JPS6194504A - Travel controller of unmanned vehicle - Google Patents

Travel controller of unmanned vehicle

Info

Publication number
JPS6194504A
JPS6194504A JP59215905A JP21590584A JPS6194504A JP S6194504 A JPS6194504 A JP S6194504A JP 59215905 A JP59215905 A JP 59215905A JP 21590584 A JP21590584 A JP 21590584A JP S6194504 A JPS6194504 A JP S6194504A
Authority
JP
Japan
Prior art keywords
circuit
output
angle
vehicle
slope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59215905A
Other languages
Japanese (ja)
Other versions
JPH0753003B2 (en
Inventor
Masakatsu Fujiwara
正勝 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP59215905A priority Critical patent/JPH0753003B2/en
Publication of JPS6194504A publication Critical patent/JPS6194504A/en
Publication of JPH0753003B2 publication Critical patent/JPH0753003B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/64Road conditions
    • B60L2240/642Slope of road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To extend the range of a gradient to be applied by traveling a vehicle at a constant speed on a gentle descent, and decelerating on the basis of a deceleration signal inversely proportional to the angle on a steep descent. CONSTITUTION:When a start command 22 is input, a gradually rising voltage is output from a start compensator 16. A comparator 25 applies a PWM signal in response to the voltage to a transistor 2 to control an armature current. On the other hand, the output of the compensator 16 permits a peak priority circuit 9 to output the highest voltage for the prescribed time. A comparator 10 applies the PWM signal in response to the output of the circuit 9 to a transistor 6 to control a field current. When the speed of a vehicle is accelerated, the output of a rotation detector 12 becomes the maximum input of the circuit 9. If the gradient of the descent becomes steep, a deceleration signal proportional to the angle from angle detecting means 14 becomes the maximum input of the circuit 9.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は下り坂でその坂の勾配を検出し、その角度に反
比例して減速走行きせる無人走行車の走行制御装置に関
し、たとえば誘導式ゴルフカート等に適用することがで
きるものである。
Detailed Description of the Invention (a) Field of Industrial Application The present invention relates to a travel control device for an unmanned vehicle that detects the gradient of a downhill slope and decelerates in inverse proportion to the angle. This can be applied to golf carts and the like.

(ロン 従来の技術 従来の無人走行車、たとえば誘導式ゴルフカートにおい
ては、誘導路のカーブ地点で減速走行させるもの(たと
えば実公昭52−11353号公報及び実公昭54−1
0474号公報参照)や、下り坂の始点から終点まで減
速走行させるものくたとえば実開昭57−63402号
公報参WA)が知られている。
(Ron) Conventional technology Conventional unmanned vehicles, such as guided golf carts, are ones that decelerate at curved points on a guideway (for example, Utility Model Publication No. 52-11353 and Utility Model Publication No. 54-1).
0474 (see Japanese Utility Model Publication No. 0474) and a vehicle that decelerates the vehicle from the start point to the end point of a downhill slope (for example, see Japanese Utility Model Application Publication No. 57-63402 (WA)) are known.

本発明は下り坂で減速走行きせるものに関し、その従来
例としての実開昭57−63402号公報には、誘導路
としてのモルレールの下り坂始点及び終点にたとえば永
久磁石を取付けると共にゴルフカートにその検知素子を
設け、ごの素子の出力に基いて、2個の駆動モータを直
列接続から並列接続に切換え減速走行させるようにして
いる。
The present invention relates to a device that can decelerate downhill, and as a conventional example, Japanese Utility Model Application Publication No. 57-63402 discloses that, for example, permanent magnets are attached to the downhill starting point and ending point of a mole rail as a guideway, and a golf cart is equipped with a permanent magnet. A detection element is provided, and based on the output of each element, the two drive motors are switched from series connection to parallel connection to cause deceleration running.

而して、坂道と走行速度の関係は、第5図の特性(B)
で示すように、上り坂から下り坂の緩やかな地点までの
範囲は定速走行きせ、下り坂の勾配急な範囲では、勾配
が大きくなるにつれて制動距離が長くなるのでより大き
く減速する必要がある。従って特性(B)は理想特性で
あって、この特性より上の速度は危険速度であり、下の
速度は安全速度ということができる。
Therefore, the relationship between the slope and the running speed is the characteristic (B) in Figure 5.
As shown in the figure, you can drive at a constant speed from an uphill slope to a gentle downhill point, but on a steep downhill slope, the braking distance becomes longer as the slope increases, so you need to decelerate more. be. Therefore, characteristic (B) is an ideal characteristic, and a speed above this characteristic is a critical speed, and a speed below this characteristic is a safe speed.

前記従来装置は定速制御回路を備えておらず、その速度
特性は第3図中(C)又は(D)となり、特性(C)で
あるときには下り坂勾配が15度位までの坂に対しても
適用できる利点を有する反面、走行速度が遅い欠点があ
る。また特性(D>であるときには、平地等で高速走行
になるが、緩やかな下り坂においても、理想特性(B)
より高速度となるため、適用できる地形の制限を受ける
ことになる。
The conventional device is not equipped with a constant speed control circuit, and its speed characteristics are (C) or (D) in Figure 3, and when it is characteristic (C), it is suitable for slopes with downhill gradients of up to about 15 degrees. Although it has the advantage that it can be applied to any vehicle, it has the disadvantage of slow running speed. In addition, when the characteristic (D>), the vehicle will run at high speed on flat ground, etc., but even on a gentle downhill slope, the ideal characteristic (B)
Due to its higher speed, it is subject to applicable terrain restrictions.

尚、特性(E)は定速制御回路のみを具備する場合のも
のである。
Note that characteristic (E) is for the case where only a constant speed control circuit is provided.

(ハ)発明が解決しようとする問題点 本発明はかかる点に鑑み発明きれたものにして、緩やか
な下り坂は定速走行し、急な下り坂はその坂の角度に反
比例した速度で減速走行させる走行制御装置を提供せん
とするものである。
(c) Problems to be Solved by the Invention The present invention has been developed in view of the above points, and the present invention is made such that the vehicle travels at a constant speed on a gentle downhill slope, and decelerates on a steep downhill slope at a speed inversely proportional to the angle of the slope. The purpose is to provide a travel control device for driving.

(ニ)問題点を解決する為の手段 本発明による装置は、走行車駆動モータの分巻界磁コイ
ル電流を制御する制御素子、この素子を制御する制御回
路、電機子の回転を検出して定速信号を制御回路に出力
する回転検出回路及び下り坂の勾配を検出してその角度
が所定値以−ヒのとき、その角度に反比例した減速信号
を制御回路を介して前記制御素子に付与する角度検出手
段を備え、その減速信号により走行車を減速することを
特徴とするものである。
(d) Means for Solving the Problems The device according to the present invention includes a control element for controlling the shunt field coil current of the traveling vehicle drive motor, a control circuit for controlling this element, and a control circuit for detecting the rotation of the armature. A rotation detection circuit outputs a constant speed signal to a control circuit, and detects the slope of a downhill slope, and when the angle is less than a predetermined value, a deceleration signal inversely proportional to the angle is applied to the control element via the control circuit. The present invention is characterized in that the vehicle is equipped with an angle detecting means, and the vehicle is decelerated in response to a deceleration signal from the angle detecting means.

(ホ)作用 上記手段において、緩やかな下り坂では、前記回転検出
回路の出力により定速走行するが、急な下り坂では、そ
の勾配が所定値以上となり、角度検出手段からの、その
角度に反比例した減速信号に基いて減速走行する。この
ため定速走行領域が従来装置に比して大きくなり、また
急な下り坂に対しても減速走行するので、適用できる勾
配の範囲が広がる。尚、下り坂の緩急の境界は、坂の角
度が所定値以上か否かにより定まる。
(e) Effect In the above means, on a gentle downhill slope, the output of the rotation detecting circuit causes the vehicle to travel at a constant speed, but on a steep downhill slope, the slope is greater than a predetermined value, and the angle from the angle sensing means is detected. The vehicle decelerates based on the inversely proportional deceleration signal. For this reason, the constant-speed running range is larger than that of conventional devices, and the vehicle can also run at a reduced speed even on steep downhill slopes, expanding the range of gradients that can be applied. Note that the boundary between steep and slow downhill slopes is determined by whether the angle of the slope is greater than or equal to a predetermined value.

くへ)実施例 本発明による装置の一実施例を図面に基いて説明する。Kuhe) Example An embodiment of the device according to the present invention will be described based on the drawings.

第1図は走行制御装置の電気回路図である。FIG. 1 is an electrical circuit diagram of the travel control device.

この図面において、(1)は直流分巻モータの電機子で
あり、この電機子は電界効果トランジスタ(2〉のドレ
イン・ソース及び抵抗(3)と直列接続されて、直流’
を源(4)に接続される0分巻界磁コイル(5)は制御
素子としてのトランジスタ(6)のエミッタ・コレクタ
を介して直流電源(4)に接続きれる。直流分巻モーフ
は無人走行車の駆動モータであり、電機子(1)の両端
には、発電制動用のサイリスタ(7)が並列接続きれて
いる。直流分巻モータにより駆動される駆動車輪は、直
流分巻モータの回生制動、発電制動及び電磁ブレーキに
より、この順で制動がかけられるが、電磁ブレーキの作
動回路は第1図には省略されている。
In this drawing, (1) is the armature of a DC shunt motor, and this armature is connected in series with the drain and source of a field effect transistor (2) and a resistor (3), so that the DC'
The zero-minute winding field coil (5) connected to the source (4) can be connected to the DC power source (4) via the emitter-collector of a transistor (6) as a control element. The DC shunt morph is a drive motor for an unmanned vehicle, and thyristors (7) for dynamic braking are connected in parallel to both ends of the armature (1). The drive wheels driven by the DC shunt motor are braked in this order by the DC shunt motor's regenerative braking, dynamic braking, and electromagnetic brake, but the electromagnetic brake operating circuit is omitted in Figure 1. There is.

(8)はトランジスタ(6)のベース電流を制御して、
直流分巻モータを界磁制御する制御回路にして、ピーク
優先回路(9)と第1比較器(10)を有し、この比較
器はピーク優先回路(9)の出力と三角波発生回路<1
1)の出力とを比較して、PWM信号を出力するもので
ある。ピーク優先回路(9)には、回転検出回路り12
)、変換回路(13)、角度検出手段(14)、第1タ
イマー回路(15)及び起動補償回路(16)の各出力
が入力され、これらの入力の内、最も大きい入力信号に
基いてピーク優先回路(9)の出力信号が出力されるも
のである。
(8) controls the base current of transistor (6),
The control circuit controls the field of the DC shunt motor, and has a peak priority circuit (9) and a first comparator (10), and this comparator is connected to the output of the peak priority circuit (9) and the triangular wave generation circuit <1.
It compares the output with the output of 1) and outputs a PWM signal. The peak priority circuit (9) includes a rotation detection circuit 12.
), the conversion circuit (13), the angle detection means (14), the first timer circuit (15), and the start-up compensation circuit (16). The output signal of the priority circuit (9) is output.

回転検出回路(12)は、電機子(1)の回転を検出し
て電機子の回転を定速にするための定速信号を出力する
ものであり、回転検出のエンコーダ(17)、F−V変
換回路〈18)及び速度設定回路(19)を含む。
The rotation detection circuit (12) detects the rotation of the armature (1) and outputs a constant speed signal for making the rotation of the armature constant. It includes a V conversion circuit (18) and a speed setting circuit (19).

変換回路(13〉は、抵抗(3)に流れる電機子電流を
検出して、その電流が一定値以上になるとき、1−V変
換した出力を出すものである。
The conversion circuit (13) detects the armature current flowing through the resistor (3), and outputs a 1-V converted output when the current exceeds a certain value.

角度検出手段(14)は、少なくとも下り坂の勾配を検
出して、その角度が所定値たとえば7度以上のとき、そ
の角度に反比例した減速信号を制御回路(8)を介して
トランジスタ(6)に付怪するものである。この手段は
第3図及び第4図に示す如く、重錘(20a)を取付け
た揺動体(20b)を回動軸(20c)で枢支すると共
に、この回動軸に可変抵抗(20d)を取付けた基台(
20e)を、無人走行車の進行方向と平行な側面に取付
けた角度センサ(20)と、この角度センサの物理量を
電圧に変換してその値をレベル調整rる調整回路(21
)とからなる。(22ンはスタート指令にして、無人走
行車の手動操作又はリモート操作によりスタート信号が
出力され、このスタート信号に基いて起動補償回路(1
6)を作動させる。(23)はストップ指令にして、無
人走行車の手動操作又はリモート操作によりストップ信
号が出力され、第1及び第2タイマー回路(15)(2
4)を作動きせる。
The angle detection means (14) detects at least the slope of a downhill slope, and when the angle is a predetermined value, for example, 7 degrees or more, a deceleration signal inversely proportional to the angle is sent to the transistor (6) via the control circuit (8). It is something that is suspicious. As shown in FIGS. 3 and 4, this means pivots a rocking body (20b) to which a weight (20a) is attached on a rotating shaft (20c), and also attaches a variable resistance (20d) to this rotating shaft. Base with attached (
20e) attached to the side surface parallel to the traveling direction of the unmanned vehicle, and an adjustment circuit (21) that converts the physical quantity of this angle sensor into voltage and adjusts the level of the value.
). (No. 22 is a start command, and a start signal is output by manual or remote operation of the unmanned vehicle. Based on this start signal, the start compensation circuit (1
6). (23) is a stop command, a stop signal is output by manual or remote operation of the unmanned vehicle, and the first and second timer circuits (15) (2
Activate 4).

り25)は電界効果トランジスタ(2)を制御する第2
比較器にして、起動補償回路(16)の出力と三角波発
生回路(11)の三角波出力とを比較してPWMfε号
を電界効果トランジスタ(2)のゲートに印加するもの
であり、第2タイマー回路(24)からの出力が入力さ
れると、PWM信号を出力しないようになっている。
25) is the second transistor that controls the field effect transistor (2).
A comparator is used to compare the output of the starting compensation circuit (16) and the triangular wave output of the triangular wave generating circuit (11) and apply PWMfε to the gate of the field effect transistor (2), and the second timer circuit When the output from (24) is input, the PWM signal is not output.

以上の構成における作用を説明する。The operation of the above configuration will be explained.

スタート指令(22)の信号が出ると、起動補償回路(
16)が作動して、徐々に電圧が高くなり直流電圧が第
2比較器(25)に出力され、この比較器には三角波発
生回路(11)からの三角波出力も入力されるので、オ
ンデユーテイが徐々に大きくなるPWM信号が出力され
て、電界効果トランジスタ(2)を導通させ、電機子(
1)に通電する。一方、起動補償回路(16)の出力は
、ピーク優先回路(9)に一定時間だけ最大電圧を出力
し、オンデユーテイ100%でトランジスタ(6)を導
通させ、大きな起動トルクで直流分巻モータを起動する
When the start command (22) signal is issued, the starting compensation circuit (
16) is activated, the voltage gradually increases and the DC voltage is output to the second comparator (25), which also receives the triangular wave output from the triangular wave generator (11), so the on-duty is reduced. A gradually increasing PWM signal is output to make the field effect transistor (2) conductive and the armature (
1) Turn on electricity. On the other hand, the output of the starting compensation circuit (16) outputs the maximum voltage to the peak priority circuit (9) for a certain period of time, makes the transistor (6) conductive at 100% on-duty, and starts the DC shunt motor with a large starting torque. do.

走行車の速度が次第に速くなると、回転検出口l (1
2)の作動により、この回路出力がピーク優先回路(9
)の最大入力となって、三角波発生回路(11)からの
三角波出力との比較によるPWM信号がトランジスタ(
6)のベースに印加されて、直流分巻モータを定速界磁
制御する。このようにして緩やかな上り坂、平地及び緩
やかな下り坂では通常一定速度で走行する。
As the speed of the vehicle gradually increases, the rotation detection port l (1
2) causes this circuit output to pass through the peak priority circuit (9).
) becomes the maximum input of the transistor (
6) is applied to the base of the DC shunt motor to control the DC shunt motor at constant speed. In this way, the vehicle normally travels at a constant speed on gentle uphill slopes, flat terrain, and gentle downhill slopes.

下り坂の勾配が緩やかであるときには、角度検出手段(
14)の検出角度が所定値以下であり、この手段からの
減速信号が出力されず、回転検出回路(12)の出力に
基いて トランジスタ(6)のオンデユーテイが大きく
なり、走行車を加速することなく一定速度で走行する。
When the slope of the downhill slope is gentle, the angle detection means (
14) is below a predetermined value, a deceleration signal is not output from this means, and the on-duty of the transistor (6) increases based on the output of the rotation detection circuit (12), accelerating the vehicle. Run at a constant speed.

下り坂の勾配が急になると、その角度を角度センサ(2
0)が検出して、その角度が所定値以上のとき、その角
度に比例した減速指令信号がピーク優先回路(9)のそ
のときの最大入力となり、この入力によるピーク優先回
路出力が、三角波発生回路(11)からの三角波出力と
第1比較器(10)で比較されて、制御回路(8)の出
力は減速指令信号に反比例したものとなり、トランジス
タ(6)のオンデユーテイを高め、減速する。
When the slope of the downhill slope becomes steep, the angle sensor (2
0) is detected and the angle is greater than a predetermined value, a deceleration command signal proportional to the angle becomes the maximum input at that time to the peak priority circuit (9), and the output of the peak priority circuit due to this input is the triangular wave generator. The triangular wave output from the circuit (11) is compared with the first comparator (10), and the output of the control circuit (8) becomes inversely proportional to the deceleration command signal, increasing the on-duty of the transistor (6) and decelerating.

走行車が上り坂にさしかかると、ある程度までは回転検
出回路(12)の作用により界磁コイル(5)の電流を
少なくして一定速度を保つが、上り勾配が大きくなると
、電機子電流が一定値より大きくなり、変換回路(13
)がこの状態を検出してその変換回路出力がピーク優先
回路(9)の最大入力となり、界磁コイル(5)を10
0%通電してモータトルクを大きくする。この場合、モ
ータは一定速度に保つことができず、徐々に速度が低下
する。
When the vehicle approaches an uphill slope, the current in the field coil (5) is reduced to a certain extent by the action of the rotation detection circuit (12) to maintain a constant speed, but as the uphill slope increases, the armature current becomes constant. value, and the conversion circuit (13
) detects this state, and its conversion circuit output becomes the maximum input of the peak priority circuit (9), and the field coil (5) is
Increase motor torque by applying 0% current. In this case, the motor cannot be kept at a constant speed and gradually slows down.

ストップ指令(23)からの信号が出力されると、第1
タイマー回路(15)のタイマ一時間だけ、トランジス
タ(6)を100%導通させると共にゲート回路(26
)を作動きせて、サイリスク(7)を点弧導通させ、電
機子す)の回転に発電制動をかける。また同時に第2タ
イマー回路(24)を作動させ、そのタイマ一時間後に
、電界効果トランジスタ(2)をオフさせ、また第1タ
イマー回路(15)のタイマ一時間後には、トランジス
タ(6り及びサイリスタ(7〉がオフする。
When the signal from the stop command (23) is output, the first
For one hour of the timer circuit (15), the transistor (6) is made 100% conductive and the gate circuit (26) is made 100% conductive.
) is activated, ignition conduction occurs in the cyrisk (7), and dynamic braking is applied to the rotation of the armature (7). At the same time, the second timer circuit (24) is activated, and after one hour of the timer, the field effect transistor (2) is turned off. (7> turns off.

以上の動作における速度特性を第2図中(A>で示す。The speed characteristics in the above operation are indicated by (A>) in FIG.

尚、角度検出手段(14)は、減速回路手段(27)に
含まれ、この手段(27)にカーブ検出回路や減速開始
地点の検出回路等を含み、その回路出力としての減速指
令信号の発生時間をタイマーあるいはエンコーダの出力
パルス数等のカウントで規正するようにしてもよい。
The angle detection means (14) is included in the deceleration circuit means (27), which includes a curve detection circuit, a deceleration start point detection circuit, etc., and generates a deceleration command signal as the circuit output. The time may be regulated by counting the number of output pulses from a timer or an encoder.

(ト)発明の効果 本発明による装置は、走行車駆動モータの分巻界磁コイ
ル電流を制御する制御素子、この素子を制御する制御回
路、電機子の回転を検出して定速信号を制御回路に出力
する回転検出回路及び下り坂の勾配を検出してその角度
が所定値以上のとき、その角度に反比例した減速信号を
制御回路を介して前記制御素子に付与する角度検出手段
を備え、その減速信号により走行車を減速することを特
徴とするものであるから、下り坂であっても、緩やかな
ときは定速走行すると共に急なときには、坂の角度に反
比例して減速走行きせることができ、従来装置に比し、
下り勾配の大きい地形に対しても適用することができる
(G) Effects of the Invention The device according to the present invention includes a control element that controls the shunt field coil current of the traveling vehicle drive motor, a control circuit that controls this element, and a control circuit that detects the rotation of the armature to control a constant speed signal. comprising a rotation detection circuit that outputs an output to the circuit, and an angle detection means that detects the slope of a downhill slope and, when the angle is greater than a predetermined value, applies a deceleration signal inversely proportional to the angle to the control element via the control circuit, The vehicle is characterized by decelerating the vehicle using the deceleration signal, so even if the vehicle is going downhill, it can run at a constant speed when it is gentle, and when it is steep, it can decelerate in inverse proportion to the angle of the slope. Compared to conventional equipment,
It can also be applied to terrain with a large downward slope.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による装置の一実施例を示す電気回路図
、第2図はその実施例の速度特性図、第3図は角度セン
サの正面図、第4図は同側面図、第5図は従来装置の速
度特性図である。 <1)・・・電機子、(3)・・・抵抗、(5)・・・
分巻界磁コイル、(6)・・・制御素子(トランジスタ
)、 (8)・・・制御回路、(12)・・・回転検出
回路、(14)・・・角度検出手段。
FIG. 1 is an electric circuit diagram showing an embodiment of the device according to the present invention, FIG. 2 is a speed characteristic diagram of the embodiment, FIG. 3 is a front view of the angle sensor, FIG. 4 is a side view of the same, and FIG. The figure is a speed characteristic diagram of a conventional device. <1)... Armature, (3)... Resistance, (5)...
Shunt field coil, (6)...control element (transistor), (8)...control circuit, (12)...rotation detection circuit, (14)...angle detection means.

Claims (1)

【特許請求の範囲】[Claims] (1)走行車駆動モータの分巻界磁コイル電流を制御す
る制御素子、この素子を制御する制御回路、電機子の回
転を検出して定速信号を制御回路に出力する回転検出回
路及び下り坂の勾配を検出してその角度が所定値以上の
とき、その角度に反比例した減速信号を制御回路を介し
て前記制御素子に付与する角度検出手段を備え、その減
速信号により走行車を減速することを特徴とする無人走
行車の走行制御装置。
(1) A control element that controls the shunt field coil current of the traveling vehicle drive motor, a control circuit that controls this element, a rotation detection circuit that detects the rotation of the armature and outputs a constant speed signal to the control circuit, and a downlink Angle detection means is provided for detecting the slope of the slope and, when the angle is greater than a predetermined value, applying a deceleration signal inversely proportional to the angle to the control element via a control circuit, and the vehicle is decelerated by the deceleration signal. A travel control device for an unmanned vehicle characterized by the following.
JP59215905A 1984-10-15 1984-10-15 Driving controller for unmanned vehicles Expired - Lifetime JPH0753003B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59215905A JPH0753003B2 (en) 1984-10-15 1984-10-15 Driving controller for unmanned vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59215905A JPH0753003B2 (en) 1984-10-15 1984-10-15 Driving controller for unmanned vehicles

Publications (2)

Publication Number Publication Date
JPS6194504A true JPS6194504A (en) 1986-05-13
JPH0753003B2 JPH0753003B2 (en) 1995-06-05

Family

ID=16680194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59215905A Expired - Lifetime JPH0753003B2 (en) 1984-10-15 1984-10-15 Driving controller for unmanned vehicles

Country Status (1)

Country Link
JP (1) JPH0753003B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022208888A1 (en) * 2021-04-02 2022-10-06 ヤマハ発動機株式会社 Vehicle and vehicle control system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS504710A (en) * 1972-12-21 1975-01-18
JPS55137672U (en) * 1979-03-20 1980-10-01

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS504710A (en) * 1972-12-21 1975-01-18
JPS55137672U (en) * 1979-03-20 1980-10-01

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022208888A1 (en) * 2021-04-02 2022-10-06 ヤマハ発動機株式会社 Vehicle and vehicle control system

Also Published As

Publication number Publication date
JPH0753003B2 (en) 1995-06-05

Similar Documents

Publication Publication Date Title
US3630304A (en) Optimal control system for an electric motor driven vehicle
EP0022267B1 (en) Control system for induction motor-driven car
JP2771308B2 (en) Electric car control device
CA2012236A1 (en) Spin/stall detector for an electrically propelled traction vehicle
GB2062379A (en) Motor control apparatus and method
US4392091A (en) Vehicle propulsion control apparatus and method
EP0066057B1 (en) Shunt-wound control for on-road vehicle
US3614564A (en) Readhesion apparatus for vehicles
JPS6194504A (en) Travel controller of unmanned vehicle
JPH0463639B2 (en)
JPS6192104A (en) Travel controller of operatorless traveling vehicle
US4235309A (en) Control for starting electric motors
JPH0667043B2 (en) Regenerative braking system for electric vehicles
JPH05284610A (en) Control method for electric automobile
US4346303A (en) Control system for an electrically driven vehicle with three generators and flywheel energy conservation
US4684859A (en) Chopper control system
JPS623642B2 (en)
JPH0223045Y2 (en)
JP2561554B2 (en) Electric braking and auxiliary accelerators for vehicles
JPS635365Y2 (en)
JPS5893403A (en) Regenerative brake controller
JPS635366Y2 (en)
JPS60131004A (en) Speed controller of motor driven vehicle
JPH0618445B2 (en) Driving control device for electric vehicles
SU887287A2 (en) Apparatus for pulsed control of traction motor speed

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term