JPS6195634A - Optical repeater element - Google Patents

Optical repeater element

Info

Publication number
JPS6195634A
JPS6195634A JP59216813A JP21681384A JPS6195634A JP S6195634 A JPS6195634 A JP S6195634A JP 59216813 A JP59216813 A JP 59216813A JP 21681384 A JP21681384 A JP 21681384A JP S6195634 A JPS6195634 A JP S6195634A
Authority
JP
Japan
Prior art keywords
optical
signal
light
yag laser
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59216813A
Other languages
Japanese (ja)
Inventor
Kanze Tanigawa
谷川 侃是
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59216813A priority Critical patent/JPS6195634A/en
Publication of JPS6195634A publication Critical patent/JPS6195634A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/806Arrangements for feeding power
    • H04B10/807Optical power feeding, i.e. transmitting power using an optical signal

Abstract

PURPOSE:To eliminate the need for a power supply cable by supplying power while using a photoelectric converting element formed on a semiconductor substrate in an optical repeater element where a photodetector, a signal processing section and a light emitting element on the same semiconductor substrate. CONSTITUTION:Signal light transmitted from a transmitter 1 and a YAG laser light transmitted from a YAG laser light source 2 are combined by a translucent mirror 3 and fed to the optical repeater element 7 via an optical fiber 4. The repeater element 7 consists of a branching section 9 formed on the same semiconductor substrate, a signal light photodetection section 10, a YAG laser light photodetection section 11, a signal processing section 12, a light emitting element 13 and a power control circuit 14. The photodetector 11 converts the YAG laser light into an electric energy and gives it to the power supply control circuit 14. The power supply control circuit 14 applies the supplied energy to the photodetector 10 and the signal processing circuit 12 as power via wires 151-153, 154 and 155.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、光通信装置に用いることができる光中継素
子の給電方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a power feeding system for an optical relay element that can be used in an optical communication device.

〔従来技術〕[Prior art]

近年、光通信の分野では光ファイバの低損失化や送信器
となる半導体レーザ、受信器となる光受光素子の高性能
化が進み、光通信に対する期待が一層高まシつつあシ、
また光通信の応用範囲もますます拡大しつつある。
In recent years, in the field of optical communications, the loss of optical fibers has been reduced, and the performance of semiconductor lasers as transmitters and light receiving elements as receivers has improved, and expectations for optical communications have further increased.
In addition, the range of applications for optical communications is increasingly expanding.

この光通信に用いる光通信装置の基本的な構成要素は、
例えば半導体レーザや発光ダイオード等の光送信器、光
フアイバケーブルなどの光伝送路、APD(アヴアラン
シェ・フォトeダイオード)やFD(フォト・ダイオー
ド)などの光受信器、弱まった信号の増幅や、歪んだ波
形を元に戻す波形整形等の機能を有する信号処理回路、
上記光受信器、信号処理回路、光送信器を含む光中継器
などである。しかし最近、光通信装置の小型化、軽量化
や、光伝送路の軽量化、電気的な耐雑音性の向上環に対
する要望がますます大きくなシ、特に光中継器に関して
は受光部、信号処理部9発光部等を一つの基板上に集積
した光中継素子に関する研究開発が鋭意進められている
The basic components of the optical communication equipment used for this optical communication are:
For example, optical transmitters such as semiconductor lasers and light emitting diodes, optical transmission lines such as optical fiber cables, optical receivers such as APD (avalanche photodiode) and FD (photodiode), amplification of weakened signals, and distortion a signal processing circuit that has functions such as waveform shaping to return the waveform to its original state;
These include the optical receiver, signal processing circuit, optical repeater including the optical transmitter, and the like. However, recently, there has been an increasing demand for smaller and lighter optical communication equipment, lighter optical transmission lines, and improved electrical noise resistance. Research and development on optical relay elements in which light emitting parts and the like are integrated on one substrate are being actively carried out.

このような光中継素子の駆動用エネルギーは、一般に光
ケーブルとは別の電気ケーブルにより供給されたり、光
ケーブル内で光ファイバと相互に撚υ合わされた電気ケ
ーブルによ)光中継素子の外部から供給されたりしてい
た。このような電気ケーブルは通常は銅線で構成されて
いるので、電気ケーブルを含む光ケーブルは、光ファイ
バの特徴の一つである軽量性を著しく損うものであ°っ
た。
Energy for driving such an optical relay element is generally supplied from an electric cable separate from the optical cable, or from outside the optical relay element (by an electric cable twisted together with the optical fibers within the optical cable). I was doing a lot of things. Since such electrical cables are usually made of copper wire, optical cables including electrical cables have significantly impaired the light weight, which is one of the characteristics of optical fibers.

また、電気ケーブルは電磁誘導の影響を受けやすく、電
磁誘導を避けるために、例えばケーブル全体にシールド
を設けたような場合にはさらに光ケーブルの重量を増す
ことになシ、このような光ケーブルを用いた光通信装置
の応用範囲の拡大を図ることは難しいという欠点があっ
た。
In addition, electric cables are easily affected by electromagnetic induction, and if a shield is provided over the entire cable to avoid electromagnetic induction, it would not be necessary to further increase the weight of the optical cable, so it is difficult to use such optical cables. The drawback was that it was difficult to expand the range of applications of optical communication devices.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上述の欠点を除去し、光通信装置の応
用範囲の拡大を図る光中継素子全提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an optical relay element that eliminates the above-mentioned drawbacks and expands the range of application of optical communication devices.

〔発明の構成〕[Structure of the invention]

本発明によれば、光信号を受信して電気信号に変換する
受光素子と、前記電気信号全増幅、波形整形する信号処
理回路と、処理された電気信号により駆動される発光素
子とを同一半導体基板上に含む光中継素子において、前
記半導体基板外部から光学的エネルギーを受光し、かつ
電気的エネルギーに変換して前記受光素子、前記信号処
理回路。
According to the present invention, a light receiving element that receives an optical signal and converts it into an electrical signal, a signal processing circuit that fully amplifies the electrical signal and shapes the waveform, and a light emitting element that is driven by the processed electrical signal are made of the same semiconductor. An optical relay element included on a substrate receives optical energy from outside the semiconductor substrate and converts it into electrical energy to receive the light receiving element and the signal processing circuit.

前記発光素子に電力を供給する光電変換素子を、前記半
導体基板上に設けたこと’t−I!f!f徴とする光中
継素子が得られる。
A photoelectric conversion element that supplies power to the light emitting element is provided on the semiconductor substrate.'t-I! f! An optical relay element having an f characteristic is obtained.

〔実施例の説明〕[Explanation of Examples]

次に本発明の実施例を図面を参照して説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図乃至第4図は本発明による光中継素子の一実施例
を説明する図で、第1図は本発明による実施例の光中継
素子の平面図、第2図は第1図のAA断面図、第3図は
第1図、第2図に示す実施例の等価回路図、第4図は本
発明による実施例の光中継素子を用いた光通信装置の概
略ブロック図である。
1 to 4 are diagrams for explaining one embodiment of the optical relay element according to the present invention, FIG. 1 is a plan view of the optical relay element according to the embodiment of the present invention, and FIG. 3 is an equivalent circuit diagram of the embodiment shown in FIGS. 1 and 2, and FIG. 4 is a schematic block diagram of an optical communication device using the optical relay element of the embodiment according to the present invention.

第4図において、1は半導体レーザ金有する信号光の送
信器で、送信波長は1.3μmである。2は発振波長1
.06μmのYAGレーザ光源で、出力100Wである
。3は信号光とYAGレーザ光とを合波する半透鏡であ
る。4はコア径10μmの単一モード光ファイバで全要
約IKmである。501゜502、503は信号光とY
AGレーザ光と全光ファイバ4に入射する光学系で、光
学系502,503t”用いてYAGレーザ光を光ファ
イバ4に入射したところ、入射効率は約85%でありた
。従ってYAGレーザ光の光ファイバ4への入射パワー
は約85Wである。また光ファイバ4の伝送損失は、波
長1.06μmで約1.5 dB /、であったので、
YAGレーザ光の光ファイバ4からの出射パワーは、約
60Wとなる。6は光学系、7は本発明による実施例の
光中継素子で、基板はn −InPでおる。
In FIG. 4, reference numeral 1 denotes a signal light transmitter having a semiconductor laser with a transmission wavelength of 1.3 μm. 2 is the oscillation wavelength 1
.. It is a YAG laser light source of 0.06 μm and has an output of 100 W. 3 is a semi-transparent mirror that combines the signal light and the YAG laser light. 4 is a single mode optical fiber with a core diameter of 10 μm and has a total summary IKm. 501゜502, 503 are signal light and Y
When the YAG laser beam was input to the optical fiber 4 using the optical system 502, 503t", the incidence efficiency was about 85%. Therefore, the incidence efficiency of the YAG laser beam was about 85%. The input power to the optical fiber 4 is about 85 W. Also, the transmission loss of the optical fiber 4 was about 1.5 dB/, at a wavelength of 1.06 μm.
The output power of the YAG laser beam from the optical fiber 4 is approximately 60W. 6 is an optical system, 7 is an optical relay element according to an embodiment of the present invention, and the substrate is made of n-InP.

光中継素子7には導波路801,802,803,80
4、信号光とYAGレーザ光とを分離する分波部9、フ
ォト・トランジスタを用いた信号光の受光素子10、Y
AGレーザ光の受光素子11、電気信号の処理回路12
、発光素子13および電源制御回路14が含まれている
The optical relay element 7 includes waveguides 801, 802, 803, 80.
4. Demultiplexer 9 that separates signal light and YAG laser light, signal light receiving element 10 using a phototransistor, Y
AG laser light receiving element 11, electrical signal processing circuit 12
, a light emitting element 13 and a power supply control circuit 14.

光ファイバ4に入射した信号光とYAGレーザ光とは、
光ファイバ4を伝搬して出射後、光学系6により導波路
801に入射し分波部9に導かれる。
The signal light and YAG laser light that entered the optical fiber 4 are
After propagating through the optical fiber 4 and exiting, the light enters the waveguide 801 by the optical system 6 and is guided to the demultiplexer 9 .

分波部9では信号光とYAGレーザ光とを再び分離し、
信号光は導波路802を伝搬して信号光の受光素子10
に入射し、YAGレーザ光は前記導波路803を伝搬し
てYAGレーザ光の受光素子11に入射する。YAGレ
ーザ光の受光素子11では入射したYAGレーザ光の光
エネルギーを電気エネルギーに変換し、光中継素子7の
基板上に設けられた配線154.155を介して、電気
エネルギーを電源制御回路14に伝達する。電源制御回
路14では、信号光の受光素子10のバイアス電圧を配
[151゜155を介して供給し、信号処理回路121
発光素子13の駆動用電力をそれぞれ配線152,15
5及び配線153,155t−介して供給する。一方、
信号光の受光素子10では入射した信号光を電気信号に
変換し配線156を介して信号処理回路12へ出力する
。信号処理回路12では信号全増幅、波形整形した後、
配線157を介して発光素子13に出力する。これによ
り信号光が再生され導波路804を通して次段に伝達さ
れる。
The demultiplexer 9 separates the signal light and YAG laser light again.
The signal light propagates through the waveguide 802 and reaches the signal light receiving element 10.
The YAG laser beam propagates through the waveguide 803 and enters the YAG laser beam light receiving element 11 . The YAG laser light receiving element 11 converts the optical energy of the incident YAG laser light into electrical energy, and sends the electrical energy to the power supply control circuit 14 via wiring 154 and 155 provided on the substrate of the optical relay element 7. introduce. The power supply control circuit 14 supplies the bias voltage of the light receiving element 10 for the signal light via the distribution circuit [151°155],
Power for driving the light emitting element 13 is supplied to wirings 152 and 15, respectively.
5 and wirings 153, 155t-. on the other hand,
The signal light receiving element 10 converts the incident signal light into an electrical signal and outputs it to the signal processing circuit 12 via the wiring 156. After the signal processing circuit 12 fully amplifies the signal and shapes the waveform,
It is output to the light emitting element 13 via the wiring 157. Thereby, the signal light is regenerated and transmitted to the next stage through the waveguide 804.

次に第1図、第2図を用いて光中継素子7の構成を、ま
た第3図を用いてその光中継素子の機能を詳細に説明す
る。
Next, the configuration of the optical relay element 7 will be explained in detail using FIGS. 1 and 2, and the function of the optical relay element 7 will be explained in detail using FIG. 3.

第1図では基板7aに形成された中継回路網のみを示し
ている。
In FIG. 1, only the relay circuit network formed on the substrate 7a is shown.

第1図、第2図において、導波路801の構成成分はT
iO□で、絶縁膜701の構成成分はTiO□−8i0
2である。導波路801の屈折率はYAGレーザ光の波
長1.06μmで2.50、信号光の波長1.3μmで
2.48である。また絶縁膜701ではTie、の含有
率を制御し波長1.06μmでの屈折率、波長1.3μ
mでの屈折率共に約1.55としている。分波部9はそ
の構成成分をTiO□−810,とし、TiO2の含有
率を制御して分波部9の屈折率を波長1.06μmで1
.762、波長1.3μmで1.755とし念。さらに
導波路801の断面はほぼ正方形で一辺を約10μmと
しYAGレーザ光が導波路801へ入射するときの入射
効率を約85%とした。光ファイバ4の出射光のパワー
は60Wであるので、導波路801への入射パワーは約
50Wである。
In FIGS. 1 and 2, the constituent components of the waveguide 801 are T
iO□, and the constituent components of the insulating film 701 are TiO□-8i0
It is 2. The refractive index of the waveguide 801 is 2.50 at the wavelength of YAG laser light of 1.06 μm, and 2.48 at the wavelength of the signal light of 1.3 μm. In addition, in the insulating film 701, the content of Tie is controlled, and the refractive index at a wavelength of 1.06 μm and the wavelength of 1.3 μm are controlled.
Both refractive indexes at m are approximately 1.55. The demultiplexer 9 has TiO□-810 as its constituent component, and controls the content of TiO2 so that the refractive index of the demultiplexer 9 is 1 at a wavelength of 1.06 μm.
.. 762, the wavelength is 1.3 μm and it is 1.755. Further, the cross section of the waveguide 801 was approximately square, and each side was approximately 10 μm, so that the incidence efficiency when the YAG laser light was incident on the waveguide 801 was approximately 85%. Since the power of the light emitted from the optical fiber 4 is 60W, the power incident on the waveguide 801 is approximately 50W.

導波路801を伝搬したYAGレーザ光及び信号光が分
波部9に入射するときの入射角は45′になるように設
定されている。したがって導波路801と分波部9の屈
折率の関係を考慮すると、波長1.06μmのYAGレ
ーザ光は分波部9で全反射し、波長1.3μmの信号光
は全反射しないで透過する。
The incident angle at which the YAG laser light and signal light propagated through the waveguide 801 enter the demultiplexer 9 is set to be 45'. Therefore, considering the relationship between the refractive index of the waveguide 801 and the demultiplexer 9, the YAG laser beam with a wavelength of 1.06 μm is totally reflected in the demultiplexer 9, and the signal light with a wavelength of 1.3 μm is transmitted without being totally reflected. .

分波部9で全反射したYAGレーザ光は、導波路803
を伝搬し1分波部9と同じ構成成分の反射素子91で全
反射し折返された後、受光素子11に入射する。受光素
子11は、pn接合型の太陽電池で、llaはS(イオ
ウ)をドープしたn−GiAs、 llbはZn(亜鉛
)1−ドープしfpp−GiAsである。n −G a
 A sの表面には、反射防止膜lieを設けである。
The YAG laser beam totally reflected by the demultiplexing section 9 passes through the waveguide 803.
The light propagates, is totally reflected by a reflection element 91 having the same component as the one-wavelength splitter 9, and is reflected back, and then enters the light receiving element 11. The light receiving element 11 is a pn junction type solar cell, where lla is S (sulfur)-doped n-GiAs, and llb is Zn (zinc) 1-doped fpp-GiAs. n-Ga
An antireflection film is provided on the surface of As.

導波路801,803の長さは短いので、導波路801
に入射したYAGレーザ光は、導波路801,803の
伝搬中には殆んど減衰しない。
Since the lengths of waveguides 801 and 803 are short, waveguide 801
The YAG laser beam incident on the waveguide is hardly attenuated during propagation through the waveguides 801 and 803.

したがって、受光素子11へのYAGレーザ光入射パワ
ーは、約50Wとなる。又、受光素子11の変換効率は
約10%であったので、受光素子の最大電気的出力は約
5Wとなる。受光素子11の出力は、基板7aの上に設
けられ九〇配線(第2図には描いていない。第1図に描
いである)154゜155によりミ源制御回路14に伝
達される。この電源制御回路14によりAI配線151
,152,153゜155(第1図に図示)t−介して
信号光の受光素子10、信号処理回路122発光素子1
3にそれぞれ適した電力が供給される。
Therefore, the power of the YAG laser beam incident on the light receiving element 11 is approximately 50W. Further, since the conversion efficiency of the light receiving element 11 was about 10%, the maximum electrical output of the light receiving element was about 5W. The output of the light receiving element 11 is transmitted to the source control circuit 14 through wires 154 and 155 (not shown in FIG. 2, but shown in FIG. 1) provided on the substrate 7a. This power supply control circuit 14 allows the AI wiring 151
, 152, 153° 155 (shown in FIG. 1) t - Light receiving element 10 for signal light, signal processing circuit 122 light emitting element 1
Suitable power is supplied to each of the three.

分波部9を透過し良信号光は、導波路801,803と
同じ構成成分の導波路802を伝搬して受光素子10に
入射する。受光素子10は、主成分がInPのフォトダ
イオードで、10aはSn(スズ)をドープしたn型、
10bはCd(カドミウム)をドープしfcp型である
。またn型部10aの表面には、反射防止膜10Cが設
けである。受光素子10により信号光は1!気信号に変
換され、All配線156゜155(第1図に図示)°
を介して信号処理回路12に電気信号として伝達される
。信号処理回路12では18号光を増幅、波形整形し、
A1配線157゜155を介して発光素子13に電気信
号として出力する。発光素子13は、n−InGaAs
P層を含む半導体レーザで、13aはp −InP、1
3bは活性層となるn−InGaAsPである。発光素
子13では、信号光を光信号に変換し、変換された光信
号が導波路801,802,803と同じ構成成分の導
波路804を伝搬した後、次段に送出される。
The good signal light transmitted through the demultiplexer 9 propagates through a waveguide 802 having the same components as the waveguides 801 and 803 and enters the light receiving element 10 . The light receiving element 10 is a photodiode whose main component is InP, and 10a is an n-type photodiode doped with Sn (tin).
10b is an fcp type doped with Cd (cadmium). Further, an antireflection film 10C is provided on the surface of the n-type portion 10a. The signal light is 1 due to the light receiving element 10! All wiring 156°155° (shown in Figure 1)
The signal is transmitted to the signal processing circuit 12 as an electrical signal. The signal processing circuit 12 amplifies and waveform-shapes the No. 18 light,
It is output as an electrical signal to the light emitting element 13 via the A1 wiring 157°155. The light emitting element 13 is made of n-InGaAs
In a semiconductor laser including a P layer, 13a is p-InP, 1
3b is n-InGaAsP which becomes an active layer. The light emitting element 13 converts the signal light into an optical signal, and after the converted optical signal propagates through a waveguide 804 having the same components as the waveguides 801, 802, and 803, it is sent to the next stage.

次に第1図、第3図を用いて光中継素子2の配線パター
ンを説明する。
Next, the wiring pattern of the optical relay element 2 will be explained using FIGS. 1 and 3.

配線154は、YAGレーザ光の受光素子11によりY
AGレーザ光を電気的エネルギーに変換して得られる電
力全電源制御回路14に伝達する配線で、YAGレーザ
光の受光素子11の内、n−GiAs llaと電源制
御回路14のGNDでない側とを結んでいる。配線15
5はGND側の配線で、YAGレーザ光の受光素子11
の内、p−GaAs11bにつながっている。配線15
1は電源制御回路14から、抵抗几tf:通して信号光
の受光素子10に、信号光の受光素子10の駆動用電力
を供給する配線で、受光素子10の内p−InP10a
  とつながっている。配線153は発光素子13の駆
動用電力全供給する配線で、電源制御回路14のGND
でない側が、抵抗几3を通して発光素子13の内p−I
nP13aとつながっている。発光素子13のGND側
が、基板7aとつながっている。配線156は信号光の
受光素子10により、光信号全光電変換して得られる電
気信号を、信号処理回路12に伝達する配縁で、本実施
例では信号光の受光素子10を前述の如く主成分がIn
Pのフォトダイオードとしたので、信号光の受光素子1
0の出力である電気信号は、電流の変化として出力され
る。この電流変化は、抵抗R2の両端に生じる電圧変化
として信号処理回路12に伝達される。
The wiring 154 is connected to the YAG laser beam by the light receiving element 11.
The wiring that transmits the electric power obtained by converting AG laser light into electrical energy to the power supply control circuit 14 connects the n-GiAs lla of the light receiving element 11 of the YAG laser light and the non-GND side of the power supply control circuit 14. It's tied. Wiring 15
5 is the wiring on the GND side, and the light receiving element 11 of the YAG laser beam
Of these, it is connected to p-GaAs11b. Wiring 15
1 is a wiring for supplying power for driving the signal light receiving element 10 from the power supply control circuit 14 to the signal light receiving element 10 through the resistor tf;
is connected to The wiring 153 is a wiring that supplies all the power for driving the light emitting element 13, and is connected to the GND of the power supply control circuit 14.
The other side is the p-I of the light emitting element 13 through the resistor 3.
Connected to nP13a. The GND side of the light emitting element 13 is connected to the substrate 7a. The wiring 156 is a wiring for transmitting an electrical signal obtained by fully photoelectrically converting an optical signal by the signal light receiving element 10 to the signal processing circuit 12. In this embodiment, the signal light receiving element 10 is used as the main component as described above. Ingredients are In
Since the P photodiode is used, the signal light receiving element 1
The electrical signal that is the output of 0 is output as a change in current. This current change is transmitted to the signal processing circuit 12 as a voltage change occurring across the resistor R2.

信号処理回路120入カインピーダンスは、几2よシも
非常に大きくしてsb、受光素子10t−流れる電流の
殆んどはR1を流れる。信号処理回路12では前述のよ
うに信号を増幅、波形整形した後、配線157 f:通
じて電流変化として出力する。
The input impedance of the signal processing circuit 120 is very large compared to sb, and most of the current flowing through the light receiving element 10t flows through R1. In the signal processing circuit 12, the signal is amplified and waveform shaped as described above, and then outputted as a current change through the wiring 157f.

抵抗R3は、信号処理回路12の出力インピーダンスに
比べて非常に大きくしてア)、信号処理回路12の出力
電流は、殆んど発光素子131を流れ、出力電流の変化
は、そのまま発光素子13に伝達される。この結果再び
光信号に変換されて発光素子から出射される。
The resistor R3 is made very large compared to the output impedance of the signal processing circuit 12. (a) Most of the output current of the signal processing circuit 12 flows through the light emitting element 131, and changes in the output current are directly transmitted to the light emitting element 13. transmitted to. As a result, the light is converted back into an optical signal and emitted from the light emitting element.

このように本実施例の光中継素子の機能が、入射した光
信号を、増幅、波形成形した後、再び光信号として出射
するという光中継の基本機能を有する。
As described above, the optical relay element of this embodiment has the basic optical relay function of amplifying and waveform-shaping an incident optical signal and then outputting it again as an optical signal.

本実施例では、光中継用の受光素子、信号処理回路2発
光素子等の駆動電源供給用として、例えば銅線のケーブ
ルを用いて供給する必要がないので、光フアイバケーブ
ルの大幅な軽量化が可能となυ、かつ電磁誘導の影響も
避けることができる。
In this embodiment, there is no need to use, for example, a copper wire cable to supply driving power to the light receiving element for optical relay, the light emitting element of the signal processing circuit 2, etc., so the weight of the optical fiber cable can be significantly reduced. υ, and the effects of electromagnetic induction can also be avoided.

なお、本実施例では光中継素子の基板の材質をInPと
したが、基板の材質には、特には限定されない。またY
AGレーザ光の受光素子の材質もGaAsには限定され
ない。又、光中継素子基板上に設は光導波路のコアf 
T i O2、クラッドt T i O2−8i02と
L、光分波fffi t T i 02− S i O
2テ構成したが、光導波路の材質、光分液部の材質も前
述の材質には、特には限定されず、YAGレーザ光が光
分液部で全反射し、かつ信号光が分波部を透過するよう
な材質でちれば良い。また、受光素子1発光素子も他の
材質で構成することは可能である。
In this embodiment, the material of the substrate of the optical relay element is InP, but the material of the substrate is not particularly limited. Also Y
The material of the light receiving element for AG laser light is not limited to GaAs either. Moreover, the core f of the optical waveguide is installed on the optical relay element board.
T i O2, clad t T i O2-8i02 and L, optical demultiplexerffit T i 02- S i O
Although the material of the optical waveguide and the material of the optical separation section are not particularly limited to the above-mentioned materials, the YAG laser beam is totally reflected at the optical separation section, and the signal light is reflected at the separation section. It should be made of a material that allows the light to pass through. Further, the light receiving element 1 and the light emitting element can also be made of other materials.

さらに本実施例では光学的エネルギー源としてYAGレ
ーザ光を用いたが、光7アイパケーブル。
Furthermore, in this embodiment, a YAG laser beam was used as an optical energy source, but an optical 7-eyeper cable was used.

光中継素子基板上の導波路2分波部、受光素子(本実施
例のYAGレーザ光の受光素子)等の材質を適切な材質
に変えれば、CO2レーザ光を用いても良い。また、光
中継素子基板上の電源供給、!気信号伝達用の配線材料
として本実施例ではAfiを用いたが、他の材料を用い
てもよい。また本実施例の光中継素子を、単一モード光
ファイバケーブルを用いた光通信装置に利用したが、多
モード光ファイバケーブルを用いた光通信装置に利用す
ることも可能である。さらに、光フアイバケーブルを構
成する光ファイバの本数には、特には限定されない。ま
た、YAGレーザ光の受光素子、半導体レーザ光の受光
素子、発光素子の層数は、基板も含めて各3層としたが
、受光効率1発光効率を高めるためなど必要に応じて本
実施例とは異なった層数にしてもよい。
CO2 laser light may be used as long as the materials of the waveguide 2-branching section on the optical relay element board, the light receiving element (the light receiving element for YAG laser light in this embodiment), etc. are changed to appropriate materials. Also, the power supply on the optical relay element board! In this embodiment, Afi is used as the wiring material for transmitting the air signal, but other materials may be used. Further, although the optical repeater element of this embodiment is used in an optical communication device using a single mode optical fiber cable, it can also be used in an optical communication device using a multimode optical fiber cable. Furthermore, the number of optical fibers that make up the optical fiber cable is not particularly limited. In addition, the number of layers of the YAG laser light receiving element, the semiconductor laser light receiving element, and the light emitting element was three layers each including the substrate. The number of layers may be different from that.

〔発明の効果〕〔Effect of the invention〕

最後に本発明の利点を挙げれば、光中継器の小型化が図
れる。光伝送路の軽量化が可能になる、光伝送路からの
電磁誘導の悪影響を除去できることである。従って光通
信装置の適用領域の拡大が期待できる。
Finally, the advantage of the present invention is that the optical repeater can be made smaller. It is possible to reduce the weight of the optical transmission line, and to eliminate the adverse effects of electromagnetic induction from the optical transmission line. Therefore, it can be expected that the application area of optical communication devices will expand.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による光中継素子の実施例を示す平面図
、第2図は第1図のA−A断面図、第3図は第1図に示
す光中継素子の等何回路の回路図、第4図は本発明によ
る光中継素子を用いた光通信装置の概略ブロック図であ
る。 1・・・・・・信号光の送信器、2・・・・・・YAG
レーザ光源、3・・・・・・半透鏡、4・・・・・・単
一モード光ファイバs 501゜502.503・・・
・・・光学系、6・・・・・・光学系、7・・・・・・
光中継素子、701・・・・・・絶縁膜、7a・・・・
・・基板、 801゜802.803,804・・曲導
波路、9・・・・・・分波部、91・・・・・・反射素
子、10・・・・・・信号光の受光素子、10a・・・
・・・信号光の受光素子のn型部、10b・・・・・・
信号光の受光素子のp型部、10C・・・・・・反射防
止膜、11・・・・・・YAGレーザ光の受光素子、1
1a・・・・・・YAGレーザ光の受光素子のn型部、
11b・・・・・・YAGレーザ光の受光素子のp型部
、11C・・・・・・反射防止膜、12・・・・・・信
号処理回路、13・・・・・・発光素子、13m・・・
・・・発光素子のp型部、13b・・・・・・発光素子
のn型部、14・・・・・・電源制御回路、151,1
52゜153.154,155,156.157・・・
・・・配線、R,、R2、R3・・・・・・抵抗。
FIG. 1 is a plan view showing an embodiment of the optical relay element according to the present invention, FIG. 2 is a sectional view taken along line AA in FIG. 1, and FIG. 3 is a circuit diagram of the optical relay element shown in FIG. 1. 4 are schematic block diagrams of an optical communication device using an optical relay element according to the present invention. 1...Signal light transmitter, 2...YAG
Laser light source, 3...Semi-transparent mirror, 4...Single mode optical fiber s 501゜502.503...
...Optical system, 6...Optical system, 7...
Optical relay element, 701... Insulating film, 7a...
...Substrate, 801゜802.803,804...Curved waveguide, 9...Demultiplexer, 91...Reflection element, 10...Signal light receiving element , 10a...
...N-type part of the signal light receiving element, 10b...
p-type part of light receiving element for signal light, 10C... anti-reflection film, 11... light receiving element for YAG laser light, 1
1a... n-type part of the light receiving element for YAG laser light,
11b... p-type part of light receiving element for YAG laser light, 11C... antireflection film, 12... signal processing circuit, 13... light emitting element, 13m...
...p-type part of light-emitting element, 13b...n-type part of light-emitting element, 14...power control circuit, 151,1
52゜153.154, 155, 156.157...
...Wiring, R,, R2, R3...Resistance.

Claims (1)

【特許請求の範囲】[Claims] 光信号を受信して電気信号に変換する受光素子と、前記
電気信号を増幅、波形整形する信号処理回路と、処理さ
れた電気信号により駆動される発光素子とを同一半導体
基板上に含む光中継素子において、前記半導体基板外部
から光学的エネルギーを受光し電気エネルギーに変換す
る光電変換素子を前記半導体基板上に含み、この光電変
換素子で発生する電力で前記受光素子、前記信号処理回
路、前記発光素子を動作させる光中継素子。
An optical relay that includes, on the same semiconductor substrate, a light receiving element that receives an optical signal and converts it into an electrical signal, a signal processing circuit that amplifies and shapes the electrical signal, and a light emitting element that is driven by the processed electrical signal. The element includes a photoelectric conversion element on the semiconductor substrate that receives optical energy from outside the semiconductor substrate and converts it into electrical energy, and the power generated by the photoelectric conversion element is used to convert the light receiving element, the signal processing circuit, and the light emitting element into electrical energy. Optical relay element that operates the element.
JP59216813A 1984-10-16 1984-10-16 Optical repeater element Pending JPS6195634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59216813A JPS6195634A (en) 1984-10-16 1984-10-16 Optical repeater element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59216813A JPS6195634A (en) 1984-10-16 1984-10-16 Optical repeater element

Publications (1)

Publication Number Publication Date
JPS6195634A true JPS6195634A (en) 1986-05-14

Family

ID=16694286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59216813A Pending JPS6195634A (en) 1984-10-16 1984-10-16 Optical repeater element

Country Status (1)

Country Link
JP (1) JPS6195634A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212620A (en) * 1988-02-18 1989-08-25 Suzuki Motor Co Ltd Automatic speed change controller
EP1547282A1 (en) * 2002-09-10 2005-06-29 Harris Corporation Communication system providing hybrid optical/wireless communications and related methods
JP2007256552A (en) * 2006-03-23 2007-10-04 Sumitomo Osaka Cement Co Ltd Driver of optical modulator
JP2009027215A (en) * 2007-07-17 2009-02-05 Ntt Electornics Corp Optical receiver
JP2013074319A (en) * 2011-09-26 2013-04-22 Fujikura Ltd Optical transmission system and optical repeater

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5530266A (en) * 1978-08-26 1980-03-04 Fujitsu Ltd Photo repeater feeding system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5530266A (en) * 1978-08-26 1980-03-04 Fujitsu Ltd Photo repeater feeding system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212620A (en) * 1988-02-18 1989-08-25 Suzuki Motor Co Ltd Automatic speed change controller
EP1547282A1 (en) * 2002-09-10 2005-06-29 Harris Corporation Communication system providing hybrid optical/wireless communications and related methods
EP1547282A4 (en) * 2002-09-10 2006-11-29 Harris Corp Communication system providing hybrid optical/wireless communications and related methods
US7583642B2 (en) 2002-09-10 2009-09-01 Harris Corporation Communication system providing hybrid optical/wireless communications and related methods
JP2011010316A (en) * 2002-09-10 2011-01-13 Harris Corp Communication system providing optical/wireless hybrid communication and method
US8050244B2 (en) 2002-09-10 2011-11-01 Harris Corporation Communication system providing hybrid optical/wireless communications and related methods
JP2007256552A (en) * 2006-03-23 2007-10-04 Sumitomo Osaka Cement Co Ltd Driver of optical modulator
JP2009027215A (en) * 2007-07-17 2009-02-05 Ntt Electornics Corp Optical receiver
JP2013074319A (en) * 2011-09-26 2013-04-22 Fujikura Ltd Optical transmission system and optical repeater

Similar Documents

Publication Publication Date Title
US8098969B2 (en) Waveguide optically pre-amplified detector with passband wavelength filtering
US7606499B2 (en) Bidirectional transceiver assembly for POF application
EP0476566B1 (en) Optical communication systems and optical nodes for use therein
EP2510390A1 (en) Waveguide optically pre-amplified detector with passband wavelength filtering
US20140246571A1 (en) Reflection-enhanced photo-detector
CN102156333A (en) Light receiving-transmitting integral device
CN103403590B (en) There is the silicon based opto-electronics integrated circuit of the Polarization Dependent Loss of reduction
CN107294606B (en) Single-mode fiber bidirectional optical transceiver
US20020164115A1 (en) Optical fiber communication system, communications apparatus and optical transceiver
CN113783317B (en) Energy-signaling common transmission system and method based on few-mode optical fiber
JPH1082922A (en) Detector for optically integrated transceiver
JPS6195634A (en) Optical repeater element
US8693816B2 (en) Nanophotonic optical duplexer
JPS62151043A (en) Power feeding system for optical communication equipment
JP3356017B2 (en) Optical transmission / reception module
Matz et al. Development of a photonic integrated transceiver chip for WDM transmission
JP2833615B2 (en) Optical semiconductor integrated device
US20230370754A1 (en) Integrated optical transceiver apparatus and optical line terminal
JPS6220372A (en) Photoelectric element and optoelectronic apparatus in which said element is incorporated
JP3348644B2 (en) Optical receiving module and optical transmitting / receiving module
JP2847820B2 (en) Optoelectronic integrated device
JPH04373180A (en) Semiconductor photoreceptor element
JP2001244485A (en) Semiconductor device
JPH04249382A (en) Semiconductor photodetector
Affandi et al. Implementation of Fiber Optic Communication System Using Developed Computer Program