JPS6196725A - Photo chemical vapor deposition method - Google Patents

Photo chemical vapor deposition method

Info

Publication number
JPS6196725A
JPS6196725A JP21772584A JP21772584A JPS6196725A JP S6196725 A JPS6196725 A JP S6196725A JP 21772584 A JP21772584 A JP 21772584A JP 21772584 A JP21772584 A JP 21772584A JP S6196725 A JPS6196725 A JP S6196725A
Authority
JP
Japan
Prior art keywords
reactive gas
focused
laser
reaction chamber
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21772584A
Other languages
Japanese (ja)
Inventor
Kunihiko Kasama
笠間 邦彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP21772584A priority Critical patent/JPS6196725A/en
Publication of JPS6196725A publication Critical patent/JPS6196725A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To extremely widen the selective range of applicable light source having no depositing effect on the inner wall of reaction chamber including photoirradiating window by a method wherein laser beams are focused on a reactive gas for irradiation in the two different directions while a multiple photon dissociating process to locally decompose the reactive gas is provided. CONSTITUTION:So-called dissociation due to multiple photons may be activated in the reactive gas near a point P on substrate whereon laser lights L1, L2 are focused to accelerate vapor re-action due to chemical decomposition locally depositing an aluminium conductive film. At this time, the reactive gas near the optical path of laser lights being hardly excited, the aluminium conductive film may not be deposited on the inner wall of reaction chamber 1 and the inner member surface of photo irradiating window 2 to prevent the throughput performance form deteriorating due to pollution. Besides, the reactive gas may be made atmospheric with no sensitizer added thereto at all since the laser lights may not be absorbed into the surface whereon they are not focused. A vapor growing film several mum-sub mum thick may be deposited by means of controlling the laser light focused region further easily forming an aluminium wiring pattern around 1mum wide if a laser light scanner is provided.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明にレーザ光を用い次光気相成長方法に関する0 (従来の技術) 今日における半導体集積回路装置の著しい発達は、薄膜
形成技術の多様化と膜質の向上に負うところがきわめて
大さい。この半導体技術分野で用いられる薄膜は、ゲー
ト絶縁膜、容量絶に膜、素子分離絶縁膜、層間絶縁膜お
工びパッジページ1ン膜などの絶縁性薄膜と、ゲート電
極用、オーミック電極用、配線用およびシロットキi・
バリヤ用などの導電性薄膜とに大別することができる。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a photochemical vapor phase growth method using laser light. (Prior Art) The remarkable development of semiconductor integrated circuit devices today is due to the wide variety of thin film forming techniques. This is largely due to improvements in film quality and film quality. The thin films used in this field of semiconductor technology include insulating thin films such as gate insulating films, capacitive insulating films, element isolation insulating films, interlayer insulating films, and films for gate electrodes, ohmic electrodes, etc. For wiring and Shirotki i・
It can be broadly divided into conductive thin films for barrier purposes and the like.

CVD法(ケミカル・ペーパー・テポジション・メンー
ド)は近年めざましく発達し友薄膜形成技術で、全ての
状科源は反応室内に気体で導入され、目的とする薄膜は
化学反応にエフ所謂気相成長で堆積される。CVD法は
高純度の薄膜が低温で生成でき、伐科源の選択に1って
絶縁性と導電性の如何を問わず任意の組成の薄膜?精度
良く均一に形成し得るのが大きな利点である。
CVD (Chemical Paper Deposition Mending) is a thin film forming technology that has developed rapidly in recent years. All the sources are introduced into the reaction chamber as a gas, and the desired thin film is produced by chemical reaction using so-called vapor phase growth. It is deposited in The CVD method can produce high-purity thin films at low temperatures, and the best choice for cutting materials is thin films of any composition, regardless of whether they are insulating or conductive. A major advantage is that it can be formed uniformly with high precision.

従来、CVD法にはプラズマCVD法が主流を占め、反
応性気体の分解には放電プラズマによるエネルギが利用
されて米た。し力1し、プラズマ中には電子、イオンお
よび輻射線等が混在し、その衝突にニジ生成膜または下
地基板上損傷する恐れがあるので、これに代わるものと
して光CVD法が注目されている。光CVD法は、反応
気体に例えば水銀蒸気全増感剤として添加し波長254
 n m以下の紫外線エネルギによジ反応気体分子全化
学的に解離活性化するCVD技術の一つである。この薄
膜形成技術に、例えば、特開昭56−96704号「酸
化物層の光学気相被着方法」ま友は特開昭54−163
792号 「窒化シリコン膜の製造方法」の各特許公報
明細書に詳述されている。
Conventionally, the mainstream CVD method has been the plasma CVD method, in which energy from discharge plasma has been used to decompose reactive gases. However, plasma contains electrons, ions, radiation, etc., and their collisions may cause damage to the formed film or the underlying substrate, so the photo-CVD method is attracting attention as an alternative. . In the photoCVD method, for example, a mercury vapor total sensitizer is added to the reaction gas, and a wavelength of 254
It is one of the CVD techniques in which all reactive gas molecules are chemically dissociated and activated by ultraviolet energy of nm or less. This thin film forming technique is covered by, for example, JP-A No. 56-96704, ``Optical vapor phase deposition method of oxide layer'', published in JP-A No. 54-163.
No. 792 ``Method for manufacturing silicon nitride film'' is detailed in each patent publication specification.

(発明が解決しようとする問題点) しかしながら、この光CV’D@に関する他の特許公報
間1lBl書、例えば特開昭56−35425号「光化
学的気相被着装置および方法」または特開昭57−15
4839号 「光化学的気相被着装置および方法−がそ
れぞれ開示しているように、この光CVD法には、気相
反応の進行と共に光照射窓の部桟内面お工び反応室の内
壁面にまで気相反応膜が堆積し汚染する所謂堆積効果現
象?おこ丁。特に光照射窓における堆積効果は、堆積膜
厚の増加と共に反抄      応室内への紫外線照射
量全減少させ、最後には気相反応全停止せしめるに至る
ので、スルー・グツト性能全署しく悪化させる。また、
一般に反応性気体に真空紫外線領域に吸収波長會有して
いるので、気相反応全進行させ得る光源は制約され、そ
の選択の範囲はきわめて限定される。
(Problems to be Solved by the Invention) However, there are other patent publications related to this optical CV'D, such as JP-A No. 56-35425 "Photochemical Vapor Phase Deposition Apparatus and Method" or JP-A No. 57-15
As disclosed in No. 4839 "Photochemical Vapor Deposition Apparatus and Method", this photo-CVD method involves the preparation of the inner wall surface of the light irradiation window and the inner wall surface of the reaction chamber as the gas phase reaction progresses. What is the so-called deposition effect phenomenon in which a gas-phase reaction film accumulates and contaminates the reaction chamber?In particular, the deposition effect at the light irradiation window decreases the total amount of ultraviolet irradiation into the reaction chamber as the deposited film thickness increases, and eventually Since the gas phase reaction is completely stopped, the throughput performance deteriorates completely.Also,
Generally, reactive gases have absorption wavelengths in the vacuum ultraviolet region, so the light sources that can cause the gas phase reaction to proceed completely are limited, and the range of selection thereof is extremely limited.

(発明の目的) 本発明の目的に、上記の情況に鑑み、光照射窓?含む反
応室の内壁面に対し気相反応膜の堆積効果音生ずること
なく、且つ用い得る光源の選択範囲全きわめて自由にな
し得た光気相成長方法?提供することである。
(Object of the Invention) For the purpose of the present invention, in view of the above circumstances, a light irradiation window? What is the optical vapor phase growth method that allows the deposition of a vapor phase reaction film on the inner wall surface of a reaction chamber without producing sound effects and which allows for extremely free selection of the light sources that can be used? It is to provide.

(発明の構成) 本発明の光気相成長方法は、反応性気体に異なる2つ以
上の方向からレーザ光を集光照射して、前記反応性気体
?局所的に分解せしめる多光子解離工程?含む。
(Structure of the Invention) The optical vapor phase growth method of the present invention irradiates a reactive gas with condensed laser light from two or more different directions. A multiphoton dissociation process that causes local decomposition? include.

(問題At解決するための手段) すなわち、本発明に工れば、気相反応?進行せしめる光
源には紫外光に代わってレーザ光が使用される。この場
合、反応性気体の化学的分解手段には多光子による解離
活性化現象が利用される。
(Means for solving the problem At) In other words, if the present invention is applied, will a gas phase reaction be possible? Laser light is used instead of ultraviolet light as a light source for advancing. In this case, the dissociation activation phenomenon by multiphotons is utilized as a means for chemically decomposing the reactive gas.

更に具体的に述べれば、気相成長膜?堆槓丁べさ基板面
は、異なる2つ以上の方向から投射されるレーザ光によ
り局所的に且つ選択的に集光照射され、局所的に反応性
気体を多光子解離させる。
To be more specific, what about vapor phase grown films? The surface of the substrate is locally and selectively focused and irradiated with laser beams projected from two or more different directions, and the reactive gas is locally multiphoton dissociated.

(作用ン ここで、2つ以上のレーザ光の集光照射ik気相反応条
件に適合せしめることによって、基板近傍の反応性気体
のみが解離活性化される。
(At this point, only the reactive gas near the substrate is dissociated and activated by condensed irradiation of two or more laser beams to match the gas phase reaction conditions.

比較的短波長のレーザ光は、酸化シリコン膜の形成に使
用されるシラン(S 1H4)と亜酸化窒素(N20 
)の混合気体、窒化シリコン膜形成の際のアンモニア(
NH3)、シラン(8iHQおよびヒドラジン(N 2
Hりの混合気体、或いにアルミ導体膜の形成におけるト
リメチル・アルミニューム気体など通常用いられる反応
性気体には、その光量が弱ければ殆んど吸収されない。
Laser light with a relatively short wavelength is used to combine silane (S1H4) and nitrous oxide (N20), which are used to form silicon oxide films.
), ammonia (
NH3), silane (8iHQ and hydrazine (N2
If the amount of light is weak, it will hardly be absorbed by reactive gases that are commonly used, such as a mixed gas of hydrogen or trimethyl aluminum gas for forming an aluminum conductor film.

従って、異なる2つ以上の方向から投射されるレーザ光
のそれぞれの光路近傍でに何等の反応も生ぜず、それら
が気相反応条件で満たて光量に達するように集光された
基板の局部近傍の反応性気体のみが解離し分解される。
Therefore, no reaction occurs in the vicinity of each optical path of the laser beams projected from two or more different directions, and the laser beams are concentrated in the local vicinity of the substrate such that they satisfy the gas phase reaction conditions and reach the light intensity. Only the reactive gases are dissociated and decomposed.

以下図面全参照し本発明の詳細な説明する。The present invention will be described in detail below with reference to all the drawings.

(実施例) 第1図は本発明全アルミ導体膜の形成Vこ実施しに場合
の一実施例?示す気相成長装置の断面構造図である。本
実施例は、反応室1と、その上面全構成する光照射窓2
と、反応性気体の導入口3お工び排出口4と奮含み、気
相成長膜全堆積すべきシリコン基板5は反応室内に載置
され、基板上の点Pには2つのレーザ光Llお↓びL2
が異なる方向から集光され照射される。1k、6は基板
加熱用電熱線、a訃工びbはその電源端子である。反応
性気体にはトリメチル・アルミニー−ム(A4(CH3
)3)が用いられ、導入口3お工び排出口4全介し反応
室1内に送られる。この反応性気体は常温では扁い蒸気
圧をもつ液体でおるが、水素(Hり気体全バブリングす
ることで反応室1内に送り込むことかでさる。ここで、
シリコン基板5は、必要があれば電熱線6で加熱され、
300〜400℃の温度に保持される。以上の準備が整
った段階でレーザ光LlおよびL2が、基板上の点Pに
集光される。これらのレーザ光には反応性気体トリメチ
ル・アルミニューム[Al(CHす3]が殆んど吸収し
’zい波長(例えば、KrF・・−248nm 、 X
eF・・−3Q8nm)全もつものが用いられる。この
段階でレーザ光LsL2が集光された基板上の点P近傍
の反応性気体には、所謂多光子にLる解離活性化現象が
生じ、化学的分解による気相反応が進行しアルミ導電膜
が局部的に堆積される。この際、レーザ光の光路1近傍
の反応性気体に殆んど励起されないので、反応室1の内
壁面および光照射窓2の部杖内面に堆積効果に生ぜず一
汚染1cよるスルー・グツト性能の劣化は防止される。
(Example) Fig. 1 shows an example of the formation of an all-aluminum conductor film according to the present invention. FIG. 2 is a cross-sectional structural diagram of the vapor phase growth apparatus shown in FIG. This embodiment consists of a reaction chamber 1 and a light irradiation window 2 that constitutes the entire upper surface of the reaction chamber 1.
A silicon substrate 5 on which a vapor-phase growth film is to be entirely deposited is placed in a reaction chamber, and a point P on the substrate is exposed to two laser beams Ll. ↓bi L2
is focused and irradiated from different directions. 1k and 6 are heating wires for heating the substrate, and numerals a and b are their power supply terminals. The reactive gas is trimethyl aluminum (A4(CH3
)3) is used, and is sent into the reaction chamber 1 through the inlet 3 and outlet 4. This reactive gas is a liquid with a low vapor pressure at room temperature, but it can be brought into the reaction chamber 1 by bubbling all of the hydrogen gas.Here,
The silicon substrate 5 is heated with a heating wire 6 if necessary,
The temperature is maintained at 300-400°C. At the stage where the above preparations are complete, the laser beams Ll and L2 are focused on a point P on the substrate. These laser beams have wavelengths that are almost absorbed by the reactive gas trimethyl aluminum [Al(CH3]) (for example, KrF...-248 nm,
eF...-3Q8nm) is used. At this stage, a so-called multiphoton dissociation activation phenomenon occurs in the reactive gas near the point P on the substrate where the laser beam LsL2 is focused, and a gas phase reaction due to chemical decomposition progresses, causing the aluminum conductive film to is deposited locally. At this time, since the reactive gas near the optical path 1 of the laser beam is hardly excited, there is no deposition effect on the inner wall surface of the reaction chamber 1 and the inner surface of the light irradiation window 2, and there is no through-gut performance due to contamination 1c. deterioration is prevented.

また、レーザ光が重ならない部分では吸収が起こらない
ので、反応性気体は常圧とすることも可能で勿論増感剤
の添加も不必要でるる。本実施例によれば、レーザ光の
重ね合われ領域全制御することによって数μ〜サブμm
の気相成長膜の堆積が可能であり、レーザ光の走査手段
欠設ければ、幅1μm程度のアルミ配線パターン七容易
に形成することも可能となる。その他ゲート用電極など
の微細化導電性薄膜の形成に好適であり、きわめて容易
に行なりことができる。
Furthermore, since absorption does not occur in areas where the laser beams do not overlap, the reactive gas can be kept at normal pressure, and of course there is no need to add a sensitizer. According to this embodiment, by controlling the entire overlapping area of laser beams, it is possible to
It is possible to deposit a vapor-phase growth film of about 1 μm in width, and if a laser beam scanning means is provided, it is also possible to easily form an aluminum wiring pattern with a width of about 1 μm. It is also suitable for forming fine conductive thin films such as gate electrodes, and can be formed extremely easily.

(発明の効果) 以上にアルミ導体膜の気相成長について説明したが、比
較的短波長のレーザ光を用いれば、殆んど全ての反応性
気体に実施することができるので、導電性と絶縁性の如
何ケ問わず任意の組成の微細薄膜全精度良く均一に形成
し得る。
(Effects of the Invention) The vapor phase growth of aluminum conductor films has been explained above, but if laser light with a relatively short wavelength is used, it can be performed on almost all reactive gases. It is possible to uniformly form fine thin films of any composition with high accuracy regardless of their properties.

まt、気相成長装置の内部全殆んど汚染することもない
ので、スルー・グツト性能全悪化することもない。更に
、従来に比し光源の選択自由度ハ大きく、光照射窓部状
に真空紫外光L!ll長波長のレーザ光全透過すれば足
り、ま几、反応性気体に常圧?用い得るなどの利点があ
るので、気相成長装置もま几簡易に構成し得る。
Moreover, since the entire interior of the vapor phase growth apparatus is hardly contaminated, the throughput performance will not deteriorate at all. Furthermore, the degree of freedom in selecting the light source is greater than in the past, and vacuum ultraviolet light L can be applied to the light irradiation window! Is it enough to completely transmit the long wavelength laser beam? Or is it normal pressure for the reactive gas? Since there are advantages such as ease of use, the vapor phase growth apparatus can also be easily constructed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明tアルミ導体膜の形成1c実施し九場合
の一笑施例孕示す気相成長装置の断面構造図である。
FIG. 1 is a cross-sectional structural diagram of a vapor phase growth apparatus showing a simple example of forming an aluminum conductor film according to the present invention.

Claims (1)

【特許請求の範囲】[Claims]  反応性気体に異なる2つ以上の方向からレーザ光を集
光照射して、前記反応性気体を局所的に分解せしめる多
光子解離工程を含むことを特徴とする光気相成長方法。
A photovapor phase growth method comprising a multiphoton dissociation step in which a reactive gas is irradiated with focused laser light from two or more different directions to locally decompose the reactive gas.
JP21772584A 1984-10-17 1984-10-17 Photo chemical vapor deposition method Pending JPS6196725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21772584A JPS6196725A (en) 1984-10-17 1984-10-17 Photo chemical vapor deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21772584A JPS6196725A (en) 1984-10-17 1984-10-17 Photo chemical vapor deposition method

Publications (1)

Publication Number Publication Date
JPS6196725A true JPS6196725A (en) 1986-05-15

Family

ID=16708759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21772584A Pending JPS6196725A (en) 1984-10-17 1984-10-17 Photo chemical vapor deposition method

Country Status (1)

Country Link
JP (1) JPS6196725A (en)

Similar Documents

Publication Publication Date Title
US5490896A (en) Photomask or a light shielding member having a light transmitting portion and a light shielding portion
EP0168768B1 (en) Dry etching process and apparatus
US6150265A (en) Apparatus for forming materials
US4784963A (en) Method for light-induced photolytic deposition simultaneously independently controlling at least two different frequency radiations during the process
JPS5982732A (en) Manufacture for semiconductor device
JPS60245217A (en) Thin film formation equipment
JPS6196725A (en) Photo chemical vapor deposition method
US5990006A (en) Method for forming materials
JPS63239811A (en) Optical reactor
JPS61216449A (en) Method and apparatus for forming pattern thin-film
JPS59165422A (en) Dry process apparatus
JPS59208065A (en) Depositing method of metal by laser
EP0298126B1 (en) Optical cvd process
JPS60249334A (en) Formation of thin film
JPS60167316A (en) Formation of film
JPH0974067A (en) Doping method and doping device
JPS59194452A (en) Manufacture of semiconductor integrated device
JPS61183920A (en) Apparatus for treating semiconductor or metal with laser beam or light
JPH0978245A (en) Formation of thin film
JPS60178622A (en) Manufacture of semiconductor device
JPS61164227A (en) Thin film forming method and device thereof
Boyd Recent advances in laser processing of microelectronic materials and devices
JPS61219129A (en) Photochemical vapor deposition with synchrotron radiation light
JPH01184278A (en) Depositing method for high-purity metal
JPS62149116A (en) Manufacture of thin-film layered superlattice structure