JPS619621A - Optical cell and its production - Google Patents

Optical cell and its production

Info

Publication number
JPS619621A
JPS619621A JP13041184A JP13041184A JPS619621A JP S619621 A JPS619621 A JP S619621A JP 13041184 A JP13041184 A JP 13041184A JP 13041184 A JP13041184 A JP 13041184A JP S619621 A JPS619621 A JP S619621A
Authority
JP
Japan
Prior art keywords
solder
cell
injection port
base layer
sealing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13041184A
Other languages
Japanese (ja)
Inventor
Keiji Iimura
飯村 恵次
Tomoyasu Nakano
中野 朝安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP13041184A priority Critical patent/JPS619621A/en
Publication of JPS619621A publication Critical patent/JPS619621A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

PURPOSE:To prevent leak pass and to permit the hermetic solder sealing of an injection port by forming an underlying layer for solder sealing consisting of an org. resin layer contg. metallic particles into a continuous belt shape on the side faces of both substrates and the side face of a peripheral sealing material so as to enclose the periphery of the injection port. CONSTITUTION:The underlying layer 15 for solder sealing which can be soldered to the periphery of the injection port 4 is formed on the side faces of a cell after the empty cell is assembled by using a pair of the substrates 1, 2 and the periphery sealing material 3. The layer 15 consists of a resin contg. metallic particles and is formed into the continuous belt shape (annular shape) on the side faces 1b, 2b of both substrates 1, 2 and the side face 3a of the peripheral sealing material 3 so as to enclose fully the periphery of the port 4. A liquid crystal is then injected through the port 4 into the cell and thereafter the side face of the cell is dipped for several seconds into a molten solder bath, by which the port 4 is coated and the hermetic solder sealing part 7 is formed on the layer 15.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、対をなす基板を周辺封止材を介して対向配置
させて空のセルを構成し、このセルの側面に上記周辺封
止材の切欠部として設けた注入口からセル内に液晶等の
液状物質を注入、充填し、この注入口をハンダ付けによ
り封止した光学セルとその製造方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention is directed to forming an empty cell by arranging a pair of substrates facing each other with a peripheral sealing material in between, and applying the peripheral sealing material to the side surface of the cell. The present invention relates to an optical cell in which a liquid substance such as liquid crystal is injected into the cell through an injection port provided as a notch, and the injection port is sealed by soldering, and to an improvement in a manufacturing method thereof.

(発明の技術的背景) 例えば液晶セルにおいて、エポキシ樹脂などの常温硬化
型、熱硬化型の有機接着剤を注入口封止材として用いた
場合には、液晶注入後、注入口に有機接着剤を塗布して
から硬化するまで約30分以上の長時間の硬化時間を必
要とするために、未硬化の接着剤および硬化剤が液晶材
料を長時間にわたり直接接触して、化学的に弱い液晶を
劣化、又は変質させる恐れがある。
(Technical Background of the Invention) For example, in a liquid crystal cell, when a room temperature curing type or thermosetting type organic adhesive such as an epoxy resin is used as an injection port sealing material, after liquid crystal injection, the organic adhesive is applied to the injection port. Because it requires a long curing time of approximately 30 minutes or more from application to curing, the uncured adhesive and curing agent are in direct contact with the liquid crystal material for a long period of time, resulting in chemically weak liquid crystals. There is a risk of deterioration or alteration of quality.

またアクリル系樹脂などの有機接着剤中に紫外線硬化剤
を含む光硬化型の有機接着剤を、注入口封止材に用いた
場合には、硬化時間(光照射時間)が数10秒と短時間
であり、未硬化の接着剤が液晶と直接接触する時間が極
めて短かいが、通常、上記の常温又は加熱硬化型接着剤
と比較して接着性、封止性が悪い。
Furthermore, when a photocurable organic adhesive containing an ultraviolet curing agent in the organic adhesive such as acrylic resin is used as the injection port sealant, the curing time (light irradiation time) is as short as several tens of seconds. Although the time during which the uncured adhesive is in direct contact with the liquid crystal is extremely short, the adhesive and sealing properties are usually poorer than the room temperature or heat curing adhesives mentioned above.

また両者とも有機系樹脂なので、ガス透過性があり、注
入口封止部から水蒸気、酸素等のガスが液晶中に浸入し
て液晶を劣化または変質させて行き、従つてこの種の液
晶セルの寿命は短い。
Furthermore, since both are organic resins, they have gas permeability, and gases such as water vapor and oxygen can enter the liquid crystal from the injection port sealing part and cause the liquid crystal to deteriorate or change in quality. Lifespan is short.

これに対して、ハンダを注入口封止材として用いた場合
には、ハンダが無機物質なので、ガス透過性がなく、ま
たハンダ付けが瞬間的に行われるので、液晶セルの製造
中も製造後も液晶セル中の液晶を劣化、変質させること
がほとんどなく、長寿命の液晶セルが得られる。
On the other hand, when solder is used as an inlet sealing material, since the solder is an inorganic substance, it has no gas permeability, and since soldering is done instantaneously, both during and after manufacturing the liquid crystal cell. Also, there is almost no deterioration or alteration of the liquid crystal in the liquid crystal cell, and a long-life liquid crystal cell can be obtained.

この種のハンダを注入口封止材とし、周辺封止部の切欠
部を注入口として設けた従来の液晶セルの数例を以下に
述べる。
Several examples of conventional liquid crystal cells in which this type of solder is used as an injection port sealing material and a notch in a peripheral sealing portion is provided as an injection port will be described below.

第1図から第3図に示す従来の液晶セル10では、それ
ぞれ内面に所定のパターン状に透明電極1a、2aを設
けた下方ガラス基板1と上方ガラス基板2との間に、ガ
ラスフリツト又はエポキシ樹脂接着剤などの無機系又は
有機系の周辺封止材3が約5〜20ミクロンの所定微小
厚さでスクリーン印刷法により設けられている。注入口
4は、再基板1、2の一側面において周辺封止部3の切
欠部として設けられている。一対の基板1、2を周辺封
止材3を介して対向配置させ、封止材3がガラスフリツ
トの場合はガラスの軟化温度以上に加熱することにより
、また封止材3がエポキシ接着剤の場合には加熱又はそ
の他の硬化条件を与えることにより、両基板1、2は周
辺封止剤3により注入口4を残して封着されて空のセル
(組立後のセル)ができる。
In the conventional liquid crystal cell 10 shown in FIGS. 1 to 3, a glass frit or epoxy resin is disposed between a lower glass substrate 1 and an upper glass substrate 2, each having transparent electrodes 1a and 2a provided in a predetermined pattern on their inner surfaces. An inorganic or organic peripheral sealing material 3 such as an adhesive is provided to a predetermined minute thickness of about 5 to 20 microns by screen printing. The injection port 4 is provided as a notch in the peripheral sealing part 3 on one side of the re-substrates 1 and 2. By arranging a pair of substrates 1 and 2 to face each other with a peripheral sealing material 3 in between, and heating the substrates to a temperature higher than the softening temperature of glass when the sealing material 3 is glass frit, or when the sealing material 3 is an epoxy adhesive, By applying heat or other curing conditions, both substrates 1 and 2 are sealed with a peripheral sealant 3 leaving an injection port 4, thereby forming an empty cell (cell after assembly).

組立前の両基板1、2のそれぞれの側面には、注入口附
近の所定個所に真空蒸着法、スパツタリング法などの気
相メツキ法によりセル組立に先だつて予め金属膜5、5
aを形成しておき、両基板1、2の側面の所定個所にハ
ンダ付け可能な下地層5、5aを得る。
On each side surface of both substrates 1 and 2 before assembly, metal films 5 and 5 are applied in advance to predetermined locations near the injection port by a vapor phase plating method such as a vacuum evaporation method or a sputtering method prior to cell assembly.
A is formed in advance, and base layers 5, 5a which can be soldered to predetermined positions on the side surfaces of both substrates 1, 2 are obtained.

セル組立後に、注入口4から液晶6をセル内部に注入し
充填する。液晶充填後にセルの注入口4を溶融したハン
ダに浸して引上げると、瞬間的にハンダ付けが完了し、
注入口4がハンダにより封止されて、ハンダ封止部7が
得られ、液晶セル10が完成する。
After the cell is assembled, liquid crystal 6 is injected into the cell through the injection port 4 to fill it. After filling the liquid crystal, dip the cell inlet 4 into molten solder and pull it up, and the soldering will be completed instantly.
The injection port 4 is sealed with solder to obtain the solder-sealed portion 7, and the liquid crystal cell 10 is completed.

しかしながら、このようにセル組立前の両基板1、2の
それぞれの側面の注入口周辺に予め金属蒸着膜5、5a
を形成した液晶セル10では、基板1、2の側面1b、
2bにのみハンダ付可能な下地層5、5aが形成され、
周辺封止材3の側面3aにはハンダ付可能な下地層が形
成されていないので、両基板1、2の側面1b、2bと
周辺封止材3の側面3aとのすき間8から液晶セル10
の内部と外部とを連通するリークパス(浸入通路、漏れ
通路、連通路)9が構成される。
However, before cell assembly, metal vapor deposited films 5, 5a are preliminarily formed around the injection ports on the respective sides of both substrates 1, 2.
In the liquid crystal cell 10 in which the side surfaces 1b of the substrates 1 and 2,
Base layers 5 and 5a that can be soldered are formed only on 2b,
Since a solderable base layer is not formed on the side surface 3a of the peripheral sealing material 3, the liquid crystal cell 10 is removed from the gap 8 between the side surfaces 1b and 2b of both substrates 1 and 2 and the side surface 3a of the peripheral sealing material 3.
A leak path (infiltration path, leakage path, communication path) 9 is configured that communicates the inside and outside of the tank.

このすき間8が大きい場合には、リークパス9から液晶
セル10中の液晶が外部へもれ出たり、またすき間8が
小さい場合にも、リークパス9から液晶セル10中の液
晶中に外部の水蒸気、酸素などの液晶6を汚染するガス
が浸入し、液晶セル10を劣化させ、理想的なハンダ封
止材7を用いたにもかかわらず液晶セル10の寿命が短
くなる欠点があつた。
If this gap 8 is large, the liquid crystal in the liquid crystal cell 10 may leak out from the leak path 9, and even if the gap 8 is small, external water vapor may leak from the leak path 9 into the liquid crystal in the liquid crystal cell 10. Gases such as oxygen that contaminate the liquid crystal 6 enter, deteriorating the liquid crystal cell 10, and even though the ideal solder sealing material 7 is used, the life of the liquid crystal cell 10 is shortened.

また蒸着膜5、5aは通常少なくとも第1と第2の金属
膜からなり、第1の膜はクロム、アルミニユームなどの
ガラス基板1、2に対して密着性の良い金属膜から、第
2の膜は銅、ニツケルなどのハンダぬれ性(ハンダ付着
性)の良い金属膜からなる。そしてこれら2層の蒸着膜
を基板1、2の側面に形成するには、基板1、2を真空
容器内に入れて真空中で順次2種類の金属を用い、マス
クを用いて蒸着、スパツタリングさせる必要があり、工
程が複雑で、製造に時間がかかり作業性が悪く、液晶セ
ル10のコストが高くなる欠点があつた。
The deposited films 5 and 5a usually consist of at least a first and a second metal film, the first film being a metal film such as chromium or aluminum that has good adhesion to the glass substrates 1 and 2; is made of a metal film with good solder wettability (solder adhesion) such as copper or nickel. In order to form these two layers of vapor deposition films on the sides of the substrates 1 and 2, the substrates 1 and 2 are placed in a vacuum container, and two types of metals are sequentially vapor-deposited and sputtered in a vacuum using a mask. The manufacturing process is complicated, the manufacturing process is time-consuming, the workability is poor, and the cost of the liquid crystal cell 10 is high.

上述の従来の液晶セル10の欠点を除去するために、第
4図から第6図に示すようにセル組立後に即ち空のセル
完成後に、セル側面の注入口4の周辺を囲み両基板1、
2のみならず、周辺封止材3にも、連続帯状パターン状
に蒸着法、スパツタリング法により注入口4の周辺に連
続帯状に多層の金属蒸着膜11、11a(ハンダ封止下
地層)を形成させた液晶セル20が提案させた。(特開
昭51−69649号公報参照。) この液晶セル20は、ハンダ封止部7が下地層11、1
1aと共にセル側面の基板1、2のみならず、周辺封止
材3にも形成されていることになるので、理想的なハン
ダ封止部が構成されることになるが、蒸着膜11、11
aの厚さは通常約1ミクロン以下と微小なものであり、
従つて周辺封止材3の側面3aと基板1、2の側面1b
、2bとのすき間8がこの程度に微小な場合には有効で
あるが、スクリーン印刷法により一方の基板1又は2上
に周辺封止材3を印刷後に一対の基板1及び2を重ね合
せて封着してセルを組立てる通常のセルの場合には、す
き間8の寸法が約100ミクロン以上もあるので適用で
きず、リークパスが存在して液晶セル20の寿命を短く
する。
In order to eliminate the above-mentioned drawbacks of the conventional liquid crystal cell 10, as shown in FIGS. 4 to 6, after the cell is assembled, that is, after the empty cell is completed, both substrates 1,
2, as well as the peripheral sealing material 3, a multilayer metal vapor deposited film 11, 11a (solder sealing base layer) is formed in a continuous band pattern around the injection port 4 by vapor deposition or sputtering in a continuous band pattern. The liquid crystal cell 20 was proposed. (Refer to Japanese Unexamined Patent Publication No. 51-69649.) In this liquid crystal cell 20, the solder sealing portion 7 is
Since it is formed not only on the substrates 1 and 2 on the side surfaces of the cell but also on the peripheral sealing material 3 along with 1a, an ideal solder sealing part is formed, but the vapor deposited films 11 and 11
The thickness of a is usually minute, about 1 micron or less,
Therefore, the side surface 3a of the peripheral sealing material 3 and the side surface 1b of the substrates 1 and 2
, 2b is as small as this, but it is effective if the peripheral sealing material 3 is printed on one of the substrates 1 or 2 by a screen printing method, and then the pair of substrates 1 and 2 are overlapped. In the case of a normal cell in which the cell is assembled by sealing, this cannot be applied because the size of the gap 8 is about 100 microns or more, and a leak path exists, shortening the life of the liquid crystal cell 20.

また、蒸発した金属粒子がセル側面1b、2b、3aに
付着して蒸着膜10となる際に、同時に注入口4からセ
ル内部に金属粒子が浸入するために、金属粒子がセル内
部の電極1a、2bを短絡したり、表示面内に眼ざわり
な点を生じる原因となり、この粒子がセル内に侵入する
のを阻止するたのに、セル内部で注入口4の後方に注入
口4からセル内部を見たときに注入口4の両側と重なる
ように、注入口4および周辺封止材3と離して、周辺封
止材3と同じ厚さの壁からなる遮へい体12を設ける必
要があり、この遮へい体12により注入口4から侵入し
た金属粒子を遮へい体12の側面に付着させて蒸着膜1
3とし、金属粒子が遮へい体12の後方の有効表示面内
に入るのをストツプさせている。
Further, when the evaporated metal particles adhere to the cell side surfaces 1b, 2b, and 3a to form the vapor deposited film 10, the metal particles also infiltrate into the cell from the injection port 4, so that the metal particles are attached to the electrode 1a inside the cell. , 2b, or cause an unsightly spot in the display surface. It is necessary to provide a shield 12 made of a wall having the same thickness as the peripheral sealing material 3 and separated from the injection port 4 and the peripheral sealing material 3 so as to overlap both sides of the injection port 4 when looking inside. The shield 12 allows the metal particles that entered from the injection port 4 to adhere to the side surface of the shield 12 and form the vapor deposited film 1.
3 to stop metal particles from entering the effective display surface behind the shield 12.

しかし、この遮へい体12の存在は、液晶セル20の有
効表示面積を減少させ、また排気と液晶注入の速度をお
そくさせる原因となり、また有効表示面積の減少を少な
くするために注入口3附近の周辺封止材3bと接近させ
ると通路14がせまくなり上記速度が更におそくなる欠
点がある。
However, the presence of this shield 12 reduces the effective display area of the liquid crystal cell 20 and slows down the speed of exhaust and liquid crystal injection. If it is brought close to the peripheral sealing material 3b, the passage 14 becomes narrower and the above-mentioned speed becomes even slower.

(発明の目的) 本発明の目的は上述の液晶セル等の光学セルの欠点を除
去するものである。
OBJECTS OF THE INVENTION An object of the invention is to eliminate the drawbacks of optical cells such as liquid crystal cells mentioned above.

また本発明の他の目的は上述の注入口をハンダ封止する
液晶セル等の光学セルの欠点を除去するものである。
Another object of the present invention is to eliminate the above-mentioned drawbacks of optical cells such as liquid crystal cells whose injection ports are sealed with solder.

また本発明の他の目的はセル側面に設けた注入口を気密
にハンダ封止した光学セルとその製造方法を提供するも
のである。
Another object of the present invention is to provide an optical cell in which an injection port provided on the side surface of the cell is hermetically sealed with solder, and a method for manufacturing the same.

また本発明の更に他の目的は、遮へい体を必要とせず、
金属蒸着膜をハンダ付着下地層としない、またリークパ
スが生じない光学セルとその製造方法を提供するもので
ある。
Still another object of the present invention is to eliminate the need for a shielding body,
An object of the present invention is to provide an optical cell that does not use a metal vapor deposited film as a solder adhesion base layer and that does not cause leakage paths, and a method for manufacturing the same.

(発明の実施例) 本発明の一実施例を、第7図から第10図を参照して以
下に詳細に説明する。
(Embodiment of the Invention) An embodiment of the present invention will be described in detail below with reference to FIGS. 7 to 10.

第7図は液晶セル30の平面図、第8図は第7図のC−
C線にそう液晶セル30の断面図、第9図は注入口封止
前の液晶セル30の側面図、第10図は注入口封止後の
液晶セル30の側面図である。
FIG. 7 is a plan view of the liquid crystal cell 30, and FIG. 8 is a plan view of the liquid crystal cell 30.
9 is a side view of the liquid crystal cell 30 before the injection port is sealed, and FIG. 10 is a side view of the liquid crystal cell 30 after the injection port is sealed.

30は液晶セル、1は内面に所定のパターンの透明電極
1aを形成させたガラス上基板、2は内面に所定のパタ
ーンの透明電極2aを形成させたガラス下基板、3は上
記一対の基板1、2間に介在され両基板間の対向面の周
辺に設けられ、両基板間を約5〜20ミクロンの所定間
隔に保持し、かつ両基板間を封止する周辺封止材、4は
周辺封止材3の切り欠き部として設けられた注入口であ
る。6は注入口4からセル内部に注入され、セル内部に
充填された液晶、15はセル側面において注入口4の周
辺に形成されたハンダ付け可能なハンダ封止下地層、7
はセル側面でハンダ封止下地層15と注入口4とを被覆
してハンダ付けによつて形成された注入口封止材である
30 is a liquid crystal cell, 1 is a glass upper substrate with a predetermined pattern of transparent electrodes 1a formed on its inner surface, 2 is a glass lower substrate with a predetermined pattern of transparent electrodes 2a formed on its inner surface, and 3 is the pair of substrates 1 described above. , 4 is a peripheral sealing material that is interposed between 2 and provided around the facing surface between both substrates, maintains a predetermined distance between both substrates at a predetermined distance of about 5 to 20 microns, and seals between both substrates; This is an injection port provided as a notch in the sealing material 3. Reference numeral 6 denotes a liquid crystal injected into the cell from the injection port 4 and filled inside the cell, 15 a solderable solder sealing base layer formed around the injection port 4 on the side of the cell, and 7
is an injection port sealing material formed by soldering to cover the solder sealing base layer 15 and the injection port 4 on the side surface of the cell.

上記周辺封止材3は、ガラスフリツト(無機系封止材)
または有機接着剤(有機系封止材)からなり、通常ガラ
スフリツト又は有機接着剤をスクリーン印刷可能なペー
ストにし、両基板1、2の間の対向面周辺を囲む所定の
パターンで、一部注入口4となるべき個所を切り欠き部
として、スクリーン印刷法により上記ペーストを一方の
基板1上に塗布、乾燥し、次にこの基板1上に他方の基
板2を位置合せをして重ね合わせる。
The peripheral sealing material 3 is glass frit (inorganic sealing material)
Alternatively, it is made of organic adhesive (organic sealing material), usually glass frit or organic adhesive is made into a screen-printable paste, and a predetermined pattern surrounding the opposing surfaces between both substrates 1 and 2 is formed with some injection holes. The above paste is applied onto one substrate 1 using a screen printing method using a notch portion at the location where the number 4 is to be formed, and dried. Next, the other substrate 2 is aligned and superimposed on this substrate 1.

周辺封止材3として、低融点ガラスを用いる場合には溶
融温度約350℃以上に加熱し、また有機接着剤を用い
る場合には加熱(約200℃以下)またはその他の硬化
条件を与えて、周辺封止材3により両基板1、2を接着
、封止する。
When using low melting point glass as the peripheral sealing material 3, heating it to a melting temperature of about 350°C or higher, and when using an organic adhesive, heating it (about 200°C or less) or applying other curing conditions, Both substrates 1 and 2 are bonded and sealed using a peripheral sealing material 3.

また基板1、2の電極形成面上には予め液晶を配向させ
るために絶縁層を形成後にラビングした配向層、または
斜め蒸着膜による配向層が設けられている。
Further, on the electrode formation surfaces of the substrates 1 and 2, an alignment layer formed by forming an insulating layer and then rubbing the liquid crystal in advance, or an alignment layer formed by diagonally vapor deposited film is provided in order to orient the liquid crystal.

ラビングによる配向層としては、高温処理を必要とする
ガラスフリツトを周辺封止材3として用いる場合には酸
化ケイ素、酸化セリユーム、フツ化マグネシユーム、フ
ツ化セリユームなどの無機材料またはポリイミド樹脂等
の耐熱性有機樹脂が用いられ、約200℃以下の比較的
低温の硬化条件で良い有機接着剤を用いる場合にはエポ
キシ樹脂、フェノール樹脂、メラミン樹脂、アクリル樹
脂などの通常の有機樹脂絶縁体を用いることができる。
When a glass frit, which requires high-temperature treatment, is used as the peripheral sealing material 3, the alignment layer formed by rubbing may be made of an inorganic material such as silicon oxide, cerium oxide, magnesium fluoride, or cerium fluoride, or a heat-resistant organic material such as polyimide resin. When resin is used and an organic adhesive is used, which can be cured at a relatively low temperature of about 200°C or less, ordinary organic resin insulators such as epoxy resin, phenol resin, melamine resin, and acrylic resin can be used. .

第9図、第10図は、それぞれハンダ付け前、ハンダ付
け後の液晶セル30の側面を示す。
9 and 10 show side views of the liquid crystal cell 30 before and after soldering, respectively.

第9図示のように空のセルを組立後に、セルの側面に注
入口4の周辺にハンダ付け可能なハンダ封止下地層15
が形成される。
As shown in Figure 9, after assembling an empty cell, a solder sealing base layer 15 that can be soldered to the side of the cell around the injection port 4
is formed.

ハンダ封止下地層15は、金属粒子を含む樹脂からなり
、注入口4の周辺を完全に囲むように、両基板1、2の
側面1b、2bと周辺封止材3の側面3aとに連続帯状
(リング状)に注入口4をふさがないように形成すべき
である。
The solder sealing base layer 15 is made of resin containing metal particles, and is continuous with the side surfaces 1b and 2b of both substrates 1 and 2 and the side surface 3a of the peripheral sealing material 3 so as to completely surround the periphery of the injection port 4. It should be formed into a band-like (ring-like) shape so as not to block the injection port 4.

上記金属粒子としては銅、銀などのハンダぬれ性、ハン
ダ付着性の良い金属を用いるのが望ましい。
As the metal particles, it is desirable to use metals with good solder wettability and solder adhesion, such as copper and silver.

また上記の樹脂としては、ガラス基板1、2と周辺封止
材3とに対して塗布性および接着性が良く、低温ハンダ
(溶融点、約140℃)、共晶ハンダ(溶融点、約18
0℃)の短時間のハンダ付け温度に耐える、エポキシ、
フェノール、ポリエステル、ポリイミド、キシレン等の
樹脂、またはこれらを組合せたハンダ耐熱性の良い有機
系の塗料または接着剤を用いるのが望まして。
In addition, the above-mentioned resin has good applicability and adhesion to the glass substrates 1 and 2 and the peripheral sealing material 3, and includes low-temperature solder (melting point, about 140°C), eutectic solder (melting point, about 18
Epoxy, which can withstand short-term soldering temperatures of 0℃),
It is desirable to use resins such as phenol, polyester, polyimide, xylene, or a combination of these organic paints or adhesives that have good solder heat resistance.

上記ハンダ封止下地層15は、上記金属粒子を分散させ
た上記有機樹脂をブチルカルビトール、アミルアセテー
ト等の溶剤により希釈してスクリーン印刷に適した粘度
に調整してペースト状にされ、セル側面1b、2b、3
にスクリーン印刷法を用いて第9図示のように連続帯状
に印刷され、印刷後に硬化させて作られる。
The solder sealing base layer 15 is made into a paste by diluting the organic resin in which the metal particles are dispersed with a solvent such as butyl carbitol or amyl acetate to adjust the viscosity suitable for screen printing. 1b, 2b, 3
It is produced by printing in a continuous band shape as shown in Figure 9 using a screen printing method, and then curing it after printing.

本実施側に好適なスクリーン印刷性とハンダ付け性とハ
ンダ耐熱性とが共に良好な低温乾燥型のペーストとして
は、(株)アサヒ化学研究所製の銅導電ペーストACP
−030(硬化条件は、150℃、10〜30分)、銀
導電ペーストLS−500(硬化条件、120℃、10
〜30分)、および東芝ケミカル(株)製の銅導電ペー
スト、ケミタイトCT221(硬化条件、150℃、6
0分、又は180℃、30分)などがあげられる。
A low-temperature drying paste that has good screen printability, solderability, and soldering heat resistance and is suitable for this implementation is Copper Conductive Paste ACP manufactured by Asahi Chemical Laboratory Co., Ltd.
-030 (curing conditions: 150°C, 10-30 minutes), silver conductive paste LS-500 (curing conditions: 120°C, 10 minutes)
~30 minutes), and copper conductive paste, Chemitite CT221 manufactured by Toshiba Chemical Corporation (curing conditions, 150 °C, 6
0 minutes, or 180°C for 30 minutes).

これらのペーストをセル側面の注入口周辺に第9図に示
すパターンに塗布すると、第7図、第8図に示すように
、基板1b、2bのみならず、基板1、2間に浸入して
周辺封止材3の側面3aにも良く塗布され、乾燥(硬化
)後にこれら側面に強固に接着されると共に、ハンダ付
着性およびハンダ耐熱性の良好なハンダ封止下地層15
となる。従つて本実施例では従来例のようにリークパス
が存在しない。
When these pastes are applied around the injection port on the side of the cell in the pattern shown in Fig. 9, as shown in Figs. The solder sealing base layer 15 is well coated on the side surfaces 3a of the peripheral sealing material 3, is firmly adhered to these side surfaces after drying (hardening), and has good solder adhesion and solder heat resistance.
becomes. Therefore, in this embodiment, unlike the conventional example, there is no leak path.

次に第9図示の液晶注入前のセル30内に周知の方法に
より注入口4から液晶6を注入し、その後にセル側面を
溶融ハンダ浴に数秒間侵すことにより、ハンダ封止下地
層15上に注入口4をおおつてハンダ付けが行なわれる
。このようにして、第7図、第8図、第10図に示すよ
うにセル側面に注入口4を被覆してハンダ封止下地層1
5上に形成された気密なハンダ封止部7が得られる。
Next, the liquid crystal 6 is injected from the injection port 4 into the cell 30 shown in FIG. Then, the injection port 4 is covered and soldered. In this way, as shown in FIG. 7, FIG. 8, and FIG.
An airtight solder sealing portion 7 formed on the portion 5 is obtained.

本実施例では従来例のようにリークパス(すき間)が存
在しないので、水蒸気、酸素などの外部ガスがセル内部
の液晶6中に浸入しないので、高信頼性、長寿命の液晶
セル30が得られる。
In this embodiment, unlike the conventional example, there is no leak path (gap), so external gases such as water vapor and oxygen do not infiltrate into the liquid crystal 6 inside the cell, resulting in a highly reliable and long-life liquid crystal cell 30. .

上記実施例の液晶セル30のハンダ封止下地層15をス
クリーン印刷法により大量に製造する方法を、第11図
、第12図により説明する。
A method for mass-producing the solder sealing base layer 15 of the liquid crystal cell 30 of the above embodiment by screen printing will be explained with reference to FIGS. 11 and 12.

第11図に示すように上記実施例によつてセルを組立て
た後に、多数の空のセル30を注入口4側を上にしてカ
セツト16内に収容し互いに近接して配置する。カセツ
ト16内の両側面にはバネ材16aを介して圧力板16
bが固定され、多数のセル30が互いに近接してカセツ
ト16内に固定されている。すべての多数のセル30の
注入口4側のセル側面30aを上に向け、すべてのセル
側面30aは全体として水平になるように固定してある
As shown in FIG. 11, after the cells have been assembled according to the above embodiment, a large number of empty cells 30 are housed in a cassette 16 with the injection port 4 facing up and arranged close to each other. Pressure plates 16 are attached to both sides of the cassette 16 via spring members 16a.
b is fixed, and a number of cells 30 are fixed within the cassette 16 in close proximity to each other. The cell side surfaces 30a of all the cells 30 on the injection port 4 side face upward, and all the cell side surfaces 30a are fixed so as to be horizontal as a whole.

スクリーン(マスク)18は、スクリーン枠17に張り
付けて固定され、印刷前のスクリーン18のスクリーン
面18aは多数のセル側面30aの水平面から通常約0
.5〜1mm離して配置されている。
The screen (mask) 18 is pasted and fixed on the screen frame 17, and the screen surface 18a of the screen 18 before printing is usually about 0.0
.. They are placed 5 to 1 mm apart.

第12図に示すように、スクリーン18は、ポリエステ
ル、ナイロン、ステンレス等のメツシユ(約100〜3
50メツシユ)18aとハンダ下地層の帯状パターンと
一致した開口パターン18cのみをフオトエツチングに
よつて除去した感光乳剤層18bとからなる。
As shown in FIG. 12, the screen 18 is made of mesh (approximately 100 to 30%
50 mesh) 18a and a photosensitive emulsion layer 18b from which only the opening pattern 18c that coincides with the strip pattern of the solder base layer has been removed by photoetching.

再び第11図において、19はポリウレタン、ネオプレ
ン、シリコーン、フロロカーボンなどのペースト中の溶
剤におかされない弾力性の強い樹脂からなる所定の角度
の先端をもつスキージである。21は金属粒子と有機樹
脂と硬化剤とを溶剤で希釈したペーストで、矢印22の
方向にスキージ19を移動するに従つて、ペースト21
がスクリーン18の開口パターン18cを介して多数の
セル側面30aの注入口4の周辺に所定の連続帯状に順
次、塗布、印刷されて行く。
Referring again to FIG. 11, reference numeral 19 is a squeegee having a tip at a predetermined angle and made of a highly elastic resin such as polyurethane, neoprene, silicone, fluorocarbon, etc., which is not affected by the solvent in the paste. 21 is a paste made by diluting metal particles, an organic resin, and a hardening agent with a solvent; as the squeegee 19 is moved in the direction of the arrow 22, the paste 21
is sequentially applied and printed in a predetermined continuous band shape around the injection ports 4 on a large number of cell side surfaces 30a through the opening pattern 18c of the screen 18.

通常約300メツシユ以下のスクリーンを用いて印刷で
きる線幅は約0.1mm以上であり、また液晶セル30
の厚み(一対のガラス基板の合計の厚み)、即ちセル側
面30aの短辺は通常2.2mm以上であり、また超薄
型セルの場合は約1mmであるので、セル側面30aの
注入口4の周辺に連続帯状パターン状にペーストを容易
に印刷できる。
Normally, the line width that can be printed using a screen of about 300 mesh or less is about 0.1 mm or more, and the line width that can be printed using a screen of about 300 mesh or less is about 0.1 mm or more, and
(the total thickness of the pair of glass substrates), that is, the short side of the cell side surface 30a, is usually 2.2 mm or more, and in the case of an ultra-thin cell, it is about 1 mm, so the injection port 4 on the cell side surface 30a is The paste can be easily printed in a continuous strip pattern around the area.

上記ペースト21により多数のセル側面30aの注入口
を囲む帯状パターンをスクリーン印刷した多数のセル3
0は、カセツト16ごとに乾燥炉に入れて200℃以下
の例えば150℃に加熱され、ペーストが硬化されて、
多数のハンダ封止下地層15が一度に得られる。
A large number of cells 3 are screen-printed with the paste 21 to form a strip pattern surrounding the injection ports on the side surfaces 30a of the cells.
0, each cassette 16 is placed in a drying oven and heated to below 200°C, for example 150°C, and the paste is hardened.
A large number of solder sealing base layers 15 can be obtained at once.

周辺封止材3又は配向層が200℃以下の温度に耐えら
れない場合には、集光した赤外線、熱風ノズル、高周波
加熱等の局部加熱手段により下地層15近辺のみを局部
加熱すればよい。高周波加熱(高周波誘導加熱)を行う
場合には、ペースト中の金属粉末のみが選択的に加熱さ
れてペースト中の樹脂が硬化され、空のセル30におけ
るその他の周辺封止材3、配向層を過度に加熱されるこ
とがない。
If the peripheral sealing material 3 or the alignment layer cannot withstand temperatures below 200° C., only the vicinity of the base layer 15 may be locally heated using local heating means such as concentrated infrared light, a hot air nozzle, or high-frequency heating. When performing high frequency heating (high frequency induction heating), only the metal powder in the paste is selectively heated, the resin in the paste is hardened, and the other peripheral sealing material 3 and alignment layer in the empty cell 30 are heated. It will not get overheated.

次いで多数の液晶セル30はカセツト16ごと周知の液
晶注入工程により、注入口4を経て空のセル30内に液
晶6が注入され充填される。
Next, a large number of liquid crystal cells 30 are filled with the liquid crystal 6 by injecting liquid crystal 6 into the empty cells 30 through the injection port 4 by a well-known liquid crystal injection process together with the cassette 16.

その後にカセツト16の上下を反対にして溶融ハンダ浴
中に多数の液晶セル30は同時に数秒間浸され、持ち上
げて自然冷却すると多数のハンダ付けが同時に行われ、
多数の注入口4も同時にハンダ被覆され、多数の液晶セ
ル30が完成する。
After that, the cassette 16 is turned upside down, and a large number of liquid crystal cells 30 are simultaneously immersed in a molten solder bath for several seconds, and when it is lifted and allowed to cool naturally, a large number of solderings are performed simultaneously.
A large number of injection ports 4 are also covered with solder at the same time, and a large number of liquid crystal cells 30 are completed.

カセツト16の上下を反対にする時に、重力により液晶
セル30が落ちるおそれがある場合には、即ち圧着板1
6のバネ圧力が小さい場合には、すべての液晶セル30
の隣接する面に両面粘着テープを予め介在させるか、更
に圧着板16と圧着板16と隣接する液晶セル30との
間に予め両面粘着テープを介在させると良い。また上記
両面粘着テープの代りに、周知のホツトメルト接着剤テ
プを介在させることができる。
If there is a risk that the liquid crystal cell 30 will fall due to gravity when the cassette 16 is turned upside down,
If the spring pressure of 6 is small, all liquid crystal cells 30
It is preferable to interpose a double-sided adhesive tape in advance on the adjacent surfaces of the two-sided adhesive tape, or to interpose a double-sided adhesive tape in advance between the pressure bonding plate 16 and the liquid crystal cell 30 adjacent to the pressure bonding plate 16. Further, instead of the above-mentioned double-sided adhesive tape, a well-known hot melt adhesive tape may be used.

第11図示のように、多数のセル側面30aに金属粒子
を含む樹脂ペーストを印刷し、ペーストを硬化した後に
、同様な開口パターンをもつ別のスクリーンを、カセツ
ト16中の多数のセル側面30aと再び近接して対向配
置し、スクリーン印刷可能なハンダペーストを用いて多
数のセル側面30aのハンダ封止下地層15上にスクリ
ーン印刷し、ハンダペーストを乾燥後にハンダの溶融温
度以上に例えば局部加熱することにより、ハンダ封止下
地層15上に注入口4の周辺を帯状に囲む予備ハンダ層
を注入口4を被覆せずに形成することができる。
As shown in FIG. 11, after printing a resin paste containing metal particles on a large number of cell side surfaces 30a and hardening the paste, another screen having a similar opening pattern is placed on a large number of cell side surfaces 30a in a cassette 16. The cells are again placed close to each other and are screen printed on the solder sealing base layer 15 on the side surfaces 30a of the cells using a screen printable solder paste, and after drying the solder paste is heated locally to a temperature higher than the melting temperature of the solder. As a result, a preliminary solder layer surrounding the injection port 4 in a band shape can be formed on the solder sealing base layer 15 without covering the injection port 4.

その後に多数の注入口4から液晶を注入後に、カセツト
16の上下を反対にしてセル30aを溶融ハンダ浴中に
浸すことによりフラツクスを用いることなく予備ハンダ
層上に注入口4を被覆してハンダ付けを行なうことがで
きる。このように、液晶注入後にはフラツクスを用いな
い場合には、ハンダフラツクスが液晶と接触することが
さけられ、液晶がフラツクスにより汚染されるおそれが
ない。
Thereafter, after injecting liquid crystal from a large number of injection ports 4, the cassette 16 is turned upside down and the cell 30a is immersed in a molten solder bath, thereby coating the preliminary solder layer with the injection ports 4 and soldering without using flux. can be attached. In this way, when flux is not used after the liquid crystal is injected, the solder flux is prevented from coming into contact with the liquid crystal, and there is no risk that the liquid crystal will be contaminated by the flux.

この場合には、液晶注入前にハンダ封止下地層15上に
フラツクス含有ハンダペーストを塗布し、加熱して予備
ハンダ層を形成し、次いで注入口4より液晶を注入した
後に、フラツクスなしでハンダ浸しにより、ハンダ付け
を行なつてハンダ封止部7を形成しているので、高信頼
性、長寿命の液晶セル30が得られることになる。
In this case, before injecting the liquid crystal, a flux-containing solder paste is applied on the solder sealing base layer 15 and heated to form a preliminary solder layer, and then, after injecting the liquid crystal from the injection port 4, the solder paste is soldered without flux. Since the solder sealing portion 7 is formed by soldering by dipping, a highly reliable and long-life liquid crystal cell 30 can be obtained.

このように予備ハンダ層を形成するのに好適なスクリー
ン印刷可能なハンダペーストとしては、例えば、(株)
アサヒ化学研究所製のソルダーペーストAM−10(融
点180℃、合金組成;錫62、鉛36、銀2Wt%、
フラツクス含有量、12.0Wt%)、AM−20(融
点190℃、合金組成;錫60、鉛40Wt%、銅微量
、フラツクス含有量0.4Wt%、上述の銅導電ペース
トACP−030用のハンダペーストとして最適)、お
よびチ住金属工業(株)製のスパークルプリントSPT
−51(融点183℃、錫62、鉛38Wt%の共晶ハ
ンダ、フラツクス含有量10Wt%)、SPT−57(
融点143℃、低温ハンダ、フラツクス含有量12Wt
%)などがあげられる。
Examples of screen-printable solder pastes suitable for forming the preliminary solder layer include those manufactured by Co., Ltd.
Solder paste AM-10 manufactured by Asahi Chemical Laboratory (melting point 180°C, alloy composition: 62 tin, 36 lead, 2 wt% silver,
flux content, 12.0 Wt%), AM-20 (melting point 190°C, alloy composition: tin 60, lead 40 Wt%, trace amount of copper, flux content 0.4 Wt%), solder for the above-mentioned copper conductive paste ACP-030 (optimal as a paste), and Sparkle Print SPT manufactured by Chisumi Metal Industries, Ltd.
-51 (melting point 183°C, eutectic solder of 62 tin, 38 wt% lead, flux content 10 wt%), SPT-57 (
Melting point 143℃, low temperature solder, flux content 12Wt
%) etc.

第13図、第14図、第15図は、本発明の更に他の実
施例の液晶セル40を示し、図では2桁のセブン、セグ
メント型数字表示装置を示す。
FIGS. 13, 14, and 15 show a liquid crystal cell 40 according to another embodiment of the present invention, in which a two-digit seven-segment type numeric display device is shown.

図において、1a、1c、1d、1eは、一方の基板1
の内面に形成された、それぞれ、セグメント電極、外部
リード電極、電極転移用の第1転移電極、他の外部リー
ド電極であり、また2a、2d、2eは、他方の基板2
の内面に形成された、それぞれ、桁電極、桁リード電極
、電極転移用の第2転移電極である。3は一対の基板1
、2間の周辺封止材、4は周辺封止材の切欠きとして設
けられた液晶注入口、15、7は上記実施例と同じくそ
れぞれハンダ下地層、ハンダ封止部である。
In the figure, 1a, 1c, 1d, and 1e represent one substrate 1
2a, 2d, and 2e are respectively a segment electrode, an external lead electrode, a first transfer electrode for electrode transfer, and another external lead electrode formed on the inner surface of the other substrate 2.
A digit electrode, a digit lead electrode, and a second transition electrode for electrode transition are formed on the inner surface of the electrode, respectively. 3 is a pair of substrates 1
, 2 is a peripheral sealing material, 4 is a liquid crystal injection port provided as a notch in the peripheral sealing material, and 15 and 7 are a solder base layer and a solder sealing part, respectively, as in the above embodiment.

15b、7aはそれぞれハンダ下地層15と同一材料の
電極転移用ハンダ下地層、電極転移用ハンダであり、こ
れらのハンダ下地層15bとハンダ7aとによつて電極
転移部23が構成される。この電極転移部23は、注入
口封止用のハンダ下地層15、ハンダ封止材7を形成す
ると同時に形成できる。即ち、注入口封止用のハンダ下
地層15をスクリーン印刷により形成する際に、電極転
移用のハンダ下地層(導電層)15bが同時に形成され
、また注入口封止用のハンダ封止材7をハンダ浴に浸し
て形成する時に、電極転移用のハンダ(導電層)7aが
同時に形成される。
15b and 7a are an electrode transfer solder base layer and an electrode transfer solder made of the same material as the solder base layer 15, respectively, and the electrode transfer portion 23 is constituted by these solder base layer 15b and the solder 7a. This electrode transition portion 23 can be formed at the same time as the solder base layer 15 for sealing the injection port and the solder sealing material 7 are formed. That is, when forming the solder base layer 15 for sealing the injection port by screen printing, the solder base layer (conductive layer) 15b for electrode transfer is formed at the same time, and the solder sealant 7 for sealing the injection port is formed at the same time. When forming the electrode by immersing it in a solder bath, a solder (conductive layer) 7a for electrode transfer is formed at the same time.

第1転移電極1dと第2転移電極2eとの間に導電性の
ハンダ下地層15bが介在されているので、第2転移電
極2eが第1転移電極1dに転移される。従つて、複数
の桁電極2aは、桁リード電極2d、第2転移電極2e
、ハンダ下地層15b、および第1転移電極1dを介し
て外部桁リード電極1eに接続され、結局すべての外部
リード電極1cおよび1eが一方の基板1の露出表面の
端部に引出される。
Since the conductive solder base layer 15b is interposed between the first transfer electrode 1d and the second transfer electrode 2e, the second transfer electrode 2e is transferred to the first transfer electrode 1d. Therefore, the plurality of digit electrodes 2a include the digit lead electrode 2d and the second transition electrode 2e.
, the solder base layer 15b, and the first transition electrode 1d to the external lead electrode 1e, and eventually all the external lead electrodes 1c and 1e are drawn out to the end of the exposed surface of one substrate 1.

ハンダ7aはハンダ下地層15bの導電性を向上させ、
ハンダ下地層15bを外部から保護する役目をする。
Solder 7a improves the conductivity of solder base layer 15b,
It serves to protect the solder base layer 15b from the outside.

このように本実施例では注入口を封止する際に、同時に
多数の電極転移を行うことができ、従つてダイナミツク
駆動の液晶表示セルに適用できる。なお、注入口部のみ
で電極転移を行う場合には、1個所の電極転移しかでき
ないので、スタテイツク駆動の液晶表示セルにしか適用
できない。
In this way, in this embodiment, when sealing the injection port, a large number of electrode transitions can be performed simultaneously, and therefore it can be applied to a dynamically driven liquid crystal display cell. Note that when electrode transfer is performed only at the injection port, electrode transfer can only be performed at one location, so this method can only be applied to statically driven liquid crystal display cells.

以上の実施例では、液状物質として液晶を用いた液晶セ
ルについて説明したが、本発明はエレクトロクロミツク
セル、電気泳動セルなど他の液状物質を封入した他の光
学セルにも適用することができる。
In the above embodiments, a liquid crystal cell using liquid crystal as the liquid substance has been described, but the present invention can also be applied to other optical cells in which other liquid substances are sealed, such as electrochromic cells and electrophoresis cells.

(発明の効果) 以上の説明から明らかなように、本発明の光学セルは、
セル側面で注入口の周囲を完全に囲むように、両基板の
側面と周囲封止材の側面とに連続帯状のパターンに金属
粒子を含む有機樹脂層を形成してハンダ封止下地層とし
、注入口を被覆するようにこの下地層上にハンダ付けし
て注入口を封止しているので、リークパスを完全に除く
ことができ、また気相メツキ法を使用した従来例のよう
にセル内部に蒸発した金属粒子が入らないので遮へい体
が不用なので有効表示面積を大きくでき、通常の室内(
大気中)で作業できるので作業性、生産性を向上でき、
従つて高信頼性、長寿命、安価な光学セルを提供できる
(Effects of the Invention) As is clear from the above description, the optical cell of the present invention has the following features:
An organic resin layer containing metal particles is formed in a continuous strip pattern on the side surfaces of both substrates and the side surface of the surrounding sealing material so as to completely surround the injection port on the side of the cell, and serves as a solder sealing base layer. Since the injection port is sealed by soldering onto this base layer to cover the injection port, leakage paths can be completely eliminated, and unlike conventional methods using the vapor phase plating method, the injection port is sealed. Since evaporated metal particles do not enter the screen, no shielding body is required, so the effective display area can be increased, and it can be used in normal indoor rooms (
Workability and productivity can be improved as work can be done in the atmosphere (in the atmosphere).
Therefore, a highly reliable, long-life, and inexpensive optical cell can be provided.

また本発明の方法は、金属粒子を含む有機樹脂をペース
ト状にして、スクリーン印刷法を用いて多数のセル側面
の注入口周辺に連続帯状パターンのハンダ封止下地層を
同時に均一に形成できるので多数の光学セルを容易に、
安価に大量生産できるので、その経済的効果が大である
In addition, the method of the present invention makes it possible to uniformly form a continuous band pattern of solder sealing underlayers around the injection ports on the side surfaces of multiple cells at the same time using a screen printing method using an organic resin containing metal particles in a paste form. Easily create a large number of optical cells,
Since it can be mass-produced at low cost, it has great economic effects.

更に、ハンダ封止下地層上にフラツクスを含むハンダペ
ーストを用いてスクリーン印刷法により連続帯状パター
ンの予備ハンダ層を設ける場合には、液状物質を注入後
に溶融ハンダに浸す時に、フラツクスが不用なので、液
状物質がフラツクスと接触することがさけられるので、
より信頼性が高く、より寿命の長い光学セルを製造する
ことができる。
Furthermore, when a preliminary solder layer with a continuous strip pattern is provided on the solder sealing base layer by screen printing using solder paste containing flux, flux is not required when dipping into molten solder after injecting the liquid substance. Contact of the liquid substance with the flux is avoided, so
Optical cells that are more reliable and have a longer lifetime can be produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図は、従来の液晶セル10を示す
それぞれ平面図、断面図、側面図である。第4図、第5
図、第6図は、他の従来の液晶セル20を示すそれぞれ
平面図、断面図、側面図である。 第7図は本発明の光学セルの一実施例を示す平面図、第
8図は第7図のC−C線にそう断面図、第9図は本実施
例の光学セルの注入口封止前の側面図、第10図はその
注入口封止後の側面図である。 第11図は本発明方法の一実施例を示し、多数の光学セ
ルの注入口周辺にスクリーン印刷法によりハング封止下
地層を同時に形成する工程を示す概念図、第12図はス
クリーンの要部を示す拡大図(第12図Aは拡大平面図
、第12図Bは第12図AのD−D線にそう断面図)で
ある。 第13図から第15図は、本発明の他の実施例を示し、
第13図は他の実施例の平面図、第14図は第13図の
E−E線にそう断面図、第15図は他の実施例の側面図
である。 図において、1,2−−−基板、3−−−周辺封止材、
1a,2a−−−電極、3a−−−周辺封止材の側面、
1b,2b−−−基板1,2の側面、4−−−注入口、
6−−−液晶(液状物質)、7−−−注入口封止材(ハ
ンダ封止材)、15−−−ハンダ封止下地層(金属粒子
を含む有機樹脂)、10,20−−−従来の液晶セル、
30,40−−−本発明の液晶セル(光学セル)、30
a−−−液晶セル30の側面、18−−−スクリーン、
18c−−−スクリーンの連続帯状開口パターン、19
−−−スキージ、21−−−金属粒子を含む有機樹脂ペ
ースト、23−−−電極転移部。 以上
FIGS. 1, 2, and 3 are a plan view, a cross-sectional view, and a side view, respectively, showing a conventional liquid crystal cell 10. FIG. Figures 4 and 5
6 are a plan view, a sectional view, and a side view, respectively, showing another conventional liquid crystal cell 20. FIG. 7 is a plan view showing an embodiment of the optical cell of the present invention, FIG. 8 is a sectional view taken along line C-C in FIG. 7, and FIG. 9 is a sealing of the injection port of the optical cell of this embodiment. The previous side view and FIG. 10 are the side views after the injection port has been sealed. FIG. 11 shows an embodiment of the method of the present invention, and is a conceptual diagram showing the step of simultaneously forming a hang sealing base layer around the injection ports of a large number of optical cells by screen printing, and FIG. 12 shows the main parts of the screen. (FIG. 12A is an enlarged plan view, and FIG. 12B is a sectional view taken along line DD in FIG. 12A). 13 to 15 show other embodiments of the present invention,
FIG. 13 is a plan view of another embodiment, FIG. 14 is a sectional view taken along line E--E in FIG. 13, and FIG. 15 is a side view of another embodiment. In the figure, 1, 2---substrate, 3---peripheral sealing material,
1a, 2a---electrode, 3a---side surface of peripheral sealing material,
1b, 2b---side surfaces of substrates 1, 2, 4---injection port,
6---Liquid crystal (liquid substance), 7---Inlet sealing material (solder sealing material), 15---Solder sealing base layer (organic resin containing metal particles), 10, 20--- conventional liquid crystal cell,
30, 40---Liquid crystal cell (optical cell) of the present invention, 30
a---Side surface of liquid crystal cell 30, 18---screen,
18c---Continuous strip opening pattern of screen, 19
--- Squeegee, 21 --- Organic resin paste containing metal particles, 23 --- Electrode transition part. that's all

Claims (7)

【特許請求の範囲】[Claims] (1)対をなす基板を周辺封止材を介して対向配置させ
て空のセルを構成し、前記セルの側面に前記周辺封止材
の切欠部として設けた注入口から前記セル内に液晶等の
液状物質を注入充填し、前記注入口をハンダからなる注
入口封止材によって封止してなる光学セルにおいて: 前記注入口の周辺にハンダ付け可能なハンダ封止下地層
が設けられ、 前記ハンダ封止下地層が、金属粒子を含む有機樹脂から
なると共に、 前記ハンダ封止下地層が、前記注入口の周囲を完全に囲
むように、前記両基板の側面と前記周辺封止材とに、連
続帯状に形成されていることを特徴とする、光学セル。
(1) An empty cell is formed by arranging a pair of substrates facing each other with a peripheral sealing material interposed therebetween, and liquid crystal is injected into the cell through an injection port provided as a notch in the peripheral sealing material on the side surface of the cell. In an optical cell formed by injecting and filling a liquid substance such as the following, and sealing the injection port with an injection port sealing material made of solder: a solderable solder sealing base layer is provided around the injection port, The solder sealing base layer is made of an organic resin containing metal particles, and the solder sealing base layer is connected to the side surfaces of both substrates and the peripheral sealing material so as to completely surround the injection port. An optical cell characterized by being formed in a continuous band shape.
(2)前記金属粒子が銅または銀からなり、前記有機樹
脂がエポキシ系樹脂、フェノール系樹脂、ポリエステル
系樹脂、ポリイミド系樹脂、およびキシレン系樹脂から
なる郡から選ばれた少なくとも1種の樹脂からなる、特
許請求の範囲第1項に記載の光学セル。
(2) The metal particles are made of copper or silver, and the organic resin is made of at least one resin selected from the group consisting of epoxy resin, phenol resin, polyester resin, polyimide resin, and xylene resin. The optical cell according to claim 1.
(3)前記ハンダ封止下地層が、金属粒子を含む有機樹
脂を溶剤により希釈したペーストを、スクリーン印刷法
を用いて印刷後に硬化したものである、特許請求の範囲
第1項に記載の光学セル。
(3) The optical device according to claim 1, wherein the solder sealing base layer is a paste prepared by diluting an organic resin containing metal particles with a solvent, which is printed using a screen printing method and then cured. cell.
(4)それぞれの内面に電極を形成させた対をなす基板
を周辺封止材を介して対向配置させたセルの側面におい
て、注入口封止部以外の少なくとも1個所に電極転移部
を設け、前記電極転移部は、金属粒子を含む有機樹脂の
ハンダ下地層と、ハンダとからなる、特許請求の範囲第
1項に記載の光学セル。
(4) An electrode transition portion is provided at at least one location other than the injection port sealing portion on the side surface of a cell in which a pair of substrates each having an electrode formed on their inner surfaces are arranged facing each other with a peripheral sealing material interposed therebetween; 2. The optical cell according to claim 1, wherein the electrode transition portion comprises a solder base layer of organic resin containing metal particles and solder.
(5)対をなす基板を周辺封止材を介して対向配置させ
て空のセルを構成し、前記セルの側面に前記周辺封止材
の切欠部として設けた注入口の周辺に、ハンダ付け可能
なハンダ封止下地層を設け、前記注入口から前記セル内
に液晶等の液状物質を充填し、前記注入口をハンダから
なる注入口封止材によって封止してなる光学セルの製造
方法において: 液状物質注入前の複数の空のセルを互いに近接して配置
させる第1工程と、 連続帯状の複数の開口パターンを設けたスクリーンを、
複数の前記セルの注入口形成側面と対向配置させる第2
工程と、 前記スクリーンを介して、金属粒子を含む有機樹脂ペー
ストを複数の注入口の周辺にスクリーン印刷する第3工
程と、 前記セルに印刷された前記ペーストを硬化させ前記注入
口周辺に連続帯状のハンダ封止下地層を形成させる第4
工程と、 複数の前記セル内に前記注入口から液晶等の液状物質を
充填する第5工程と、 複数の前記セルの注入口をハンダ付けして前記注入口を
封止する第6工程とを備えたことを特徴とする、光学セ
ルの製造方法。
(5) Construct an empty cell by arranging the pair of substrates facing each other with a peripheral sealing material in between, and soldering around the injection port provided as a notch in the peripheral sealing material on the side surface of the cell. A method for manufacturing an optical cell, comprising: providing a base layer for solder sealing, filling a liquid substance such as liquid crystal into the cell from the injection port, and sealing the injection port with an injection port sealing material made of solder. In: a first step of arranging a plurality of empty cells close to each other before injecting a liquid substance, and a screen provided with a plurality of continuous band-shaped opening patterns;
a second cell disposed opposite to the injection port forming side surface of the plurality of cells;
a third step of screen-printing an organic resin paste containing metal particles around the plurality of injection ports through the screen, and curing the paste printed on the cells to form a continuous band around the injection ports. A fourth step of forming a solder sealing base layer of
a fifth step of filling a plurality of cells with a liquid substance such as liquid crystal from the injection port; and a sixth step of soldering the injection ports of the plurality of cells to seal the injection ports. A method for manufacturing an optical cell, comprising:
(6)第4工程と第5工程との間に、前記ハンダ封止下
地層に予備ハンダを形成する予備ハンダ形成工程を行な
い、 前記スクリーンと同様な複数の開口パターンを設けた第
2のスクリーンを、再び複数の前記セルの注入口形成側
面と対向配置させ、 前記第2のスクリーンを介して、スクリーン印刷可能な
ハンダペーストを、前記下地層上に印刷し、 印刷された前記ペーストを加熱して、前記下地層上に予
備ハンダ層を設ける、特許請求の範囲第5項に記載の光
学セルの製造方法。
(6) Between the fourth step and the fifth step, a preliminary solder forming step is performed to form preliminary solder on the solder sealing base layer, and a second screen is provided with a plurality of opening patterns similar to the screen. is placed again facing the injection port forming side surfaces of the plurality of cells, a screen-printable solder paste is printed on the base layer through the second screen, and the printed paste is heated. 6. The method of manufacturing an optical cell according to claim 5, further comprising providing a preliminary solder layer on the base layer.
(7)それぞれの内面に電極を形成させた対をなす基板
の側面に、注入口封止用のハンダ封止下地層とハンダ封
止材とを形成する際に、注入口封止部以外の個所に電極
転移部を設ける、特許請求の範囲第5項に記載の光学セ
ルの製造方法。
(7) When forming the solder sealing base layer and solder sealing material for sealing the injection port on the side surfaces of the pair of substrates with electrodes formed on their inner surfaces, it is necessary to The method for manufacturing an optical cell according to claim 5, wherein an electrode transition portion is provided at a location.
JP13041184A 1984-06-25 1984-06-25 Optical cell and its production Pending JPS619621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13041184A JPS619621A (en) 1984-06-25 1984-06-25 Optical cell and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13041184A JPS619621A (en) 1984-06-25 1984-06-25 Optical cell and its production

Publications (1)

Publication Number Publication Date
JPS619621A true JPS619621A (en) 1986-01-17

Family

ID=15033621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13041184A Pending JPS619621A (en) 1984-06-25 1984-06-25 Optical cell and its production

Country Status (1)

Country Link
JP (1) JPS619621A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6030748A (en) * 1996-04-01 2000-02-29 Fuji Photo Film Co., Ltd. Photosensitive lithographic printing plate having a layer of a hydrolyzed and polycondensed organometallic compound
EP1254780A2 (en) 2001-05-01 2002-11-06 Fuji Photo Film Co., Ltd. Recording material and image forming method
EP1627736A1 (en) 2004-08-18 2006-02-22 Konica Minolta Medical & Graphic, Inc. Method of manufacturing light sensitive planographic printing plates and method of using the same
WO2007052470A1 (en) 2005-11-01 2007-05-10 Konica Minolta Medical & Graphic, Inc. Lithographic printing plate material, lithographic printing plate, method for preparing lithographic printing plate, and method for printing by lithographic printing plate
DE112008000778T5 (en) 2007-03-23 2010-04-08 Mitsubishi Paper Mills Limited Water-developable photosensitive lithographic printing plate material
EP2177357A2 (en) 2008-08-29 2010-04-21 Fujifilm Corporation Negative-working lithographic printing plate precursor and method of lithographic printing using same
WO2012133432A1 (en) 2011-03-30 2012-10-04 旭化成ケミカルズ株式会社 Organopolysiloxane, method for producing same, and curable resin composition containing organopolysiloxane

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6030748A (en) * 1996-04-01 2000-02-29 Fuji Photo Film Co., Ltd. Photosensitive lithographic printing plate having a layer of a hydrolyzed and polycondensed organometallic compound
EP1254780A2 (en) 2001-05-01 2002-11-06 Fuji Photo Film Co., Ltd. Recording material and image forming method
EP1627736A1 (en) 2004-08-18 2006-02-22 Konica Minolta Medical & Graphic, Inc. Method of manufacturing light sensitive planographic printing plates and method of using the same
WO2007052470A1 (en) 2005-11-01 2007-05-10 Konica Minolta Medical & Graphic, Inc. Lithographic printing plate material, lithographic printing plate, method for preparing lithographic printing plate, and method for printing by lithographic printing plate
DE112008000778T5 (en) 2007-03-23 2010-04-08 Mitsubishi Paper Mills Limited Water-developable photosensitive lithographic printing plate material
EP2177357A2 (en) 2008-08-29 2010-04-21 Fujifilm Corporation Negative-working lithographic printing plate precursor and method of lithographic printing using same
WO2012133432A1 (en) 2011-03-30 2012-10-04 旭化成ケミカルズ株式会社 Organopolysiloxane, method for producing same, and curable resin composition containing organopolysiloxane

Similar Documents

Publication Publication Date Title
US8067883B2 (en) Frit sealing of large device
TWI455638B (en) Frit-sealed device using direct resistive heating
US6724143B2 (en) Packaging structure for a display device
KR20060044289A (en) Display panel and manufacturing method thereof
JPH08330460A (en) Hermetically sealing method for electronic device and its structure
JP2012519938A5 (en)
US20080213482A1 (en) Method of making a mask for sealing a glass package
WO2016115806A1 (en) Display panel and manufacturing method therefor, and display apparatus
JPS619621A (en) Optical cell and its production
US5059148A (en) Thin film flat panel displays and method of manufacture
US4599538A (en) Electroluminescent display device
US4106860A (en) Liquid-crystal cell
TWI514642B (en) Method for packaging display panel and display panel packaging structure
JP2012190740A (en) Solar cell, and method for manufacturing the same
US4095876A (en) Liquid crystal device and method for preparing same
WO2014172997A1 (en) Sealed structure of flat panel glass and method of fabricating same
JPH04278983A (en) Method for sealing display panel
US4392720A (en) Electrochromic display cell
JPS6117123A (en) Optical cell and its production
US4969716A (en) Solder sealed bandpass filter and method of making
JPH01159613A (en) Formation of ultrasonic solder pattern
JPS5925743B2 (en) Sealing method for ceramics and glass
EP0105408B1 (en) Electroluminescent display
JPH06267424A (en) Manufacture of plasma display panel
JP2871496B2 (en) Manufacturing method of flat fluorescent lamp