JPS6196382A - Defrostation controller - Google Patents
Defrostation controllerInfo
- Publication number
- JPS6196382A JPS6196382A JP21786284A JP21786284A JPS6196382A JP S6196382 A JPS6196382 A JP S6196382A JP 21786284 A JP21786284 A JP 21786284A JP 21786284 A JP21786284 A JP 21786284A JP S6196382 A JPS6196382 A JP S6196382A
- Authority
- JP
- Japan
- Prior art keywords
- defrosting
- cooler
- timer
- frost
- refrigerator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Defrosting Systems (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(イ)産業上の利用分野
本発明は冷蔵庫等の冷却器の除霜を確冥に達成する様に
構成した除霜制御装置に関する。。DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a defrosting control device configured to defrost a cooler such as a refrigerator without fail. .
(ロ)従来の技術
従来の此種除霜制御装置は例えば実公昭57−1266
号公報に示されている。ここに示された構成は電動圧縮
機が運転さ第1ている間(遅延期間を含む)回転するモ
ーター駆動の機械式タイマー装置を設け、所定回転して
除霜用ヒータの発熱が開始される様にしている。即ち、
電動圧縮機の運転積算時間が所定の値に達した時点で除
霜が開始されるものである。(b) Conventional technology A conventional defrosting control device of this kind is, for example,
It is shown in the publication No. The configuration shown here includes a motor-driven mechanical timer device that rotates while the electric compressor is in operation (including a delay period), and rotates for a predetermined time to start generating heat from the defrosting heater. I'm doing it like that. That is,
Defrosting is started when the cumulative operating time of the electric compressor reaches a predetermined value.
これは冷蔵庫等の冷却器に付着生長する霜の量が電動圧
縮機の運転積算時間に四季を通して略比例し、また、そ
の付着状態も四季を通して同一であるとの仮定の基に、
略一定の着霜状態で常に除霜が開始される様にして冷却
器の冷却能力の低下を防止すると共に自動除霜を達成し
たものである。This is based on the assumption that the amount of frost that grows on coolers such as refrigerators is approximately proportional to the cumulative operating time of the electric compressor throughout the seasons, and that the state of frost is the same throughout the seasons.
Defrosting is always started in a substantially constant frosting state, thereby preventing a decrease in the cooling capacity of the cooler and achieving automatic defrosting.
(ハ)発明が解決しようとする問題点
ところが実際には冷却器への着霜の状況は冷蔵庫周囲が
通常の温度の時と、冬季等の極低温の時とでは著しく異
なって来る。即ち、周囲温度が比較的高く湿度も高い環
境では、扉の開閉等も手伝って冷蔵庫の庫内温度及び湿
度も上昇し勝ちとなり、電動圧縮機の運転率も高く頻繁
に運転さね、冷却器への着霜スピードも速くなるので除
霜の終了から次回の除霜の開始までの通算時間も短くな
る。また、冷却器と冷却器を通過する空気との温度差が
大きい為に、庫内から吸込まれ冷却器、に流入して先ぐ
に空気中の水分が氷結し、その結晶の大きさが大きく、
そのため着霜は冷却器の空気吸込側に生長し、しかも前
記通算時間も短いので比較的密度の低い、柔らかい霜が
付着する。(c) Problems to be Solved by the Invention However, in reality, the conditions of frost formation on the cooler differ significantly between when the surrounding temperature of the refrigerator is normal and when the temperature around the refrigerator is extremely low, such as in winter. In other words, in an environment where the ambient temperature is relatively high and humidity is high, the internal temperature and humidity of the refrigerator will rise due to the opening and closing of the door, and the operating rate of the electric compressor will be high and the refrigerator will not be operated frequently. Since the frosting speed becomes faster, the total time from the end of defrosting to the start of the next defrosting is also shortened. In addition, because there is a large temperature difference between the cooler and the air passing through the cooler, the moisture in the air freezes as soon as it is sucked in from inside the refrigerator and flows into the cooler, and the crystals become large.
Therefore, frost grows on the air suction side of the cooler, and since the total time is short, relatively low-density, soft frost adheres.
一方冬季等の周囲温度の低い環境では庫内温度も上り難
くなるので電動圧縮機の運転率が低くなり、前述の通算
時間も長くなる。また、冷却器と冷却器を通過する空気
との温度差も比較的小さくなる為、水分は冷却器に流入
して氷結しても結晶が小さく先ぐには冷却器に付着せず
、前部はもちろん中筒部から流出側Kかけても生長する
様になる。しかも、前述の通算時間も長いので、着霜が
過冷却される時間も長く、比較的密度の高い硬い霜が付
着することになる。On the other hand, in an environment where the ambient temperature is low, such as in winter, it is difficult for the temperature inside the refrigerator to rise, so the operation rate of the electric compressor becomes low, and the above-mentioned total time becomes longer. In addition, the temperature difference between the cooler and the air passing through the cooler is also relatively small, so even if moisture flows into the cooler and freezes, the crystals are small and do not immediately adhere to the cooler, and the front part of the cooler is not covered. It also grows from the middle tube part to the outflow side K. Moreover, since the above-mentioned total time is long, the time for supercooling the frost is also long, and hard frost with relatively high density will adhere.
一方、冷却器の除霜を終了させるには通常着霜が融解し
終ったであろう所定の冷却器温度にて動作する例えばバ
イメタルスイッチ等を用い、所定の除霜終了温度にて除
霜用ヒータの発熱を停止せしめている。このバイメタル
スイッチは通常四季を通して着霜が生長しやすい冷却器
の空気吸込側に取り付けられるが、前述の如く冷蔵庫の
周囲温度によって冷却器の着霜の状態及び着霜の位置等
が異なってくるので単一のバイメタルスイッチでは適切
な除霜ができなくなる。即ち、バイメタルスイッチを冷
却器の空気吸入側に取付けた場合。On the other hand, to end defrosting of the cooler, a bimetal switch, etc., which operates at a predetermined cooler temperature at which the frost would normally have finished melting, is used. This causes the heater to stop generating heat. This bimetal switch is usually installed on the air intake side of the cooler where frost tends to grow throughout the year, but as mentioned above, the state of frost on the cooler and the position of frost will vary depending on the ambient temperature of the refrigerator. A single bimetallic switch will not provide adequate defrost. In other words, when a bimetal switch is installed on the air intake side of the cooler.
周囲温度が高い時には′、その部分に着霜が生長する為
、バイメタルの感知する温度が実際に着霜が融解し終わ
る温度となるが、周囲温度が低い時には殆んどの着霜は
バイメタルスイッチの位置しない部分に生長し且つ密度
が高いのでバイメタルスイッチが動作しても、着霜が未
だ残留してしまう。When the ambient temperature is high, frost grows on that part, so the temperature that the bimetal senses is the temperature at which the frost actually ends to melt, but when the ambient temperature is low, most of the frost builds up on the bimetal switch. Since it grows in areas where it is not located and is dense, frost will still remain even if the bimetal switch is activated.
この様な状態が繰り返えされると残留した硬い霜の量が
膨大なものとなり、冷却器の空気流通が成されなくなり
、これKよ゛つて冷蔵庫内の冷却不良が発生する。従っ
てこの様な不都合を解決する為には、冷却器の前部と後
部にそれぞれバイメタルスイッチを合計二個或いはそれ
以上設けなければならなくなる欠点がある。If such a situation is repeated, the amount of remaining hard frost becomes enormous, and air circulation through the cooler becomes impossible, resulting in insufficient cooling within the refrigerator. Therefore, in order to solve this problem, a total of two or more bimetal switches must be installed at the front and rear of the cooler.
に)問題点を解決するための手段
本発明は斯かる問題点を解決するために、冷却装置艷の
運転時間を積算して所定の積算時間で除霜開始出力を発
生する稟1の時限手段0と、この積算時間よりも十分長
い所定時間毎に除霜開始出力を発生する第2の時限手段
囚と、何れかの除霜開始出力で冷却器住υの除霜をする
除霜手段(ロ)を準備し、この倒れかの除霜開始出力に
よって両時限手段囚(B)を初期化する様に構成したも
のである。B.) Means for Solving the Problems In order to solve the problems, the present invention provides a timer means for accumulating the operating time of the cooling device and generating a defrosting start output at a predetermined accumulated time. 0, a second timer that generates a defrosting start output at predetermined intervals that is sufficiently longer than this integrated time, and a defrosting means that defrosts the cooler with one of the defrosting start outputs. (B) is prepared, and both time-limiting means (B) are initialized by the defrosting start output of this collapse.
(ホ)作用
本発明によれば冷蔵庫の周囲温度が通常状態りあれば第
1の時限手段により冷却装置の所定の運転積算時間によ
り除霜を実行し、周囲が低温状態であり、第1の時限手
段の所定積算時間と第2の時限手段の所定積算時間との
比により決まる冷却装置の運転率の下限値よりも運転率
が低下した時は第2の時限手段の出力によって第1の時
限手段に無関係に強制的罠冷却器の除霜を実行する事が
でき、従って低周囲温度時の異常着霜による除霜後の霜
残りを未然に防止できる。(E) Effect According to the present invention, if the ambient temperature of the refrigerator is in a normal state, defrosting is executed by the first timer for a predetermined cumulative operating time of the cooling device, and if the ambient temperature is in a low temperature state and the first When the operating rate of the cooling device falls below the lower limit value of the operating rate of the cooling device determined by the ratio of the predetermined cumulative time of the timer and the predetermined cumulative time of the second timer, the first timer is set by the output of the second timer. It is possible to perform forced defrosting of the trap cooler regardless of the means used, and therefore it is possible to prevent frost remaining after defrosting due to abnormal frost formation at low ambient temperatures.
(へ)実施例
図面に於いて実施例を説明する。第3図は例えば此種冷
蔵庫(1)の上部側断面を示している。(2)はτ。(F) Embodiment An embodiment will be explained with reference to the drawings. FIG. 3 shows, for example, a cross section of the upper side of this type of refrigerator (1). (2) is τ.
鋼板製の外筒t31(41はそれぞれ冷凍室(5)と冷
蔵室(6)を構成する冷凍室内箱、冷蔵室内箱で、それ
ぞれ外箱(2)と間隔を存して組み込まれ、この間隔内
に断熱材(7)が充填されている。更に内箱(3)の底
壁と内箱(4)の天壁によって仕切壁(8)が構成され
、この仕切壁(8)と冷凍室(5)の底板(91との間
に冷却室(1■がフィンに冷媒管(12+と除霜ヒータ
(13)を蛇行状に貫通して構成されている。■は冷却
器111下方に設けられた露受皿、051は露受皿(1
41加熱用のヒータ、又、卸は露受皿α滲の排出口α9
に開口し庫外に連通した除霜水排出ホースである。即ち
、除霜ヒータ住剖により融解せられた冷却器fillの
着霜は露受皿圓上に落下し、排出ホース(161により
庫外に排出される。The outer cylinder T31 (41) made of steel plate is a freezer compartment box and a refrigerator compartment box that constitute the freezer compartment (5) and the refrigerator compartment (6), respectively, and are built into the outer box (2) with a gap between them. A heat insulating material (7) is filled inside.Furthermore, a partition wall (8) is formed by the bottom wall of the inner box (3) and the top wall of the inner box (4), and this partition wall (8) and the freezer compartment A cooling chamber (1) is formed between the bottom plate (91 of 051 is the dew pan (1
41 Heater for heating, and draining pan α9
This is a defrost water discharge hose that opens at the front and communicates with the outside of the refrigerator. That is, the frost on the cooler fill, which is melted by the defrosting heater, falls onto the condensation pan and is discharged to the outside of the refrigerator through the discharge hose (161).
冷却器(IIIKよって冷却された空気は冷却室αα後
方に設置した送風機(181(送風機ttaは後述する
電動圧縮機関と連動する。)により吸引され、ダクト四
により冷凍室(5)と冷蔵室(6)に分配される。冷凍
室(5)内は図示しない温度制御装置により後述する電
動圧縮機(至)を運転停止し、例えば−20℃等の凍結
温度に、また、冷蔵室(6)は同様K例えば+5℃等の
冷蔵温度にそれぞれ冷却される。両室+51+6+内を
循環した冷気は仕切壁(8)前部の吸入口C2G(2υ
より吸入さね、冷却器aυ前方で合流して冷却器aυに
吸込まれる。The air cooled by the cooler (IIIK) is sucked by a blower (181 (the blower tta is linked to an electric compression engine, which will be described later) installed behind the cooling room αα, and is transferred to the freezing room (5) and the refrigerator room (5) through duct 4. Inside the freezer compartment (5), an electric compressor (to be described later) is stopped by a temperature control device (not shown) to maintain a freezing temperature of, for example, -20°C. are similarly cooled to the refrigeration temperature of, for example, +5°C.The cold air circulating in both chambers +51+6+ is passed through the inlet C2G (2υ
They are sucked in further, merge in front of the cooler aυ, and are sucked into the cooler aυ.
次罠本発明の除霜制御装置の実施例を説明するが、マイ
クロコンビエータにより構成する為に。Next, an embodiment of the defrosting control device of the present invention will be described, but since it is constituted by a micro combinator.
先ずその機能ブロック図を第2図に示す。艶は冷却装置
を構成する電動圧縮機であり、この電動圧縮機■の運転
時間をタイマ(Blが積算する。囚は冷蔵庫(1)IC
電源が投入されてから積算を開始するタイマである。タ
イマ囚は例えば24時間の積算にて出力端子Cl1lよ
り除霜開始出力を発生し、タイマ■は例えば8時間の積
算にて出力端子器より除霜開始出力を発生するもので、
両出力はORゲート(至)に入力され、その出力発生に
よって除霜ヒータ(13を含む除霜装置(ロ)が動作さ
れる。除霜装置(ロ)はORゲート(至)の出力が発生
した時点で電動圧縮機(ト)の運転を禁止して除霜ヒー
タ(131への通電を開始する。(至)は冷却器αυの
前部に設け、冷却器αυの温度を検出するセンサで、こ
のセンナ(ト)が所定の除霜終了温度例えば+18℃を
感知した時点で除霜装置(財)は除霜を終了する。また
、ORゲート[有]の出力はタイマ(A)(Blのリセ
ット端子(36)C3ηに入力されて、両タイマをリセ
ットし、それにより積算が−から再開される。First, FIG. 2 shows its functional block diagram. The main part is the electric compressor that makes up the cooling system, and the timer (BL) totals the operating time of this electric compressor.The prisoner is the refrigerator (1) IC.
This is a timer that starts integration after the power is turned on. The timer unit generates a defrosting start output from the output terminal Cl1l after 24 hours of integration, and the timer ■ generates a defrost start output from the output terminal after 8 hours of integration, for example.
Both outputs are input to the OR gate (to), and the defrosting device (b) including the defrosting heater (13) is operated by the output generation.The defrosting device (b) generates the output of the OR gate (to) At that point, the operation of the electric compressor (G) is prohibited and the power supply to the defrosting heater (131 is started. , the defrosting device ends defrosting when this senna detects a predetermined defrosting end temperature, for example +18°C.The output of the OR gate is output from the timer A It is input to the reset terminal (36) C3η of , and resets both timers, thereby restarting the integration from -.
次に第1図に電動圧縮機例の運転制御を除く、マイクロ
コンビエータの除霜制御のフローチャートを示す。電源
投入からスタートし、ステップ(40でタイマ囚がカウ
ントし、ステップCυでタイマ囚のカウントが24時間
となっているか否か判断し、なっていなければステップ
@2で電動圧縮機ωが運転中か否か判断し1.運転して
いればステップ(43でタイマ(Blがカウントし、ス
テップ(44)でタイマの)のカウントが8時間となっ
ているか否か判断する。Next, FIG. 1 shows a flowchart of defrosting control of the micro combinator, excluding operation control of an example of an electric compressor. Start from power-on, step (40), the timer counts, step Cυ determines whether the timer's count is 24 hours, and if not, step @2, where the electric compressor ω is running. 1. If the vehicle is running, it is determined whether the timer (Bl counts in step 43 and the timer counts in step (44)) has reached 8 hours.
ステップ(45で電動圧縮機■か停止中である時、また
、ステップ(4荀で8時間でない時は共にステップ(4
ηに進み、除霜用のFLAGがセットされているか否か
判断し、F L A G リセット状態であるからステ
ップ6υに進んで除霜亡−タ(131は発熱せず再びス
テップ顛に戻る。以上を繰り返して冷却器Uυの除霜中
でない時はタイマ囚は電源投入より積算を続はタイマ(
B)は電動圧縮機■の運転時間を積算し続け、庫内は冷
却される。When the electric compressor ■ is stopped at step (45), or when it is not 8 hours at step (45), step (4
Proceeding to step η, it is determined whether or not the defrosting FLAG is set, and since the FLAG is in the FLAG reset state, the process proceeds to step 6υ where the defrosting motor (131) does not generate heat and returns to the previous step. Repeat the above steps, and when the cooler Uυ is not being defrosted, the timer will continue to integrate from the power on.
B) continues to integrate the operating time of the electric compressor (■), and the inside of the refrigerator is cooled.
ステップ04でカウントが8時間になるとステップΩ9
でタイマ(Al(Blをリセットし、ステップ(461
で除霜用のFLAGをセットする。次にステップ(47
)では現在FLAGセットであるからステップ(4Sに
進み、除霜ヒータ(131を発熱させ、冷却器ODの除
霜を開始する。次にステップ(ハ)で冷却器(Illの
温度(TE)が除霜終了温度である+18℃以上か否か
判断し。When the count reaches 8 hours in step 04, step Ω9
Reset the timer (Al(Bl) at step (461
Set the defrosting FLAG with . Next step (47
), since the FLAG is currently set, proceed to step (4S) to make the defrost heater (131 generate heat and start defrosting the cooler OD.) Next, in step (c), the temperature (TE) of the cooler (Ill) is set. Determine whether the temperature is above +18°C, which is the defrosting end temperature.
+18℃より低ければステップ(4Gへ戻りタイマ囚が
カウントする。次にタイマ囚はステップ(ハ)でリセッ
トされているからカウントは24時間ではないのでステ
ップ(6)へ進むが電動圧縮機例は停止しているのでス
テップ(4でへ進む。この時FLAGはセットされてい
るからステップ(4秒へ進み除霜ヒータ(131を発熱
し続け、次にステップ(491へ進むが温度(TE)が
+18℃に上昇していなければ再びステップ(4Gへ戻
る。これを繰り返えして冷却器Qlの除霜が進行する。If it is lower than +18°C, the process returns to step (4G) and the timer counts.Next, since the timer has been reset in step (c), the count is not 24 hours, so proceed to step (6), but for the electric compressor example Since it is stopped, proceed to step (4). At this time, FLAG is set, so proceed to step (4 seconds), continue to generate heat in the defrosting heater (131, and then proceed to step (491), but the temperature (TE) If the temperature has not risen to +18°C, return to step (4G) again. This is repeated to proceed with defrosting of the cooler Ql.
また、この除霜中にもタイマ囚はカウントを続ける。そ
の後温度(TE)が除霜終了温度+18℃に上昇すると
ステップ(491からステップ印に進んでFLAGをリ
セットし、ステップ6υで除霜ヒータ(131は発熱を
停止して除霜を終了すると共にステップ(40に戻る。Also, the timer continues to count during this defrosting process. After that, when the temperature (TE) rises to the defrosting end temperature + 18 degrees Celsius, it advances from step (491) to the step mark to reset FLAG, and in step 6υ, the defrosting heater (131 stops generating heat to end defrosting and step (Return to 40.
冷蔵庫(11の周囲温度が低くなると、庫内の温度も上
昇し難くなるから電動圧縮機■の運転率も低下して来る
。この運転率が33.3%(即ち8時間/24時間)よ
りも低くなるとステップ(411でタイマ囚のカウント
が24時間となり、ステップ(451に進んでタイマ(
A)(B1をリセットし、ステップ(佃でFLAGをセ
ットし、以下前述の説明同様冷却器ttuの除霜が実行
され、除霜終了温度+18℃で除霜を終了する。従って
、周囲温度が低下して電動圧縮機例の運転率が低下し、
前回の除霜開始から24時!%#ff経過しても次回の
除霜が開始されない時、即ち24時間の内に電動圧縮機
(7)の運転積算時間が8時間に満たない運転率−33
,3%以下の状況では電動圧縮機(7)の運転時間に関
係なく、強制的に冷却器αBの除霜を実行する事になる
。これKよりの除霜で融解し切る程度の着霜量のうちに
強制的に除霜を開始せしめる事ができ、霜残りの発生に
よる不都合を未然に防止する事が可能となる。また、こ
の時除霜終了温度を検出するセンサも単一のもので良く
、部品点数も増加しない。When the ambient temperature of the refrigerator (11) becomes lower, the temperature inside the refrigerator becomes difficult to rise, so the operation rate of the electric compressor (■) also decreases. When the timer count becomes low, the timer count becomes 24 hours in step (411), and the timer count goes to step (451).
A) (Reset B1, set FLAG in step (Tsukuda), defrost the cooler ttu as explained above, and end defrosting at the defrosting end temperature +18°C. Therefore, if the ambient temperature As a result, the operating rate of the electric compressor decreases,
24 hours since the last defrost started! When the next defrosting is not started even after %#ff elapses, that is, the cumulative operating time of the electric compressor (7) within 24 hours is less than 8 hours. Operation rate -33
, 3% or less, the cooler αB will be forcibly defrosted regardless of the operating time of the electric compressor (7). Defrosting can be forcibly started before the amount of frost has completely melted by defrosting from K, making it possible to prevent inconveniences due to the occurrence of residual frost. Further, a single sensor may be used to detect the defrosting end temperature at this time, and the number of parts does not increase.
また、冷凍室(5)内の低温冷気と冷蔵室(6)内の比
較的温度が高く湿度も高い冷気はそれぞれ吸入口■Qυ
から冷却室(1α内に流入し冷却器aυ前方で接触する
が、電動圧縮機(至)及び送風機−が運転されている間
は気流が早いので冷却室αO内壁に着霜が生ずる事は無
いが、電動圧縮機q及び送風機−の停止中には、吸入口
■(211から自然に流入して来る画室+51(61の
冷気の内の冷蔵室(6)からの冷気中の水分が、冷凍室
(5)からの冷気に接触して冷却されて凝縮し、冷却器
(111前方の冷却室OI内壁に霜となって付着し始め
る。従って周囲温度が低下して電動圧縮機(7)の運転
率が低下して、電動圧縮機(7)及び送風機−の停止期
間が長くなるとこの部分の着霜は累積されていって遂に
は冷気通路を閉塞してしまう危険性がある。また、冷却
器αυの除霜中に冷却室α1内の温度が上昇してこの着
霜が融解すると吸入口(211より融解水が逆流して冷
蔵室(6)内に滴下する問題が生じる為に、冷却器aυ
前方にも格別なヒータを従来設けていたが、本発明によ
りば電動圧縮機(7)の運転率が低下した時には冷却器
αυ前方の着霜が生長する前に強制的に冷却器αυの除
霜を実行して、冷却室αaの温度を上げるので、斯かる
異常着霜は成長せず、従って格別なヒータ等も不要であ
る。In addition, the low-temperature cold air in the freezer compartment (5) and the relatively high-temperature and high-humidity cold air in the refrigerator compartment (6) are each inlet
Air flows into the cooling chamber (1α) and comes into contact with the front of the cooler aυ, but while the electric compressor (to) and blower are operating, the airflow is fast, so no frost will form on the inner wall of the cooling chamber αO. However, while the electric compressor q and blower - are stopped, the moisture in the cold air from the refrigerator compartment (6) of the cold air flowing into the compartment +51 (61) that naturally flows from the suction port (211) is frozen. It comes in contact with the cold air from the chamber (5), is cooled and condensed, and begins to form frost on the inner wall of the cooling chamber OI in front of the cooler (111).Therefore, the ambient temperature decreases and the electric compressor (7) When the operating rate decreases and the electric compressor (7) and blower are stopped for a long time, there is a risk that frost will accumulate in this area and eventually block the cold air passage. If the temperature in the cooling chamber α1 rises during defrosting of the refrigerator αυ and this frost melts, there will be a problem that melted water will flow back from the suction port (211) and drip into the refrigerator compartment (6). vessel aυ
Conventionally, a special heater was also provided in the front, but according to the present invention, when the operating rate of the electric compressor (7) decreases, the cooler αυ is forcibly removed before the frost builds up in front of the cooler αυ. Since frost is carried out to raise the temperature of the cooling chamber αa, such abnormal frost does not grow, and therefore no special heater or the like is required.
ここでタイマ囚03)のタイマ時間及びそれらにより決
定される強制除霜に入る時の運転率等は周囲温度が低い
時の着霜量が一回の除霜で融解できなくなるまで増加す
る以前に強制除霜が実行される様に設定すれば良く、何
等実施例に限られない。Here, the timer time of timer 03) and the operating rate at the time of forced defrosting determined by them are determined before the amount of frost when the ambient temperature is low increases until it cannot be melted by one defrost. It may be set so that forced defrosting is executed, and is not limited to the embodiments.
(ト)発明の効果
本発明によれば冷蔵庫等の冷却装置が通常の運転状態で
ある時は、冷却装置の運転時間を積算して所定の積算に
て冷却器の、除霜を開始すると共に、第1の時限手段と
第2の時限手段とで決まる冷却装置の運転率の下限値よ
りも運転率が低下した時、即ち前回の除霜から所定の長
時間次回の除霜が成されない時は冷却装置の運転積算時
間とかかわらず冷却器を強制除霜する事ができる。従っ
て冷蔵庫の周囲温度が低い時に冷却器の運転率が低下し
、冷却器の空気流出側にも密度の高い硬い霜が生長して
も、−回の除霜で融解し切れなくなる程の量になる前に
強制的に除去する事が可能となり、冷却器の霜残りを防
止し、残留着霜の増加による冷却効果の悪化を未然に防
止できる。また、除霜終了させる為のセンサ等も単一の
もので済み、部品点数の増加を招く事無く、冷却器の霜
残りが確実に防止できる。(G) Effects of the Invention According to the present invention, when a cooling device such as a refrigerator is in a normal operating state, the operating time of the cooling device is accumulated and defrosting of the cooler is started at a predetermined accumulation. , when the operating rate of the cooling device falls below the lower limit value of the operating rate of the cooling device determined by the first timer and the second timer, that is, when the next defrost is not performed for a predetermined period of time after the previous defrost. can forcefully defrost the cooler regardless of the cumulative operating time of the cooling device. Therefore, when the ambient temperature of the refrigerator is low, the operation rate of the cooler decreases, and even if dense and hard frost grows on the air outlet side of the cooler, the amount will be so large that it will not be able to be completely melted after - times of defrosting. This makes it possible to forcibly remove frost before the frost builds up, which prevents frost from remaining on the cooler and prevents deterioration of the cooling effect due to an increase in residual frost. In addition, a single sensor and the like for terminating defrosting can be used, and no frost remains on the cooler without increasing the number of parts.
各図は本発明の実施例を示すもので、第1図は除霜制御
装置を説明するための70−チャート、第2図は同機能
ブロック図、第3図は冷蔵庫上部の側断面図である。
αυ・・・冷却器、 (131・・・除霜ヒータ、 (
7)・・・電動圧縮機、 囚(Bl・・・タイマ、 (
ロ)・・・除霜装置。
出願人 三洋電機株式会社 外1名
代理人 弁理士 佐 野 靜 夫
第1図
第21!1Each figure shows an embodiment of the present invention. Figure 1 is a 70-chart for explaining the defrosting control device, Figure 2 is a functional block diagram of the same, and Figure 3 is a side sectional view of the upper part of the refrigerator. be. αυ...Cooler, (131...Defrost heater, (
7)...Electric compressor, prisoner (Bl...timer, (
b)...Defrosting device. Applicant Sanyo Electric Co., Ltd. and 1 other agent Patent attorney Masao Sano Figure 1 Figure 21!1
Claims (1)
て所定の積算時間にて除霜開始出力を発生する第1の時
限手段と、前記積算時間よりも十分長い所定時間毎に除
霜開始出力を発生する第2の時限手段と、前記両時限手
段の発生する何れかの除霜開始出力により動作して冷却
器の着霜を除去する除霜手段とより成り、前記何れかの
除霜開始出力によって前記両時限手段を初期化する除霜
制御装置。1. A first timer that integrates the operation time of a cooling device used in a refrigerator or the like and generates a defrosting start output at a predetermined integrated time; and a first timer that starts defrosting at predetermined time intervals that are sufficiently longer than the integrated time. a second timer for generating an output, and a defrosting means for removing frost from the cooler by being operated by one of the defrosting start outputs generated by the two timer means, A defrosting control device that initializes both of the time limit means with a start output.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21786284A JPS6196382A (en) | 1984-10-17 | 1984-10-17 | Defrostation controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21786284A JPS6196382A (en) | 1984-10-17 | 1984-10-17 | Defrostation controller |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6196382A true JPS6196382A (en) | 1986-05-15 |
Family
ID=16710928
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21786284A Pending JPS6196382A (en) | 1984-10-17 | 1984-10-17 | Defrostation controller |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6196382A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6321472A (en) * | 1986-07-14 | 1988-01-29 | 三洋電機株式会社 | Defroster for refrigerator |
JPH03152374A (en) * | 1989-11-08 | 1991-06-28 | Daikin Ind Ltd | Operation control device of refrigerating plant |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5744911A (en) * | 1980-07-02 | 1982-03-13 | Furokooru Sa | Industrially producing device and method for wire covered with adhesive and flocked as well as obtained wire |
-
1984
- 1984-10-17 JP JP21786284A patent/JPS6196382A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5744911A (en) * | 1980-07-02 | 1982-03-13 | Furokooru Sa | Industrially producing device and method for wire covered with adhesive and flocked as well as obtained wire |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6321472A (en) * | 1986-07-14 | 1988-01-29 | 三洋電機株式会社 | Defroster for refrigerator |
JPH03152374A (en) * | 1989-11-08 | 1991-06-28 | Daikin Ind Ltd | Operation control device of refrigerating plant |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8074464B2 (en) | Ice producing apparatus | |
US3004401A (en) | Forced air cooled refrigerator | |
US4344294A (en) | Thermal delay demand defrost system | |
US3252292A (en) | Refrigerating apparatus | |
JPS6196382A (en) | Defrostation controller | |
JPH0534049A (en) | Defrosting operation control device for freezing device for container | |
JPH10267506A (en) | Cooling system | |
JPH07318214A (en) | Refrigerator | |
JPH0755327A (en) | Defrosting device for cooling device | |
JP2001263912A (en) | Refrigerator | |
KR100343679B1 (en) | Method for preventing freezing of damper | |
JPS61110869A (en) | Defrostaion controller | |
JP3606632B2 (en) | Controlling fan in refrigerator such as refrigerator | |
JPS63101646A (en) | Freezer | |
JPS61105079A (en) | Defrostaion controller | |
JPS61110868A (en) | Defrostaion controller | |
JP7474113B2 (en) | Defrost control device for refrigerator | |
JPH11248331A (en) | Refrigerator | |
JPH1123136A (en) | Refrigerator | |
JPS6049826B2 (en) | refrigerator cooling cycle | |
KR100259923B1 (en) | Method for preventing freezing of reg with a damper | |
KR0149137B1 (en) | Drain hole's freezing detecting apparatus | |
JPS61110870A (en) | Defrostaion controller | |
JP2000337753A (en) | Air conditioner | |
JPH09303938A (en) | Refrigerator |