JPS6196014A - Valve driving system sliding member and its manufacture - Google Patents

Valve driving system sliding member and its manufacture

Info

Publication number
JPS6196014A
JPS6196014A JP21477084A JP21477084A JPS6196014A JP S6196014 A JPS6196014 A JP S6196014A JP 21477084 A JP21477084 A JP 21477084A JP 21477084 A JP21477084 A JP 21477084A JP S6196014 A JPS6196014 A JP S6196014A
Authority
JP
Japan
Prior art keywords
base material
wear
liquid phase
iron
sliding member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21477084A
Other languages
Japanese (ja)
Inventor
Tetsuya Suganuma
菅沼 徹哉
Akira Manabe
明 真鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP21477084A priority Critical patent/JPS6196014A/en
Publication of JPS6196014A publication Critical patent/JPS6196014A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture the titled member superior in wear resistance inexpensively, by setting wear resistant member material composed of Ni system or Co system alloy on iron system base material, heating said member material locally to generate liquid phase, then cooling rapidly and solidifying said material. CONSTITUTION:Wear resistant member material composed of compacted body or Co alloy powder is set on iron base material, and heated locally to temp. in which liquid phase is generated or above, so that 20-80% liquid phase ratio is obtd., then cooled rapidly and solidified. By this way, the titled member having high density, sufficient wear resistance, high degree of freedom in material selection, in which Ni or Co sintered alloy composed of hard phases having 1-50mum average particle diameter, 600-1,800Hv hardness are dispersed uniformly by 5-80% area ratio in Ni or Co matrix, is melted and joined with iron base material in one body, is obtd. with low manufacturing cost.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、摺動部位に耐摩耗材料を接合してなる動弁
系摺動部材に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a sliding member of a valve train system having a sliding portion bonded with a wear-resistant material.

従来の技術 例えばバルブリフター頂部、バルブフェース部及びパル
プチップ部、バルブシートフェース部、ロッカーアーム
パッド部等のような内燃機関の動弁系部材の摺動部位に
は極めて高い耐摩耗性が要求される。そのため従来は熱
処理によって硬度を高めた鋼材や、鋳鉄が用いられ、要
求特性が厳しくなるにつれ、動弁系部材の摺動部位のみ
に焼結合金を鋳包む等によって接合したものが用いられ
ている。
Conventional technology Sliding parts of internal combustion engine valve train members, such as the top of the valve lifter, valve face and pulp tip, valve seat face, rocker arm pad, etc., are required to have extremely high wear resistance. Ru. For this reason, conventionally, steel materials whose hardness has been increased through heat treatment or cast iron have been used, and as the required characteristics have become more stringent, materials have been used that are joined by casting a sintered alloy only on the sliding parts of valve train components. .

発明が解決しようとする問題点 しかし、以上の従来の動弁系摺動部材では、未だ耐摩耗
性が十分ではなく、更に厳しい使用条件に適合し得る動
弁系摺動部材が要望されていた。
Problems to be Solved by the Invention However, the above-mentioned conventional valve train sliding members still do not have sufficient wear resistance, and there has been a demand for valve train sliding members that can meet even more severe usage conditions. .

また、特に鋼材や鋳鉄を用いる場合、材料選定の・自由
度が小さく、他方焼結合金を用いる場合は製造工程が複
雑化し、高コストであるという問題もあった。
In addition, there are also problems in that, particularly when steel or cast iron is used, there is little freedom in material selection, and on the other hand, when a sintered alloy is used, the manufacturing process becomes complicated and costs are high.

この発明は以上の従来の事情に鑑みてなされたものであ
って、材料選定の自由度が高く、かつ高密度で十分な耐
摩耗性を有し、しかも製造コストの低い動弁系摺動部材
を提供することを目的とするものである。
This invention has been made in view of the above-mentioned conventional circumstances, and is a valve train sliding member that has a high degree of freedom in material selection, has high density and sufficient wear resistance, and is low in manufacturing cost. The purpose is to provide the following.

問題点を解決するための手段 すなわちこの出願の第1発明の動弁系摺動部材は、Ni
またはCo系マトリックスに平均粒径1〜50声で硬さ
がHv 600〜1800である硬質相が面積率5〜8
0%で均一に分散されてなるNiまたはCo系焼結合金
が、鉄系基材に一体に融接されていることを特徴とする
ものであり、この出願の第2発明の動弁系摺動部材の製
造方法は、NiまたはCo系合金粉末の圧粉体または予
備焼結体からなる耐摩耗部素材を鉄系基材上に設置し、
その鉄系基材上に設置された耐摩耗部素材を液相率が2
0〜80%となるように液相発生温度以上まで局部加熱
し、その後急冷凝固させることを特徴とするものである
Means for solving the problem, that is, the valve train sliding member of the first invention of this application is made of Ni.
Or, a hard phase with an average particle size of 1 to 50 degrees and a hardness of Hv 600 to 1800 is present in a Co-based matrix at an area ratio of 5 to 8.
The valve train slide of the second invention of this application is characterized in that a Ni or Co-based sintered alloy uniformly dispersed at 0% is integrally fusion-welded to an iron-based base material. A method for manufacturing a moving member includes installing a wear-resistant member material made of a green compact or pre-sintered body of Ni or Co-based alloy powder on an iron-based base material;
The liquid phase ratio of the wear-resistant part material installed on the iron base material is 2.
It is characterized in that it is locally heated to a temperature above the liquid phase generation temperature so that it becomes 0 to 80%, and then rapidly solidified.

発明の詳細な説明 以下にこの発明をさらに具体的に説明する。Detailed description of the invention This invention will be explained in more detail below.

この出願の第1発明の動弁系摺動部材は、NiまたはC
o系マトリックスに平均粒径1〜50声で硬さがHv 
600〜1800である硬質相が面積率5〜80%で均
一に分散されたNiまたはc。
The valve train sliding member of the first invention of this application is made of Ni or C.
O-based matrix with average particle size of 1 to 50 degrees and hardness of Hv
Ni or c in which a hard phase having a molecular weight of 600 to 1800 is uniformly dispersed at an area ratio of 5 to 80%.

系焼結合金が、鉄系基材に一体に融接されている。A sintered alloy is integrally fusion-welded to a ferrous base material.

NiまたはCo系マトリックスに硬質相が均一に分散さ
れたNiまたはCo系焼結合金とするのは、耐スカッフ
ィング性等の耐摩耗性を確保するためである。また、そ
の硬質相の平均粒径は1〜50−とするのが好ましい。
The purpose of using a Ni or Co-based sintered alloy in which a hard phase is uniformly dispersed in a Ni- or Co-based matrix is to ensure wear resistance such as scuffing resistance. Moreover, it is preferable that the average particle size of the hard phase is 1 to 50.

IJJP1未満では耐摩耗性が不足し、50JJlを越
えると相手攻撃性が過大となるからである。しかし、更
に好ましくは10〜45371mとするのが良く、最も
望ましくは15〜40声とするのが良い。さらにそのI
i!質相の硬さはHv600〜1800とするのが好ま
しい。
This is because if the IJJP is less than 1, the wear resistance will be insufficient, and if it exceeds 50JJl, the aggressiveness against the opponent will be excessive. However, it is more preferably 10 to 45,371 m, and most preferably 15 to 40 m. Furthermore, that I
i! The hardness of the texture is preferably Hv600-1800.

Hv 600未満では耐摩耗性が不足し、Hv18OO
を越えると相手攻撃性が急増するからである。
If Hv is less than 600, wear resistance is insufficient, and Hv18OO
This is because, if the value is exceeded, the opponent's aggressiveness increases rapidly.

加えて、その硬質相の分布量は面積率で5〜80%とす
るのが好ましい。面積率が5%未満では耐摩耗性が不足
し、80%を越えると相手攻撃性が急増するからである
。しかし、更に望ましくは面積率で15〜10%とする
のが良く、最も好ましくは25〜aθ%とするのが良い
In addition, the distribution amount of the hard phase is preferably 5 to 80% in terms of area ratio. This is because if the area ratio is less than 5%, the wear resistance is insufficient, and if it exceeds 80%, the aggressiveness against the opponent increases rapidly. However, the area ratio is more preferably 15 to 10%, and most preferably 25 to aθ%.

尚、鉄系基材としては、普通炭素鋼や高炭素特殊鋼など
を用いることができる。
Note that as the iron-based base material, ordinary carbon steel, high carbon special steel, etc. can be used.

さて、以上の第1発明のNiまたはCo系焼結合金は、
残留気孔率が2%以下で、見掛硬さがHv450〜10
00であるのが好ましい。
Now, the above Ni or Co-based sintered alloy of the first invention is as follows:
Residual porosity is 2% or less, apparent hardness is Hv450-10
Preferably it is 00.

N1またはCo系焼結合金の残留気孔率を2%以下とす
るのは、気孔率が2%を越えると、得られる動弁系摺動
部材の摺動部が動弁系の高面圧条件下にさらされた場合
、摺動部にピッチングを生じやすく不都合なためである
。しかし、更に好ましくは気孔率を1.8%以下とする
のが良く、最も望ましくは気孔率を1.5%以下とする
のが良い。
The reason why the residual porosity of the N1 or Co-based sintered alloy is set to 2% or less is that if the porosity exceeds 2%, the sliding part of the resulting valve train sliding member will be affected by the high surface pressure conditions of the valve train. This is because, if exposed downward, pitching tends to occur in the sliding portion, which is inconvenient. However, the porosity is more preferably 1.8% or less, and most preferably 1.5% or less.

また、NiまたはCo系焼結合金の見!)硬さをHv4
50〜1000とするのは、Hv450未満では耐摩耗
性が不足し、Hvloooを越えると相手攻撃性が増す
だけでなく、被剛性が劣り、摺動部の仕上加工が困難に
なるからである。しかし更に好ましくは見掛硬さをHv
 550=950とするのが良く、最も望ましくはHv
 600〜950とするのが良い。
Also, look at Ni or Co-based sintered alloys! ) hardness Hv4
The reason why it is set to 50 to 1000 is that if it is less than Hv450, the wear resistance is insufficient, and if it exceeds Hvloooo, not only will the aggressiveness of the opponent increase, but also the rigidity will be poor, making it difficult to finish the sliding part. However, more preferably, the apparent hardness is Hv
It is better to set 550=950, most preferably Hv
It is good to set it to 600-950.

以上のN1またはCo系焼結合金は、その成分について
第1の観点からは、Cr 1.0〜40%(Co系焼結
合金の場合、Cr2.0〜40%)を含み、かつMo0
.1〜5.0%、W0.5〜10%、■0.1〜6.0
%、Nb 0.05〜3.0%、Ta0005〜1.5
%のうちの1種もしくは2種以上を含み、残部がC00
3〜3.5%、NiまたはCoおよび2%以下の不純物
とされることが望ましい。
From the first point of view regarding its components, the above N1 or Co-based sintered alloy contains 1.0 to 40% Cr (2.0 to 40% Cr in the case of a Co-based sintered alloy), and Mo0
.. 1-5.0%, W0.5-10%, ■0.1-6.0
%, Nb 0.05-3.0%, Ta0005-1.5
Contains one or more of the following, and the remainder is C00
It is desirable that the content be 3 to 3.5%, Ni or Co, and impurities of 2% or less.

以下にそのN1またはCo系焼結・合金の各成分の限定
理由を記す。
The reasons for limiting each component of the N1 or Co-based sintered alloy are described below.

CrはN1またはCo基地に固溶して強化する他、各種
形態のCr系炭化物を形成し、焼結合金の耐摩耗性を向
上することから1.0〜40%(C。
Cr is 1.0 to 40% (C.

系焼結合金の場合、2.0〜40%)添加するのが好ま
しい。Crが1.0%未満(Co系焼結合金の場合、2
%未満)ではCr炭化物が不足し、Crが40%を越え
ると粗大なC「炭化物が形成されて好ましくない。しか
し更に望ましくはCrを5.0〜35%とするのが良く
、最も望ましくはC「を1O−L30%とするのが良い
In the case of sintered alloys, it is preferable to add 2.0 to 40%). Cr is less than 1.0% (in the case of Co-based sintered alloy, 2
If the Cr content exceeds 40%, coarse C carbides will be formed, which is not preferable. It is better to set C' to 1O-L30%.

MoもCrと同様の効果を有し、0.1〜5.0%添加
するのが好ましい。0.1%未満では添加の効果はみら
れず、逆に5.0%を越えて添加すると、。
Mo also has the same effect as Cr, and is preferably added in an amount of 0.1 to 5.0%. If the amount is less than 0.1%, no effect will be seen, and on the contrary, if it is added in excess of 5.0%.

crと相乗的に作用して炭化物の粗大化が著しく、好ま
しくない。しかし、更に望ましくはMoを0.5〜4.
5%添加するのが良く、最も望ましくはMOを1.0〜
4.0%添加するのが良い。
It acts synergistically with cr, causing significant coarsening of carbides, which is not preferable. However, more preferably Mo is 0.5 to 4.
It is best to add 5% MO, most preferably 1.0~
It is best to add 4.0%.

また、WもCrやMOと同様の効果を有し、0.5〜1
0%添加するのが好ましい。0.5%未満では添加の効
果はみられず、10%を越えて添加すると粗大炭化物が
生じ好ましくない。しかし、更に好ましくはWを1.0
〜8.0%添加するのが良く、最も望ましくは1.5〜
1.5%添加するのが良い。
In addition, W also has the same effect as Cr and MO, and has an effect of 0.5 to 1
It is preferable to add 0%. If it is less than 0.5%, no effect will be seen, and if it is added in excess of 10%, coarse carbides will be produced, which is not preferable. However, more preferably W is 1.0
It is best to add ~8.0%, most preferably 1.5~
It is best to add 1.5%.

さらに■も耐摩耗性向上に寄与し、0.1〜6.0%添
加するのが好ましい。0.1%未満では添加の効果はな
く、6.0%を越えて添加すると粗大炭化物が生じ好ま
しくない。しかし、更に好ましくは0.5〜5.0%添
加するのが良く、最も好ましくは1.0〜4.5%添加
するのが良い。
Furthermore, (1) also contributes to improving wear resistance, and is preferably added in an amount of 0.1 to 6.0%. Addition of less than 0.1% has no effect, and addition of more than 6.0% causes coarse carbides, which is not preferable. However, it is more preferably added in an amount of 0.5 to 5.0%, most preferably 1.0 to 4.5%.

加えて、Nbも耐摩耗性の向上に寄与し、0.05〜3
.0%添加するのが好ましい。0.05%未満では添加
の効果はなく、3.0%を越えると粗大炭化物が生゛じ
好ましくない。
In addition, Nb also contributes to improving wear resistance, with a content of 0.05 to 3
.. It is preferable to add 0%. If it is less than 0.05%, the addition has no effect, and if it exceeds 3.0%, coarse carbides are produced, which is not preferable.

さらにまた、Taも耐摩耗性の向上に寄与し、0.05
〜1.5%添加するのが好ましい。0.05%未満では
添加の効果はなく、1.5%を越えると粗大炭化物が生
じ好ましくない。しかし、更に好ましくは0.1〜1.
3%添加するのが良く、最も好ましくは0.2〜1.0
%添加するのが良い。
Furthermore, Ta also contributes to the improvement of wear resistance, and 0.05
It is preferable to add up to 1.5%. If it is less than 0.05%, the addition has no effect, and if it exceeds 1.5%, coarse carbides will be produced, which is not preferable. However, more preferably 0.1 to 1.
It is best to add 3%, most preferably 0.2 to 1.0
It is better to add %.

以上のOr 、Mo 、W1V%Nb 1Taはすべて
同時に添加される必要はなく、動弁系MTo部材の仕様
に応じて1種又は2種以上添加されれば良い。
It is not necessary that all of the above Or 2 , Mo 2 , and W1V%Nb 1Ta be added at the same time, and one or more types may be added depending on the specifications of the valve train MTo member.

Cはマトリックスを強化し、また他の合金元素の炭化物
形成による耐摩耗性の向上に寄与する。
C strengthens the matrix and also contributes to improving wear resistance by forming carbides of other alloying elements.

さらに、焼結前の鉄系合金粉末の融点を下げて、焼結時
の低融点液相を確保するのに適当量必要とされ、以上の
理由から0.3〜3.5%添加される。
Furthermore, an appropriate amount is required to lower the melting point of the iron-based alloy powder before sintering and ensure a low melting point liquid phase during sintering, and for the above reasons, it is added in an amount of 0.3 to 3.5%. .

0.3%未満では添加による効果が充分得られず、3.
5%を越えると炭化物が粗大化するのみならず、焼結合
金のマトリックスに黒鉛が必要以上に残留し、その残留
した黒鉛が細長く連なり、耐ピツチング性および耐摩耗
性に悪影響を及ぼし好ましくない。しかし、さらに好ま
しくは0.7〜3.0%添加するのが良く、最も望まし
くは1.0〜2.5%添加するのが良い。
If it is less than 0.3%, the effect of addition cannot be obtained sufficiently, and 3.
If it exceeds 5%, not only will the carbides become coarse, but also graphite will remain in the matrix of the sintered alloy more than necessary, and the remaining graphite will become long and thin, which will adversely affect pitting resistance and wear resistance, which is undesirable. However, it is more preferably added in an amount of 0.7 to 3.0%, most preferably 1.0 to 2.5%.

さらに以上のNiまたはCo系焼結合金のうちN+系焼
結合金については、その成分について第2の観点からは
、Cu1.0〜5.0%、Fe1.0〜20%、Co1
,0〜20%、S i 0.1〜1.5%、Mn001
〜1.5%、P0.1〜0.8%、B 0.01〜0.
5%のうち1種もしくは2種以上を含むのが望ましい。
Furthermore, among the above Ni or Co-based sintered alloys, for the N+-based sintered alloy, from a second viewpoint, the components are Cu1.0-5.0%, Fe1.0-20%, Co1
, 0-20%, Si 0.1-1.5%, Mn001
~1.5%, P0.1~0.8%, B 0.01~0.
It is desirable to contain one or more of these 5%.

以下に、以上の第2の観点から添加される成分の限定理
由を記す。
Below, the reason for limiting the components added from the above second viewpoint will be described.

Cu 、 Fg 1Coは各々マトリックスに固溶して
、マトリックスを強化する。また、Fe 、 C。
Cu and Fg 1Co each form a solid solution in the matrix to strengthen the matrix. Also, Fe, C.

は特にマトリックスの靭性を高め、その一部はマトリッ
クスに分散する硬質相を形成する炭化物中にも固溶して
、炭化物のマトリックスに対する固着力を高める。その
理由から、C(+は1.0〜5.0%、Feは1.0〜
20%、Coは1.0〜20%添加される。すなわち、
それぞれ下限値未満では添加の効果はなく、上限値を越
えて添加しても、効果の向上は見られない。しかし、さ
らに望ましくはQuは1.2〜4.5%、Feは2.0
〜8.0%、G。
In particular, it increases the toughness of the matrix, and a part of it dissolves in the carbide that forms the hard phase dispersed in the matrix, increasing the adhesion of the carbide to the matrix. For that reason, C(+ is 1.0-5.0%, Fe is 1.0-5.0%
20%, and Co is added in an amount of 1.0 to 20%. That is,
There is no effect when added below the lower limit, and no improvement in effect is observed even when added above the upper limit. However, more preferably Qu is 1.2 to 4.5% and Fe is 2.0%.
~8.0%, G.

は3.0〜18%添加されるのが良く、最も好ましくは
Cuは2へ4%、f−eは2.5〜7.0%、coは4
.0〜15%添加されるのが良い。
is preferably added in an amount of 3.0 to 18%, most preferably Cu is added in an amount of 4% to 2, fe is added in an amount of 2.5 to 7.0%, and co is added in an amount of 4%.
.. It is preferable to add 0 to 15%.

3iはマトリックスに固溶させてマトリックスを強化す
るために0.1〜・1.5%添加される。0.1%未満
では添加の効果は認められず、1.5%を越えて添加し
ても、効果の向上はない。しかし、ざらに好ましくは0
.2〜1.3%添加するのが良く、最も望ましくは0.
5〜1.0%添加するのが良い。
3i is added in an amount of 0.1 to 1.5% to strengthen the matrix by dissolving it in the matrix. If it is less than 0.1%, no effect is observed, and if it is added in excess of 1.5%, there is no improvement in the effect. However, preferably 0
.. It is best to add 2 to 1.3%, most preferably 0.
It is preferable to add 5 to 1.0%.

Mnも同様にマトリックスに固溶してマトリックスを強
化し、その目的で0.1〜1.5%添加される。0.1
%未満では添加の効果はなく、1.5%を越えて添加し
てもそれ以上の効果の向上はみられず好ましくない。し
かし、さらに好ましくは0.2〜1.3%添加するのが
良く、最も好ましくは0.5〜1.0%添加するのが良
い。
Mn is similarly dissolved in the matrix to strengthen the matrix, and is added in an amount of 0.1 to 1.5% for that purpose. 0.1
If it is less than 1.5%, there is no effect, and if it exceeds 1.5%, no further improvement in the effect is observed, which is not preferable. However, it is more preferable to add 0.2 to 1.3%, and most preferably 0.5 to 1.0%.

尚、以上の81およびMnは、Nl系焼結合金の原料と
なるNi系合金粉末に含まれることにより、焼結時の液
相中の脱酸効果を示し、また原料粉末の融点を下げて低
融点の液相を形成する効果も示す。
In addition, the above 81 and Mn exhibit a deoxidizing effect in the liquid phase during sintering by being included in the Ni-based alloy powder that is the raw material for the Nl-based sintered alloy, and also lower the melting point of the raw material powder. It also shows the effect of forming a liquid phase with a low melting point.

Pは主として低融点液相形成効果を勾らりて添加され、
またマトリックスに固溶してマトリックスを強化する効
果もあり、0.1〜0.8%添加される。0.1%未満
では添加の効果がなく、0.8%を越えて添加すると逆
にマトリックスが脆化して好ましくない。
P is added mainly for the effect of forming a low melting point liquid phase,
It also has the effect of solid-dissolving in the matrix to strengthen the matrix, and is added in an amount of 0.1 to 0.8%. If it is less than 0.1%, it has no effect, and if it exceeds 0.8%, the matrix becomes brittle, which is not preferable.

BもPと同様の理由で0.01〜0.5%添加される。B is also added in an amount of 0.01 to 0.5% for the same reason as P.

0.01%未満では添加の効果がなく、0.5%を越え
て添加しても効果の向上は望めない。
If it is less than 0.01%, it has no effect, and if it exceeds 0.5%, no improvement in the effect can be expected.

以上のCu 、Fe 、cd、Si 、Mn 、P、B
の各元素は、それぞれ草体で添加してもいいが、1種ま
たは2種以上の合金粉末、例えば炭化物粉末等として用
いるか、あるいはその様な合金粉末と混合して用いる方
が、得られる組織の均一化に効果的であり、また分散さ
れる硬質相の粗大化防止に効果的である。しかし、Cに
ついてはグラファイト等の形で別に添加することによっ
て原料粉末の加熱焼結時における還元に役立ち、また低
舷点液相の形成を助長する効果も認められる。
The above Cu, Fe, CD, Si, Mn, P, B
Each of the elements may be added individually in the form of a grass, but it is better to use one or more types of alloy powder, such as carbide powder, or to mix it with such an alloy powder to improve the structure obtained. It is effective in making the hard phase uniform and also effective in preventing the coarsening of the dispersed hard phase. However, when C is added separately in the form of graphite or the like, it is useful for reduction during heating and sintering of the raw material powder, and it is also recognized that it has the effect of promoting the formation of a low gender point liquid phase.

次に、この出願の第2発明の動弁系摺動部材の製造方法
について、さらに詳細に説明する。
Next, the method for manufacturing a valve train sliding member according to the second invention of this application will be described in more detail.

先ずこの発明の製造方法では、NiまたはC0系合金粉
末の圧粉体または予備焼結体からなる耐摩耗部素材を鉄
系基材上に設置する。NiまたはCo系合金粉末として
はOr、M0.WlV。
First, in the manufacturing method of the present invention, a wear-resistant member material made of a green compact or a preliminary sintered body of Ni or CO alloy powder is placed on an iron base material. As the Ni or Co-based alloy powder, Or, M0. WlV.

Nb 、Ta 、C,Cu 、Fe 、Si 、Mn 
、P。
Nb, Ta, C, Cu, Fe, Si, Mn
,P.

Bのうち1種もしくは28以上を含む、噴霧合金粉末や
その他還元粉、電解粉を用いることができる。また鉄系
基材としては、普通炭素鋼、高炭素鋼、チルド鋳鉄その
他を用いることができる。耐摩耗部素材を鉄系基材上に
設置するにあたっては、予め所定の形状に成形した耐摩
耗部素材を、鉄系基材の所要の位置に耐摩耗部素材の形
状に応じて形成した凹所に嵌合する等の手段を用いるこ
とができる。
Sprayed alloy powders, other reduced powders, and electrolytic powders containing one or more than 28 of B can be used. Further, as the iron-based base material, ordinary carbon steel, high carbon steel, chilled cast iron, etc. can be used. When installing the wear-resistant part material on the iron-based base material, the wear-resistant part material is pre-formed into a predetermined shape and is placed in a recess formed in the desired position of the iron-based base material according to the shape of the wear-resistant part material. It is possible to use means such as fitting in place.

次にこの発明では、鉄系基材上に設置された耐摩耗部素
材を液相率が20〜80%となるように液相発生温度以
上まで局部加熱する。液相率が20?6以上となるよう
にするのは、液相率が20%未満では、得られる焼結体
の残留気孔率を2%以下にするのが困難であり、製造さ
れた動弁系摺動部材の摺動・部が動弁系の高面圧条件下
にさらされた場合、摺動部にピッチングを生じやすく不
都合なためである。また液相率が80%以下となるよう
にするのは、液相率が80%を越えると、融液の中で偏
析が生じ易くなり、何等かの撹拌効果を加える必要が生
じるからである。しかし、更に好ましくは液相率を35
〜65%とするのが良く、最も望ましくは40〜55%
とするのが良い。
Next, in the present invention, the wear-resistant part material placed on the iron-based base material is locally heated to a temperature equal to or higher than the liquid phase generation temperature so that the liquid phase ratio becomes 20 to 80%. The reason why the liquid phase ratio is set to 20-6 or more is that if the liquid phase ratio is less than 20%, it is difficult to reduce the residual porosity of the obtained sintered body to 2% or less, and the manufactured dynamic This is because if the sliding portion of the valve system sliding member is exposed to high surface pressure conditions of the valve system, pitching tends to occur in the sliding portion, which is inconvenient. The reason why the liquid phase ratio is set to 80% or less is because if the liquid phase ratio exceeds 80%, segregation tends to occur in the melt, and it becomes necessary to add some kind of stirring effect. . However, more preferably the liquid phase ratio is 35
~65%, most preferably 40~55%
It is better to

以上の場合、液相発生温度は用いられる合金粉末の種類
で異なり、添加元素で適当に調整することができる。
In the above cases, the liquid phase generation temperature varies depending on the type of alloy powder used, and can be appropriately adjusted by adjusting the additive elements.

局部加熱の手段としては、目的とする動弁系摺動部材の
2動部の大きさ、その他の仕様等に応じて、必要な程度
に高密度にエネルギーを集中することができる熱源を用
いることができ、例えばレーザビームのff1l、プラ
ズマアークもしくはプラズマジェットによる加熱、ある
いはTIG溶接トーチの応用その他の手段を適用するこ
とができる。
As a means of local heating, use a heat source that can concentrate energy as high as necessary, depending on the size of the two moving parts of the intended valve train sliding member and other specifications. For example, heating with a laser beam ff1l, plasma arc or plasma jet, application of a TIG welding torch, or other means can be applied.

最後にこの発明の方法によれば、局部加熱された耐摩耗
部素材を急冷して凝固させる。冷却にあたっては、耐摩
耗部の成分および目的とする動弁系摺動部材の仕様に応
じて種々の熱処理を設計することができる。例えば、単
なる空中放冷、エアブ0−1空中放冷後油もしくは水焼
入れその他の冷却方法が可能である。また、場合によっ
てはその他の公知の熱処理法の適用も可能であり、さら
に冷却後に必要に応じて耐摩耗部に加えられる切削、研
削その他の機械加工を冷却過程で行ない、いわゆる加工
熱処理を施してもよい。
Finally, according to the method of the present invention, the locally heated wear-resistant material is rapidly cooled and solidified. For cooling, various heat treatments can be designed depending on the components of the wear-resistant part and the specifications of the intended valve train sliding member. For example, simple cooling in the air, cooling in the air using Airbu 0-1 followed by oil or water quenching, or other cooling methods are possible. In some cases, it is also possible to apply other known heat treatment methods, and if necessary, after cooling, cutting, grinding, or other mechanical processing is performed on the wear-resistant parts during the cooling process, so-called mechanical heat treatment. Good too.

発明の実施例 以下にこの発明の実施例を記す。Examples of the invention Examples of this invention are described below.

実施例 1 ・第1図に示す様に、普通炭素鋼S45を切削加工して
バルブリフト形状基材1を得た。そのバルブリフト形状
基材1の図示しないカムと接触する摺動面部2に、第2
因に示す耐摩耗部素材3と対応する形状の凹部4を形成
した。
Example 1 - As shown in FIG. 1, a valve lift shaped base material 1 was obtained by cutting ordinary carbon steel S45. On the sliding surface portion 2 of the valve lift shaped base material 1 that comes into contact with a cam (not shown), a second
A concave portion 4 having a shape corresponding to that of the wear-resistant portion material 3 shown in the above was formed.

一方第2図に示す形状の耐摩耗部素材3を次のようにし
て作成した。
On the other hand, a wear-resistant part material 3 having the shape shown in FIG. 2 was prepared in the following manner.

Or5%、Mo1%、W 0.1%、Cu  3%、P
0.3%、残部Niおよび2%以下の不純物からなる噴
霧合金粉末(−100メツシユ)に、天然黒     
“□鉛粉末(平均粒径10μ)を自沈で2.8%加え、
ざらに潤滑剤としてステアリン酸亜鉛を終沈で0.8%
添加混合した。その混合粉末を金型プレスで20φX5
+amの形状で、密度が6.Oa/cs3 トなるよう
に成形し、それによって耐摩耗部素材3を得た。
Or5%, Mo1%, W 0.1%, Cu 3%, P
Sprayed alloy powder (-100 mesh) consisting of 0.3% Ni, balance Ni and 2% or less impurities, natural black
“□Add 2.8% lead powder (average particle size 10μ) by scuttling,
0.8% zinc stearate as a lubricant
Add and mix. The mixed powder is 20φX5 in a mold press.
+am shape, density 6. Oa/cs3 was molded to obtain a wear-resistant part material 3.

次に、13図に示すように、前記FA摩耗部素材3を前
記バルブリフト形状基材1の凹部4に嵌合した。その状
態で、耐摩耗部素材3を、図示しないT I GW接ト
ーチを用いて保護雰囲気下で局部的に加熱した。加熱温
度は用いた原料粉末の液相発生温度以上である約120
0℃とした。
Next, as shown in FIG. 13, the FA wear part material 3 was fitted into the recess 4 of the valve lift shaped base material 1. In this state, the wear-resistant part material 3 was locally heated in a protective atmosphere using a T I GW contact torch (not shown). The heating temperature is approximately 120°C, which is higher than the liquid phase generation temperature of the raw material powder used.
The temperature was 0°C.

その後加熱部をエアーブローで急冷して、第4図に示す
ように、バルブリフト形状基材1の摺動面部2にNi系
焼結合金3aを融接したバルブリフタ粗材5を得た。そ
のバルブリフタ粗材5のバルブリフト形状5toi部分
に熱処理を施し、全体を機械加工して第5図に示すバル
ブリフタ完成品5aを得た。
Thereafter, the heated part was quenched by air blowing to obtain a valve lifter rough material 5 in which a Ni-based sintered alloy 3a was fusion-welded to the sliding surface part 2 of the valve lift-shaped base material 1, as shown in FIG. A portion of the valve lift shape 5toi of the valve lifter rough material 5 was heat-treated and the whole was machined to obtain a completed valve lifter 5a shown in FIG.

以上により得られたバルブリフタ完成品5aを214気
筒OHVエンジンに装着し、加速条件で1000rpm
 x500hrの耐ピツチング性評価試験を行なった。
The valve lifter completed product 5a obtained above was installed in a 214-cylinder OHV engine, and the acceleration condition was 1000 rpm.
A pitting resistance evaluation test was conducted for 500 hours.

実施例 2 第6図および第7図に示すように、SCr 20鋼材を
鍛造して、ロッカーアーム形状基材6を得た。そのロッ
カーアーム形状基材6の図示しないカムと接触する情動
面部7に、第8図に示すM*粍郡部素材8対応する形状
の凹部9を形成した。
Example 2 As shown in FIGS. 6 and 7, a rocker arm-shaped base material 6 was obtained by forging SCr 20 steel. A recess 9 having a shape corresponding to the M* ring part material 8 shown in FIG. 8 was formed in the emotional surface part 7 of the rocker arm-shaped base material 6 that comes into contact with a cam (not shown).

一方、第8図に示す形状の耐摩耗部素材8を次のように
して作成した。
On the other hand, a wear-resistant part material 8 having the shape shown in FIG. 8 was prepared in the following manner.

Or5%、Mo5%、wio%、■5%、Nb0.S%
、0010%、Ta0.1%、B 001%、C1,5
%、Fe  3%、Si1%、Mrl0.4%、残部N
 iおよび2%以下の不純物からなる噴霧合金粉末(−
100メツシユ)に、グラフ7イト1%とn8I剤を終
沈で1.0%添加混合した。その混合粉末を実施例1と
同様にして成形し、それによって耐摩耗部素材8を作成
した。
Or5%, Mo5%, wio%, ■5%, Nb0. S%
, 0010%, Ta0.1%, B 001%, C1,5
%, Fe 3%, Si 1%, Mrl 0.4%, balance N
Sprayed alloy powder (-
100 mesh), 1% of Graph7ite and 1.0% of n8I agent were added and mixed by final precipitation. The mixed powder was molded in the same manner as in Example 1, thereby creating a wear-resistant part material 8.

次に、前記耐摩耗部素材8を前記ロッカーアーム形状基
材6の凹部9に嵌合した。その状態で耐摩耗部素材10
を、レーザービームによって保護雰囲気下で局部的に1
220℃まで加熱した。
Next, the wear-resistant portion material 8 was fitted into the recess 9 of the rocker arm-shaped base material 6. In that state, the wear-resistant part material 10
1 locally in a protective atmosphere by a laser beam.
It was heated to 220°C.

その後加熱部をエアーブローで急冷して、ロッカーアー
ム形状基材6の摺動面部7に耐摩耗部素材8が焼結して
なる鉄系焼結合金を融接したロッカーアーム粗材を得た
。そのロッカーアーム粗材のロッカーアーム形状基材6
部分に必要な熱処理を施し、全体の必要部分に機械加工
を施して第9図に示すロッカーアーム完成品11を得た
Thereafter, the heated part was quenched with air blow to obtain a rocker arm rough material in which an iron-based sintered alloy formed by sintering the wear-resistant part material 8 was fused to the sliding surface part 7 of the rocker arm-shaped base material 6. . Rocker arm shape base material 6 of the rocker arm rough material
The parts were subjected to necessary heat treatment, and the necessary parts of the whole were machined to obtain a finished rocker arm 11 shown in FIG. 9.

以上により得られたロッカーアーム完成品11を214
気筒OHCエンジンに装着して加速条件で2000rp
m x500Hrの耐スカツフイング性評価試験を行な
った。
The finished rocker arm 11 obtained above is 214
Attached to cylinder OHC engine, 2000 rpm under acceleration conditions
A scuffing resistance evaluation test was conducted for m x 500 hours.

実施例 3 第1図に示す様に、普通炭素!14345を切削加工し
てバルブリフト形状基材1を得た。そのバルブリフト形
状基材1の図示しないカムと接触する摺動面部2に、第
2図に示す耐摩耗部素材3と対応する形状の凹部4を形
成した。一方、第2図に示す形状の耐摩耗部素材3を次
のようにして作成した。
Example 3 As shown in Figure 1, ordinary carbon! 14345 was cut to obtain a valve lift shaped base material 1. A recess 4 having a shape corresponding to the wear-resistant member material 3 shown in FIG. 2 was formed in the sliding surface 2 of the valve lift-shaped base material 1 that comes into contact with a cam (not shown). On the other hand, a wear-resistant part material 3 having the shape shown in FIG. 2 was prepared in the following manner.

Cr2O%、MOl %、■ 8%、W 5%、l”e
3%、C1,5%、残部Coからなる噴霧合金粉末(−
100メツシユ)に、天然黒鉛幼木(平均粒径10声)
を自沈で2.8%加え、さらに潤滑剤としてステアリン
酸亜鉛を終沈で0.8%添加混合した。その混合粉末を
金型プレスで20φx5mmの形状で、密度が6.Og
/cm3となるように成形し、それによって耐摩耗部素
材3を得た。
Cr2O%, MOl%, ■ 8%, W 5%, l”e
Sprayed alloy powder (-
100 pieces), natural graphite seedlings (average particle size 10 grains)
was added in an amount of 2.8% by scuttling, and 0.8% of zinc stearate was added as a lubricant by final precipitation. The mixed powder was pressed into a shape of 20φ x 5mm with a density of 6. Og
/cm3, thereby obtaining a wear-resistant part material 3.

次に、第3図に示すように、前記耐摩耗部素材3を前記
バルブリフト形状基材1の凹部4に嵌合した。その状態
で、耐摩耗部素材3を、プラズマビームによって保護雰
囲気下で局部的に加熱した。
Next, as shown in FIG. 3, the wear-resistant part material 3 was fitted into the recess 4 of the valve lift shaped base material 1. In this state, the wear-resistant part material 3 was locally heated by a plasma beam in a protective atmosphere.

加熱濃度は用いた原料粉末の液相発生温度以上である1
230℃とした。
The heating concentration is higher than the liquid phase generation temperature of the raw material powder used1.
The temperature was 230°C.

その後加熱部をエアプ〇−で急冷して、第4図に示すよ
うに、バルブリフト形状基材1の摺動面部2に鉄系焼結
合金3aを融接したバルブリフタ粗材5を得た。そのバ
ルブリフタ粗材5の!ヘルプリフト形状基材1部分に熱
処理を施し、全体を機械加工して第5図に示すバルブリ
フタ完成品5aを得た。
Thereafter, the heated part was quenched with air bubbles to obtain a valve lifter rough material 5 in which an iron-based sintered alloy 3a was fused to the sliding surface part 2 of the valve lift-shaped base material 1, as shown in FIG. That valve lifter rough material 5! A portion of the help lift shaped base material was heat treated and the whole was machined to obtain a completed valve lifter product 5a shown in FIG.

以上により得られたバルブリフタ完成品5aを214気
筒OHVエンジンに装着し、加速条件で1 ooorp
m X500hrの耐ピツチング性評価試験を行なった
The valve lifter completed product 5a obtained above was installed in a 214-cylinder OHV engine, and under acceleration conditions 1 ooorp
A pitting resistance evaluation test was conducted for 500 hours.

以上の各実施例の評価試験の結果によると、実施例1と
実施例3のバルブリフタについては、極めて高い耐ピツ
チング性が確認された。また実施例2のロッカーアーム
については、極めて高い耐スカッフィング性が確認され
た。
According to the results of the evaluation tests for each of the Examples above, it was confirmed that the valve lifters of Examples 1 and 3 had extremely high pitting resistance. Furthermore, the rocker arm of Example 2 was confirmed to have extremely high scuffing resistance.

発明の効果 以上のようにこの出願の第1発明の動弁系摺動部材によ
れば、N1または00県マトリックスに平均粒径1〜5
0JJllで硬さHv 600〜1800の硬質相が5
〜80%の面積率で均一に分数されてなるNiまたはC
o系焼結合金が鉄系基材に一体に融接されているので、
極めて高密度で′##摩耗性の浸れた動弁系摺動部材を
得ることができる。またこの出願の第2発明の動弁系摺
動部材の製造方法によれば、N1またはCo系合金桧末
の圧粉体または予備焼結体からなる耐摩耗部素材を鉄系
基材上で焼結して鉄系基材に接合するので、第1発明の
動弁系摺動部材を効率的にかつ低コストに製造すること
ができ、特に合金粉末として用いられる材料の選択の幅
が非常に広いという利点がある。
Effects of the Invention As described above, according to the valve train sliding member of the first invention of this application, the average particle size is 1 to 5 in the N1 or 00 matrix.
Hard phase with hardness Hv 600-1800 at 0JJll is 5
Ni or C uniformly fractionated with an area ratio of ~80%
Since the o-based sintered alloy is integrally fusion-welded to the iron-based base material,
It is possible to obtain an extremely dense and abrasive valve train sliding member. Further, according to the method for manufacturing a valve train sliding member according to the second invention of this application, a wear-resistant member material consisting of a green compact or pre-sintered powder of N1 or Co-based alloy powder is formed on an iron-based base material. Since it is sintered and bonded to the iron-based base material, the valve train sliding member of the first invention can be manufactured efficiently and at low cost, and in particular, there is a wide range of selection of materials used as alloy powder. It has the advantage of being spacious.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第5図はこの出題第2発明の一実施例の工程を
示す図であり、第1図はバルブリフト形状基材の断面図
、第2図は耐摩耗部素材の断面図、第3図は耐摩耗部素
材をバルブリフト形状基材に組付けた状態を示す断面図
、第4図は耐摩耗部素材をバルブリフト形状基材上で焼
結させた状態を示す断面図、第5因はバルブリフト完成
品の断面図である。第6図〜第9図はこの出願の第2発
明の他の実施例の工程を示す図であり、第6図はロッカ
ーアーム形状基材の断面図、第7図は第6図■−■断面
図、第8図は耐摩耗部素材の斜視図、第9図はロッカー
アーム完成品の斜視図である。 1・・・バルブリフタ形状素材、 3・・・耐摩耗部素
材、3a・・・鉄系焼結合金、 5a・・・バルブリフ
タ完成品、 6・・・ロッカーアーム形状素材、 8・
・・耐摩耗部素材、 11・・・ロッカーアーム完成品
。 出願人  トヨタ自am株式会社 代理人  弁理士 豊 1)武 久 (ほか1名) 第1図    第2図 第3図     第4図
Figures 1 to 5 are diagrams showing the steps of an embodiment of the second invention of this question, in which Figure 1 is a sectional view of the valve lift shaped base material, Figure 2 is a sectional view of the wear-resistant part material, FIG. 3 is a sectional view showing a state in which the wear-resistant part material is assembled on a valve lift-shaped base material, and FIG. 4 is a sectional view showing a state in which the wear-resistant part material is sintered on the valve lift-shaped base material. The fifth factor is a cross-sectional view of the completed valve lift product. 6 to 9 are diagrams showing the steps of another embodiment of the second invention of this application, in which FIG. 6 is a cross-sectional view of the rocker arm-shaped base material, and FIG. 7 is a diagram showing the steps in FIGS. A sectional view, FIG. 8 is a perspective view of the wear-resistant part material, and FIG. 9 is a perspective view of the completed rocker arm. 1... Valve lifter shape material, 3... Wear-resistant part material, 3a... Iron-based sintered alloy, 5a... Valve lifter finished product, 6... Rocker arm shape material, 8.
... Wear-resistant part material, 11... Completed rocker arm product. Applicant Toyota Motor Corporation Agent Patent Attorney Yutaka 1) Hisashi Take (and 1 other person) Figure 1 Figure 2 Figure 3 Figure 4

Claims (6)

【特許請求の範囲】[Claims] (1)NiまたはCo系マトリックスに平均粒径1〜5
0μmで硬さがHv600〜1800である硬質相が面
積率5〜80%で均一に分散されてなるNiまたはCo
系焼結合金が、鉄系基材に一体に融接されていることを
特徴とする動弁系摺動部材。
(1) Average particle size 1 to 5 in Ni or Co matrix
Ni or Co in which a hard phase with a hardness of 0 μm and Hv 600 to 1800 is uniformly dispersed at an area ratio of 5 to 80%.
A valve train sliding member characterized in that a sintered alloy is integrally fused to an iron base material.
(2)Ni系またはCo系合金粉末の圧粉体または予備
焼結体からなる耐摩耗部素材を鉄系基材上に設置し、そ
の鉄系基材上に設置された耐摩耗部素材を液相率が20
〜80%となるように液相発生温度以上まで局部加熱し
、その後急冷凝固させることを特徴とする動弁系摺動部
材の製造方法。
(2) A wear-resistant part material made of a green compact or pre-sintered body of Ni-based or Co-based alloy powder is installed on an iron-based base material, and the wear-resistant part material installed on the iron-based base material is Liquid phase ratio is 20
1. A method for producing a sliding member for a valve train, characterized by locally heating the liquid phase generation temperature or higher to a temperature of 80% or higher, and then rapidly cooling and solidifying the material.
(3)前記NiまたはCo系焼結合金が、残留気孔率が
2%以下で、見掛硬さがHv450〜1000とされて
いることを特徴とする特許請求の範囲第1項記載の動弁
系摺動部材。
(3) The valve train according to claim 1, wherein the Ni or Co-based sintered alloy has a residual porosity of 2% or less and an apparent hardness of Hv450 to 1000. System sliding members.
(4)前記Ni系焼結合金が、Cr1.0〜40%(重
量比、以下同様)を含み、かつMo0.1〜5.0%、
W0.5〜10%、V0.1〜6.0%、Nb0.05
〜3.0%、Ta0.05〜1.5%のうちの1種もし
くは2種以上を含み、残部がC0.3〜3.5%、Ni
及び2%以下の不純物とされていることを特徴とする特
許請求の範囲第1項または第3項記載の動弁系摺動部材
(4) the Ni-based sintered alloy contains 1.0 to 40% Cr (weight ratio, the same applies hereinafter), and 0.1 to 5.0% Mo;
W0.5-10%, V0.1-6.0%, Nb0.05
-3.0%, Ta0.05-1.5%, and the balance is C0.3-3.5% and Ni.
The valve train sliding member according to claim 1 or 3, characterized in that the content of impurities is 2% or less.
(5)前記Ni系焼結合金が、Cu1.0〜5.0%、
Fe1.0〜20%、Co1.0〜20%、Si0.1
〜1.5%、Mn0.1〜1.5%、P0.1〜0.8
%、B0.01〜0.5%のうち1種もしくは2種以上
を含むことを特徴とする特許請求の範囲第1項もしくは
第3項あるいは第4項記載の動弁系摺動部材。
(5) The Ni-based sintered alloy has Cu1.0 to 5.0%,
Fe1.0-20%, Co1.0-20%, Si0.1
~1.5%, Mn0.1~1.5%, P0.1~0.8
%, B0.01 to 0.5%, or B0.01 to 0.5%.
(6)前記Co系焼結合金が、Cr2.0〜40%を含
み、かつMo0.1〜5.0%、W0.5〜10%、V
0.1〜6.0%、Nb0.05〜3.0%、Ta0.
05〜1.5%のうちの1種もしくは2種以上を含み、
残部がC0.3〜3.5%、Co及び2%以下の不純物
とされていることを特徴とする特許請求の範囲第1項ま
たは第3項記載の動弁系摺動部材。
(6) The Co-based sintered alloy contains 2.0 to 40% Cr, and 0.1 to 5.0% Mo, 0.5 to 10% W, and V
0.1-6.0%, Nb0.05-3.0%, Ta0.
Contains one or more of 05 to 1.5%,
The valve train sliding member according to claim 1 or 3, wherein the balance is 0.3 to 3.5% of C, Co, and 2% or less of impurities.
JP21477084A 1984-10-13 1984-10-13 Valve driving system sliding member and its manufacture Pending JPS6196014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21477084A JPS6196014A (en) 1984-10-13 1984-10-13 Valve driving system sliding member and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21477084A JPS6196014A (en) 1984-10-13 1984-10-13 Valve driving system sliding member and its manufacture

Publications (1)

Publication Number Publication Date
JPS6196014A true JPS6196014A (en) 1986-05-14

Family

ID=16661245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21477084A Pending JPS6196014A (en) 1984-10-13 1984-10-13 Valve driving system sliding member and its manufacture

Country Status (1)

Country Link
JP (1) JPS6196014A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517839A (en) * 1991-07-12 1993-01-26 Daido Metal Co Ltd Bearing alloy for high temperature use and its production
JP2004043969A (en) * 2002-06-27 2004-02-12 Eaton Corp Powder metal valve seat insert
CN101912969A (en) * 2010-08-03 2010-12-15 哈尔滨工业大学 Preparation method of composite filling layer and method for welding titanium and stainless steel by adopting electronic beam

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517839A (en) * 1991-07-12 1993-01-26 Daido Metal Co Ltd Bearing alloy for high temperature use and its production
JP2004043969A (en) * 2002-06-27 2004-02-12 Eaton Corp Powder metal valve seat insert
CN101912969A (en) * 2010-08-03 2010-12-15 哈尔滨工业大学 Preparation method of composite filling layer and method for welding titanium and stainless steel by adopting electronic beam

Similar Documents

Publication Publication Date Title
JP3191665B2 (en) Metal sintered body composite material and method for producing the same
JP4183346B2 (en) Mixed powder for powder metallurgy, iron-based sintered body and method for producing the same
JP3651420B2 (en) Alloy steel powder for powder metallurgy
JPH0210311B2 (en)
JP5110398B2 (en) Iron-based sintered alloy, method for producing iron-based sintered alloy, and connecting rod
JPS5918463B2 (en) Wear-resistant sintered alloy and its manufacturing method
JPS62211355A (en) Wear-resisting ferrous sintered alloy
US5468310A (en) High temperature abrasion resistant copper alloy
JPS599152A (en) Wear-resistant sintered alloy
EP0711845A1 (en) Wear-resistant sintered ferrous alloy for valve seat
EP3296418B1 (en) Manufacturing method of wear-resistant iron-based sintered alloy and wear-resistant iron-based sintered alloy
JPH0472027A (en) Valve seat material for outboard motor and its production
JP2001527603A (en) Method of sintering an iron-based powder mixture to form a component
JPS6164804A (en) Sliding member for valve system and its production
JPS6196014A (en) Valve driving system sliding member and its manufacture
JP3434527B2 (en) Sintered alloy for valve seat
JPS6169946A (en) Valve system sliding member and its manufacture
JPS6144152A (en) Manufacture of wear resistant sintered alloy
JPS6196058A (en) Control valve sliding member and its production
JP2948602B2 (en) Iron-based sintered alloy for valve seat
JP3758748B2 (en) Sintered alloy joint type valve seat and method for producing sintered alloy material for joint type valve seat
JP2007064165A (en) Combination of valve and valve seat for internal combustion engine
JPS60159154A (en) Wear resistant sintered sliding material
JPS6184355A (en) Sliding member for valve mechanism and its production
JP3573872B2 (en) Method of manufacturing sintered alloy joint valve seat and sintered alloy material for joint valve seat