process for urea production from ammonia and carbon dioxide
JPS6053730B2 (en) Nickel refining method
US20020119091A1 (en) Apparatus for recovering sulfur from H2S and concurrent production of H2
US3284158A (en) Method of and apparatus for removing sulfur compounds from gases
JP2003500323A (en) Nitrous oxide purification method
WO2020233030A1 (en) Device and method for synergistic recover of sulfur and hydrogen resources from hydrogen sulfide acid gas
US3314753A (en) Process for the decomposition of phosgene
IE49567B1 (en) Continuous process for the removal of sulphur dioxide from waste gases,and hydrogen and sulphuric acid produced thereby
EP0004456B1 (en) Methanation of carbon monoxide without prior separation of inert gases
Vieten et al. Ammonia and nitrogen-based fertilizer production by solar-thermochemical processes
JPH07500081A (en) Method for producing hydroxylamine from NOx-containing flue gas
JPS6197123A (en) Method for recovering co from gaseous mixture containing co
RU97101115A (en) METHOD FOR EXCLUSION OF METAL CORROSION ("METAL DUSTING") DURING DIRECT REPAIR OF MATERIAL IRON OXIDE
JP2001096133A (en) Method and apparatus for separating and recovering carbon dioxide from exhaust combustion gas
CA2079757C (en) Process for the recovery of hydrogen and sulfur from a feedstock
US3695828A (en) Method of purification of exhaust gases from nitric oxides
JPS62153102A (en) Production of hydrogen gas using coke oven gas as raw material
JPS63112552A (en) Separation method for unconverted substance
JPS6128446A (en) Preparation of inert gas
US1102715A (en) Purification of mixtures containing nitrids.
RU2203216C2 (en) Method of regenerating gaseous waste contaminated with hydrogen or its isotope
JPS60262889A (en) Gasification of solid fuel
US2997369A (en) Process for enriching and/or producing heavy water during the synthesis of ammonia using exchange of isotopes between ammonia and hydrogen gas
JPH0656706A (en) Production of carbonaceous fuel and method for regenerating gaseous carbon dioxide into resource