JPS6194488A - Chrominance components processing device - Google Patents

Chrominance components processing device

Info

Publication number
JPS6194488A
JPS6194488A JP59215418A JP21541884A JPS6194488A JP S6194488 A JPS6194488 A JP S6194488A JP 59215418 A JP59215418 A JP 59215418A JP 21541884 A JP21541884 A JP 21541884A JP S6194488 A JPS6194488 A JP S6194488A
Authority
JP
Japan
Prior art keywords
signal
color
frequency
digital data
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59215418A
Other languages
Japanese (ja)
Other versions
JPH058630B2 (en
Inventor
Yukio Nakagawa
幸夫 中川
Masao Tomita
冨田 雅夫
Tokikazu Matsumoto
松本 時和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59215418A priority Critical patent/JPS6194488A/en
Priority to KR1019850007124A priority patent/KR900006490B1/en
Priority to CN85107257A priority patent/CN1010272B/en
Priority to US06/785,204 priority patent/US4724476A/en
Priority to EP85307312A priority patent/EP0178868B1/en
Priority to DE8585307312T priority patent/DE3586030D1/en
Publication of JPS6194488A publication Critical patent/JPS6194488A/en
Publication of JPH058630B2 publication Critical patent/JPH058630B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/80Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback
    • H04N9/82Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only
    • H04N9/83Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only the recorded chrominance signal occupying a frequency band under the frequency band of the recorded brightness signal
    • H04N9/831Transformation of the television signal for recording, e.g. modulation, frequency changing; Inverse transformation for playback the individual colour picture signal components being recorded simultaneously only the recorded chrominance signal occupying a frequency band under the frequency band of the recorded brightness signal using intermediate digital signal processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/79Processing of colour television signals in connection with recording
    • H04N9/7921Processing of colour television signals in connection with recording for more than one processing mode

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)

Abstract

PURPOSE:To make a circuit simple, to improve performance and to decrease the number of parts by sampling a burst part of two demodulated color difference signal digital data, and generating control signals of ACC action, APC action, and color killer action. CONSTITUTION:After passing an ACC amplifier 2, a low area converting chrominance components are fed to an A/D converter 33, a clock for converting is set to the frequency of four times of a low range converting carrier wave, the clock phase is controlled so that converting data may repeat digital data of B-Y, R-Y, -(B-Y) and -(R-Y), a decoder 34 inverts and separates a code, two color difference signal data are obtained, then the data is added by comb- shaped filters 35 and 36 to the data before one period, data (R-Y) and (B-Y) are obtained, an encoder 37 inverts a code, the output is repeatedly executed by a four times clock of a reference carrier frequency, and after D/A conversion 38 is applied, a carrier chrominance component is obtained through BPF39. The burst part of the data (R-Y) and (B-Y) is sampled by a gate 40, and the signal for controlling respective actions of ACC, APC and a killer is generated at the circuit 53.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は磁気録画再生装置(VTR)において色信号の
記録、再生時における変調周波数のンノター補正、信号
しベル補正、白黒信号の判別を行なう色信号処理装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a color signal for recording and reproducing color signals in a magnetic recording and reproducing apparatus (VTR), which performs color correction of the modulation frequency, signal level correction, and black and white signal discrimination. It relates to a processing device.

従来例の構成とその問題点 第1図は従来の色信号処理装置の構成を示したブロック
図である。以下図面を参照して従来例を説明する。
Configuration of Conventional Example and Its Problems FIG. 1 is a block diagram showing the configuration of a conventional color signal processing device. A conventional example will be described below with reference to the drawings.

記録時には端子1より搬送周波数/5c(NTSC方式
ては3.68 MH2)の搬送色信号が入力され、ムC
Cアンプ(ムCC;)2で適当なレベルにレベル調整さ
れた後、周波数変換器3の一方の入力に供給される。周
波数変換器3のもう一方の入力には低域変換周波数fc
(VH8方式では水平周波数f、Iの40倍で629K
H2)と前記端子1より入力された搬送色信号の搬送周
波数fscの和の周波数fsa ” fc  のキャリ
アが入力される。前記レベル調整された搬送色信号と周
波数へ。+f0  のキャリアは周波数変換器3て乗算
され、その結果得られた搬送周波数りの低域変換色信号
をローパスフィルタ(LPF)4て抽出し、記録再生出
力切換用のスイッチ6を介してキラースイッチ(KIL
LER3W)7に供給する。キラースイッチ7の制御端
子(こは色信号の有無を判別した結果が供給されており
、それにより、出力用の端子8にスイッチ6からの低域
変換色信号を供給するか否かの切換を行なっている。
During recording, a carrier color signal with a carrier frequency of /5c (3.68 MH2 in the NTSC system) is input from terminal 1, and the carrier color signal is
After the level is adjusted to an appropriate level by a C amplifier (CC) 2, the signal is supplied to one input of a frequency converter 3. The other input of the frequency converter 3 has a low frequency conversion frequency fc.
(In the VH8 system, the horizontal frequency f is 40 times I, which is 629K.
A carrier with a frequency fsa '' fc which is the sum of the carrier frequency fsc of the carrier color signal inputted from the terminal 1 is inputted to the carrier color signal H2) and the carrier color signal whose level has been adjusted and the frequency. 3, and the resulting low-pass conversion color signal at the carrier frequency is extracted by a low-pass filter (LPF) 4 and sent to a killer switch (KIL) via a switch 6 for recording/reproducing output.
LER3W)7. The control terminal of the killer switch 7 (this terminal is supplied with the result of determining the presence or absence of a color signal, and is used to switch whether or not to supply the low-frequency conversion color signal from the switch 6 to the output terminal 8. I am doing it.

再生時には端子1より搬送周波数10の低域変換色信号
が入力され、A’CGアンプ2てレベル調整され周波数
変換器3の一方の人力に供給される。
During playback, a low frequency converted color signal with a carrier frequency of 10 is input from a terminal 1, the level is adjusted by an A'CG amplifier 2, and the signal is supplied to one of the frequency converters 3.

周波数変換器3の一方のもう一方の人力には前記端子1
より入力された低域変換色信号の搬送周波数f、と再生
搬送色信号用の基準搬送周波数fscの和の周波数fs
c十fcのキャリアが供給される。前記レベル調整され
た低域変換色信号と周波数fsc+fcのキャリアは周
波数変換器3で乗算され、その結果得られた基部搬送周
波数fscの搬送色信号をバンドパスフィルタ(BPF
)sて抽出し、スイッチ6、キラースインチアを介して
端子8に出力される。キラースインチアは記録時間様色
信号の有無を判別した結果て制御される。上記したよう
な記録再生系に於いて、ACCアンプ2により端子1よ
り入力される搬送色信号または低域変換色信号を適当な
レベルに調整するムCC動作や、端子1より入力される
搬送色信号または低域変換色信号の搬送波の位相のジッ
ターに合わせ前記周波数変換器3Iこ供給され5る周波
数jsc+fcのキャリアに同様な位相ジッターをもた
せて得られた低域変換色信号または搬送色信号の位相を
所定のものにするムPC動作や、端子1より搬送色信号
または低域変換色信号が入力されているか否かを判別し
、色信号が無い場合端子已に信号を出力しないようにす
るカラーキラー動は従来次のような方法で行なわれてい
た。
The other terminal of the frequency converter 3 is connected to the terminal 1.
The frequency fs is the sum of the carrier frequency f of the low-pass converted color signal input from the input carrier and the reference carrier frequency fsc for the reproduced carrier color signal.
c ten fc carriers are supplied. The level-adjusted low-pass conversion color signal and the carrier of frequency fsc+fc are multiplied by a frequency converter 3, and the resulting carrier color signal of base carrier frequency fsc is passed through a bandpass filter (BPF).
) is extracted and output to terminal 8 via switch 6 and killer switch. The killer signal is controlled as a result of determining the presence or absence of a recording time-like color signal. In the above-mentioned recording and reproducing system, the ACC amplifier 2 performs a CC operation to adjust the carrier color signal input from terminal 1 or the low-frequency conversion color signal to an appropriate level, and adjusts the carrier color signal input from terminal 1 to an appropriate level. The carrier of frequency jsc+fc supplied to the frequency converter 3I is given a similar phase jitter to match the phase jitter of the carrier wave of the signal or low-pass converted color signal. The PC operates to set the phase to a predetermined value, determines whether a carrier color signal or a low-frequency conversion color signal is input from terminal 1, and does not output a signal to the terminal if there is no color signal. Color killer motion has traditionally been performed in the following manner.

スイッチ9により記録時にはムCCアンプ2を通過後の
搬送色信号を取り込み、再生時(こは、バンドパスフィ
ルタ6を通過後の周波数変換された再生搬送色信号が取
り込まれ、パーストゲート(BG:zoによりバースト
部分が抜き取られる。
The switch 9 captures the carrier color signal after passing through the CC amplifier 2 during recording, and captures the frequency-converted reproduced carrier color signal after passing through the bandpass filter 6 during playback. The burst part is extracted by zo.

ice動作については記録再生時とも前記抜き取ったバ
ーストをice検波器(ACCDET)11てピークレ
ベル検波されローパスフィルタ(LPF)12てI)C
レベルに変換しACCアンプ2に利得制御用の信号とし
て供給される。ACCアンプ2は例えば利得制御用の信
号のDC電圧が高い場合、つまりバーストのレベルが大
きいとき利得が下がる方向に動作し、反対に利得制御用
の信号のDCi電圧が低い場合に利得が上がる方向に動
作し上記した帰還ループにより色信号のレベノCが一定
になる様に動作している。APC動作については記録時
、信号発生器(v*o ) 13は電圧制御発振器とし
て働き、色副搬送周波数fscて発振し、この発振出力
とパーストゲート10て抜き取られたバーストが位相比
較器(PCl )1aで同期検波されその結果はローパ
スフィルタ(LPF)16とスイッチ16を介し信号発
生器13の周波数制御入力に帰還され、これにより信号
発生器13は位相比較器14て同期検波してローパスフ
ィルタ15を通過した結果がOになる周波数で発振する
。信号発生器13の発振出方は、it記抜き取られたバ
ーストと90°の位相差をもって同期した色副搬送波と
なり周波数変換器17の一方の入力に供給される。周波
数変換器17のもう一方には低域変換搬送波が供給され
るが、これはまず、記録時には位相比較器(PO2)1
8、ローパスフィルタ(LPF:z9、スイッチ20、
電圧制御発振器(VCO)21、分周器(’/n)22
で構成すれるフェイズ ロックド・ループ(以後PLL
と称す)により端子23より入力された水平同期信号の
周波数りがn倍(nは正の整数)された周波数nfBの
信号を作成し、信号作成回路(PS/PI)24て分周
するとともに端子25より入力される記録トラック判別
信号PGと水平同期信号をもとに、1水平期間毎に各ト
ランクで反対方向に位相を900つつソフトしたり(以
下PS処理と称す)、1トラツクおきに1水平期間毎に
位相を反転する処理(以下PI処理と称す)を行なって
作成しており、その周波数f0はNTSCテレビ信号を
VH8方式で記録する場合4〇九でかつ1水平期間毎に
90°つつシフトしたものとなる。記録時には周波数変
換器17で前記した周波数fscの色副搬送波と周波数
fcの低域変換搬送波を乗算しバンドパスフィルタ(B
PF)26てHJti数fsc+ fcの信号を抽出し
、周波数変換器3に供給すること番こより最終的に端子
8から出力される低域変換色信号の低域変換搬送波と、
信号作成回路24て作成された低域変換色信号とが同期
するよう動作する。また再生時には、信号発生器13は
スイッチ16を介し定電圧回路(REF )27からの
定電圧で周波数制御されるため基準の周波数/scの色
副搬送波を発生する基準発振器となり、tTiJ記位相
地位相比較器14がローパスフィルタ16、スイッチ2
0を介して電圧制御発振器21に供給されることにより
、電圧制御発振器21は最終的に端子8から出力される
周波数変換された再生搬送色信号のバーストが、信号発
生器13て作成された基準の色副搬送波に同期するよう
動作する。
Regarding the ice operation, during recording and reproduction, the peak level of the extracted burst is detected by the ice detector (ACCDET) 11, and the peak level is detected by the low pass filter (LPF) 12.
The signal is converted to a level and supplied to the ACC amplifier 2 as a gain control signal. For example, the ACC amplifier 2 operates in a direction in which the gain decreases when the DC voltage of the gain control signal is high, that is, when the burst level is large, and conversely, when the DCi voltage of the gain control signal is low, the gain increases. The feedback loop described above operates so that the level C of the color signal becomes constant. Regarding the APC operation, during recording, the signal generator (v*o) 13 works as a voltage controlled oscillator and oscillates at the color subcarrier frequency fsc, and this oscillation output and the burst extracted by the burst gate 10 are sent to the phase comparator (PCl). ) 1a, and the result is fed back to the frequency control input of the signal generator 13 via a low-pass filter (LPF) 16 and a switch 16, whereby the signal generator 13 performs synchronous detection using a phase comparator 14, and outputs the result to the low-pass filter. It oscillates at a frequency where the result of passing through 15 is O. The oscillation output from the signal generator 13 becomes a color subcarrier synchronized with the extracted burst with a phase difference of 90°, and is supplied to one input of the frequency converter 17. A low-frequency converted carrier wave is supplied to the other side of the frequency converter 17, which is first supplied to the phase comparator (PO2) 1 during recording.
8. Low pass filter (LPF: z9, switch 20,
Voltage controlled oscillator (VCO) 21, frequency divider ('/n) 22
A phase locked loop (hereinafter PLL) consisting of
) creates a signal with a frequency nfB, which is the frequency of the horizontal synchronizing signal input from the terminal 23 multiplied by n (n is a positive integer), and divides the frequency in the signal creation circuit (PS/PI) 24. Based on the recording track discrimination signal PG and the horizontal synchronization signal input from the terminal 25, the phase is softened by 900 in the opposite direction in each trunk every horizontal period (hereinafter referred to as PS processing), and every other track is It is created by performing processing to invert the phase every horizontal period (hereinafter referred to as PI processing), and the frequency f0 is 409 when recording an NTSC television signal using the VH8 system, and 90 times per horizontal period. It will be shifted while moving. During recording, the frequency converter 17 multiplies the color subcarrier of frequency fsc by the low frequency converted carrier of frequency fc, and the frequency converter 17 multiplies the color subcarrier of frequency fsc by the low frequency converted carrier of frequency fc.
PF) 26 extracts a signal of HJti number fsc + fc and supplies it to the frequency converter 3. From this, the low-frequency conversion carrier wave of the low-frequency conversion color signal that is finally output from the terminal 8,
It operates so that it is synchronized with the low frequency conversion color signal created by the signal creation circuit 24. Furthermore, during reproduction, the signal generator 13 is frequency controlled by a constant voltage from a constant voltage circuit (REF) 27 via a switch 16, so it becomes a reference oscillator that generates a color subcarrier of the reference frequency/sc, The phase comparator 14 is a low-pass filter 16 and a switch 2
0 to a voltage-controlled oscillator 21, the burst of frequency-converted reproduced carrier color signal finally output from terminal 8 is supplied to the voltage-controlled oscillator 21 via the reference signal generator 13. operates in synchronization with the color subcarrier of

キラー動作については記録再生時とも前記パーストゲー
ト1oて抜き取ったバーストが信号発生回路13からの
色副搬送波に対し1iiJ記APC動作によって90°
の位相差をもつことから、信号発生器13からの色副搬
送波より位相器(90°5HIF)28で90’位相を
もつバーストと同相の搬送波を作成し、キラー検波器(
KrLLERDICT)29に供給し、前記抜き取られ
たバーストを同期I波L、ローパスフィルタ(LPF)
30を通過した後のDC電圧でコンパレータ(、GOM
P)29が色信号の有無を判断し、キラーライッチアに
スイッチの制御信号を供給している。
Regarding the killer operation, during recording and reproduction, the burst extracted by the burst gate 1o is rotated at 90° with respect to the color subcarrier from the signal generation circuit 13 by the APC operation described in 1iiJ.
Since it has a phase difference of
KrLLERDICT) 29, and the extracted burst is passed through a synchronous I wave L and a low pass filter (LPF).
The comparator (, GOM
P) 29 determines the presence or absence of a color signal and supplies a switch control signal to the killer light cap.

以上のような従来例の色信号処理装置においてACC,
ムPC,カラーキラーの動作を行なうためそれぞれ、バ
ーストのピークレベル検波を行な、う人CC検波器11
と、バーストと信号発生器13からの色副搬送波とを同
期検波する位相比較器14と、前記信号発生器13から
の色副搬送波を90゜移相したものとバーストとを同期
検波するキラー検波器29の3つの検波回路が必要であ
り、それぞれ所定の特性を得るため回路が複雑でかつ周
辺の回路も多く、また検波回路の特性とその後段のアナ
ログローパスフィルタでそれぞれの動作の性能が決定さ
れるため定数の設定が難しく、さらに外付の部品点数が
芝くなるという欠点を有してい発明の目的 本発明の目的は前記従来例で欠点となっていたice 
、人PC,カラーキラー動作を行なうための特にバース
トの検波を行なう回路を一部を共通化し、さらにデジタ
ル化することにより回路の簡略化と性能の向上と部品点
数の削減を可能にする− 色信号処理装置を提供するこ
とIこある。
In the conventional color signal processing device as described above, ACC,
In order to perform the operation of the PC and color killer, the peak level detection of the burst is performed, and the CC detector 11 detects the peak level of the burst.
, a phase comparator 14 that synchronously detects the burst and the color subcarrier from the signal generator 13, and a killer detector that synchronously detects the burst and the color subcarrier from the signal generator 13 shifted by 90 degrees. The three detection circuits of the detector 29 are required, and each circuit is complex and requires many peripheral circuits to obtain predetermined characteristics, and the performance of each operation is determined by the characteristics of the detection circuit and the subsequent analog low-pass filter. Therefore, it is difficult to set constants, and furthermore, the number of external parts is small.
, a human PC, makes it possible to simplify the circuit, improve performance, and reduce the number of parts by standardizing a part of the circuit that performs burst detection, especially for performing color killer operation, and further digitizing it - Color An object of the present invention is to provide a signal processing device.

発明の構成 本発明の色信号処理装置は、低域変換色信号を2つの色
差信号デジタルデータに復調する手段と、@紀2つの色
差信号デジタルデータのバーストi分を抽出し、前記抽
出したバーストi分の2つの色差信号デジタルデータを
演算処理後、D/A変換器、アナログフィルタ、コンパ
レータを通して色差信号レベル調整用の制御信号と色信
号の周波数及び位相を制御するための制御信号と色信号
の何無を判断し色信号を出力するか否かを制御する制御
信号を作成する制御信号作成手段を備え、nii記制御
信号作成手段番こより得られた制御信号により、人CC
動作1人PC動作、カラーキラー動作などの搬送色信号
の記録、再生に必要な諸動作を行なうものである。
Structure of the Invention The color signal processing device of the present invention includes means for demodulating a low-pass converted color signal into two color difference signal digital data, extracting a burst i portion of the two color difference signal digital data, and extracting the burst i portion of the two color difference signal digital data. After arithmetic processing of the two color difference signal digital data for i minutes, a control signal for adjusting the color difference signal level, a control signal for controlling the frequency and phase of the color signal, and a color signal are generated through a D/A converter, an analog filter, and a comparator. control signal generation means for generating a control signal for determining whether or not to output a color signal;
Operations: Performs various operations necessary for recording and reproducing carrier color signals, such as one-person PC operation and color killer operation.

実施例の説明 以下本発明の一実施例について図面を参照しながら説明
する。第2図は本発明の一実施例における色信号処理装
置のブロック図であり、以下(こその動作を説明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 2 is a block diagram of a color signal processing device according to an embodiment of the present invention, and its operation will be explained below.

記録時、端子1より搬送周波数fscの搬送色信号が供
給されACCアンプ(AGO)2てレベル調整され、周
波数変換器3、ローパスフィルタ4、スイッチ6、キラ
ースイ・ノチ了を介して端子8に低域変換色信号が供給
されるのは従来通りである。
During recording, a carrier color signal with a carrier frequency fsc is supplied from terminal 1, its level is adjusted by an ACC amplifier (AGO) 2, and a low signal is sent to terminal 8 via a frequency converter 3, a low-pass filter 4, a switch 6, and a killer switch. The gamut-converted color signal is supplied as usual.

再生時にはACCアンプ2を通過後の低域変換色信号を
スイッチ32を介し前記低域変換色信号の搬送波に同期
した整数倍のクロッつてA/D変換器(A/D)33に
よりサンプリング後、ム/D変換し、さらにデコーダ(
DKCODE )34て低域変換搬送波のタイミングを
もとに2つの色差信号デジタルデータI’l−Y 、 
B−Ylこデジタル復調する。本発明の一実施例ては前
記A/D変換器33のクロックを低域変換搬送波の4倍
の周波数41oて動作させ、なおかつム/D変換された
データが色差信号のB−Y、R−Y、−(B−Y)。
During playback, the low frequency converted color signal after passing through the ACC amplifier 2 is sampled by an A/D converter (A/D) 33 via a switch 32 using an integer multiple clock synchronized with the carrier wave of the low frequency converted color signal. gam/D conversion, and then a decoder (
DKCODE) 34, two color difference signal digital data I'l-Y,
B-Yl is digitally demodulated. In one embodiment of the present invention, the clock of the A/D converter 33 is operated at a frequency 41o that is four times as high as the low-frequency conversion carrier wave, and the M/D converted data is a color difference signal B-Y, R- Y, -(B-Y).

−(R−Y )のデジタルデータの繰り返しになるよう
前記クロックの位相を制御し、前記デジタルデータをデ
コーダ34て符号反転及び分離の処理を行なって2つの
色差信号デジタルデータを得ている。前記2つの色差信
号デジタルデータはデジタルくし形フィルタ(COMB
 )36.36で1水平期間@(P A L方式のカラ
ー映像信号の場合2水平期間前)のデータと加算され、
クロストーク及びサンプリングによる高調波が除去され
た2つの色差信号デジタルデータ(R−Y )’、 (
B−Y)’を得ている。得られた2つの色差信号デジタ
ルデータはエンコーダ(KNCODE)37て符号反転
されるともに基準の搬送周波数fscの4倍の周波数4
1S Oのクロックで(R−Y)’、(B−Y)’。
The phase of the clock is controlled so that -(RY) digital data is repeated, and the digital data is subjected to sign inversion and separation processing by a decoder 34 to obtain two color difference signal digital data. The two color difference signal digital data are processed by a digital comb filter (COMB).
) 36. At 36, it is added to the data of one horizontal period @ (two horizontal periods ago in the case of a PAL color video signal),
Two color difference signal digital data (R-Y)' from which harmonics due to crosstalk and sampling have been removed (
B-Y)' is obtained. The obtained two color difference signal digital data are sign-inverted by an encoder (KNCODE) 37 and set at a frequency 4 which is four times the reference carrier frequency fsc.
(RY)', (B-Y)' at 1S O's clock.

−(R−Y)’、−(B−Y)’の順に繰り返し出力さ
れD/A変換器(D/A ) 3sでアナログ信号に変
換した後、バンドパスフィルタ(BPF)39て不要な
周波数成分を除去して搬送周波数が/scの搬送色信号
を得る。得られた搬送色信号がスイッチ6、キラースイ
ッチ(KILLER5W)7を介して端子8に供給され
るのは従来通りである。
-(RY)' and -(B-Y)' are repeatedly output in the order of The components are removed to obtain a carrier color signal having a carrier frequency of /sc. The obtained carrier color signal is supplied to the terminal 8 via the switch 6 and the killer switch (KILLER5W) 7 as in the conventional manner.

ムCC動作、ムPC動作、カラーキラー動作に必要なバ
ースト情報は記録時にはローパスフィルタ4を通過後の
低域変換色信号をスイッチ32によりA/D変換器33
に供給し、再生時同様2つの色差信号デジタルデータ(
R−Y )’、 (B−Y )’に変換し、記録時、再
生時とも前記色差信号デジタルデータ(R−Y )’、
、(B−Y )’のバースト部分のデジタルデータをパ
ーストゲート(B G ) 40で抜き取ることにより
得ている。
During recording, the burst information necessary for Mu CC operation, Mu PC operation, and Color Killer operation is sent to the A/D converter 33 by a switch 32 after passing through the low-pass filter 4.
and the same two color difference signal digital data (
RY)', (B-Y)', and the color difference signal digital data (RY)', both during recording and reproduction.
, (BY)' is obtained by extracting the digital data of the burst portion with a burst gate (BG) 40.

ACC動作については復調が正確になされている場合、
バースト部分の色差信号データはNTSC方式のカラー
映像信号の記録の場合、(B−Y)’データに一定の負
の大きさをもつものとなり、(B−Y)’データの絶対
値はバーストのピークレベル検波結果と同等であり、バ
ーストレベルのデータとなる。また、復調が正確になさ
れない場合やPAL方式のカラー映像信号のように(B
−Y)’は一定の負の大きさをもち(R−Y)’は大き
さかのデータが得られ、上記した様なバーストレベルの
データをムcaデテクタ(ACCDET)41によりデ
ジタルデータて求め、D/A変換器(D/A)42でア
ナログ値に変換後、ローパスフィルタ(LPF)43を
介して人CGアンプ2に帰還することにより色信号のレ
ベルを一定に制御する。
Regarding ACC operation, if demodulation is performed accurately,
In the case of recording a color video signal using the NTSC system, the color difference signal data in the burst part has a certain negative magnitude as (B-Y)' data, and the absolute value of the (B-Y)' data is the same as that of the burst. This is equivalent to the peak level detection result and becomes burst level data. In addition, when demodulation is not performed accurately or when the color video signal of the PAL system (B
-Y)' has a constant negative magnitude and (RY)' has a certain magnitude.The burst level data as described above is obtained as digital data by the muca detector (ACCDET) 41. After being converted into an analog value by a D/A converter (D/A) 42, it is fed back to the human CG amplifier 2 via a low pass filter (LPF) 43, thereby controlling the level of the color signal to be constant.

ACCデテクタ41は上記したものの曲番こ内部にレベ
ル制御すべき基準レベルをデジタルデータとしてもち、
前記求めたバーストレベルのデジタルデータと基準レベ
ルのデジタルデータを比較し、その差に相当するデジタ
ルデータをD/A変換器42に供給し、例えばD/A変
換器42を電流出力型で構成しローパスフィルタ43て
積分してACCアンプの制御信号としてもよい。またA
CC動作の応答速度、安定性を考慮し、D/A変換器4
3に送るデジタルデ〜りlこ非線形性をもたせる処理を
してもよい。さらにACiCデテクタ41でバースト区
間の色差信号データの平均またはバーストレベルのデー
タの平均をとることにより、低域変換色信号に含まれる
ノイズによる誤動作も軽減される。
The ACC detector 41 has a reference level for level control as digital data inside the above-mentioned song number,
The burst level digital data obtained above is compared with the reference level digital data, and digital data corresponding to the difference is supplied to the D/A converter 42. For example, the D/A converter 42 is configured as a current output type. The signal may be integrated by the low-pass filter 43 and used as a control signal for the ACC amplifier. Also A
Considering the response speed and stability of CC operation, the D/A converter 4
The digital data sent to 3 may be processed to have non-linearity. Furthermore, by averaging the color difference signal data in the burst section or the average of the burst level data in the ACiC detector 41, malfunctions due to noise contained in the low frequency converted color signal are also reduced.

人pc動作については、記録時、再生時ともバーストゲ
−1−40で抜き取ったバーストi分2つの色差信号デ
ジタルデータ(R−Y )’、(B −Y )’が正確
に復調されているかどうかを判断することにより位相誤
差検出回路(PCl)44で位相誤差に相当する値をデ
ジタルデータでD/A変換器(D/A)45に供給し、
アナログ値に変換されり位相誤差をローパスフィルタ(
LPF)46に通して記録、再生の際の搬送波の周波数
1位相制御の制御電圧を得ている。例えばNTSC方式
のカラー映像信号を記録、再生する場合、前記人CCジ
タルデータをそのまま位相誤差としてD/A変換器45
に供給してもよいし、データ(R,−Y )’。
Regarding human PC operation, whether the two color difference signal digital data (R-Y)' and (B-Y)' extracted by Burst Game 1-40 are accurately demodulated during recording and playback. By determining this, a phase error detection circuit (PCl) 44 supplies a value corresponding to the phase error as digital data to a D/A converter (D/A) 45,
The phase error is converted to an analog value and passed through a low-pass filter (
(LPF) 46 to obtain a control voltage for frequency one-phase control of carrier waves during recording and reproduction. For example, when recording and reproducing an NTSC color video signal, the D/A converter 45 uses the human CC digital data as a phase error.
and data (R, -Y)'.

(B−Y)’からデジタル的に tanθ=(R−Y)’/(B−Y’)’から前記θを
デジタル的(こ求めれば0は位相誤差にほかならない。
Digitally calculate the above θ from (B-Y)' and tan θ=(R-Y)'/(B-Y')' (if calculated, 0 is nothing but a phase error).

また、PAL方式のカラー′映像信号の場合ても(R−
Y)’データが1水平期間毎に反転することからデータ
(R−Y )’、(B−Y )’を1水平期間前のデー
タを加算すれば(B−Y)’(R−Y)’の成分がキャ
ンセルされMTSCj方式のデータと同様に扱かえる。
Also, in the case of PAL color video signals (R-
Y)' Since the data is inverted every horizontal period, if we add the data (RY)' and (B-Y)' with the data one horizontal period ago, we get (B-Y)' (RY) ' component is canceled and treated in the same way as MTSCj method data.

また、λCC動作の場合と同様、位相誤差検出回路44
はAPC動作の応答速度、安定性を考慮し、D/A変換
器45に送るデータに非線形性をもたせる処理をしても
よいし、バースト区間の色差信号データの平均または位
相誤差の平均を求める機能を持たせノイズによる誤動作
を軽減することができる。前記説明した周波数1位相制
御の側副電圧によりAPC動作を行なう方法は、再生時
にエンコーダ37を動作させるため周波数4fsCて発
振する信号発生器(VXO)48が必要なため、記録時
にはこれを電圧制御発振器として動作させるようにして
いる。
In addition, as in the case of λCC operation, the phase error detection circuit 44
In consideration of the response speed and stability of the APC operation, processing may be performed to impart nonlinearity to the data sent to the D/A converter 45, or the average of the color difference signal data or the average of the phase error in the burst period may be calculated. This function can reduce malfunctions caused by noise. The method of performing APC operation using the side voltage of frequency 1 phase control described above requires a signal generator (VXO) 48 that oscillates at a frequency of 4 fsC to operate the encoder 37 during playback, so this is controlled by voltage control during recording. It is operated as an oscillator.

前記ローパスフィルタ46を通過後の制御電圧はスイッ
チ47を介して信号発生器48に供給され、その結果得
られた周波数4fSGの信号を分周器(1/4)49で
周波数fscの信号を得、周波数変換器17で周波数ム
の低域変換色信号と乗算され、バンドパスフィルタ2S
で周波数fsa+faの信号を抽出し周波変換器3に供
給し、最終的に端子8から取り出される低域変換色信号
の低域変換搬送波が周波数変換器17に供給される低域
変換搬送波と同期するよう制御される。前記、周波数変
換器17に供給される周波数りの低域変換搬送波は従来
例と同様、位相比較器(PO2)18o−パスフィルタ
(LPF)19、スイッチ20、電圧制a1発ii (
V CO) 21、分周器(1//n)22て構成され
るPLLにより端子23より入力された水平同期信号の
周波数九がn倍され、低域変換周波数の4倍の4fc−
n/、Iが作成されるとともに、信号作成回路(PS/
PI)24により分周及び前記水平同期信号と端子25
から入力したトラック判別信号PGによりPSまたはP
I処理を行ない作成している。また前記周波数’faの
信号は人/D変換器33にクロックとして供給され、周
波数fcの低域変換搬送波はデコーダ34に供給され、
記録時、再生時とも低域変換色信号を2つの色差信号デ
ンタルデータに復調するための信号としても使用されて
いる。再生特番こは復調された2つの色差信号デジタル
データ(R−Y )I、 (B’−Y )’を基準の搬
送周波数fscの搬送色信号に変換するため信号発生器
48は周波数1位相制御されずスイッチ45を介し定電
圧回路(REF)50からの定電圧が制御入力となるた
め基準の周波数4fS Gの信号を発生し、エンコーダ
37に供給している。
The control voltage after passing through the low-pass filter 46 is supplied to a signal generator 48 via a switch 47, and the resulting signal with a frequency of 4fSG is passed through a frequency divider (1/4) 49 to obtain a signal with a frequency of fsc. , multiplied by the frequency converter 17 with the low frequency converted color signal, and passed through the bandpass filter 2S.
extracts a signal with frequency fsa+fa and supplies it to the frequency converter 3, and the low-frequency converted carrier wave of the low-frequency converted color signal finally taken out from the terminal 8 is synchronized with the low-frequency converted carrier wave supplied to the frequency converter 17. controlled like this. As in the conventional example, the low-frequency conversion carrier wave supplied to the frequency converter 17 is composed of a phase comparator (PO2) 18, an o-pass filter (LPF) 19, a switch 20, and a voltage regulator a1 output ii (
The frequency 9 of the horizontal synchronizing signal input from the terminal 23 is multiplied by n by a PLL composed of a frequency divider (1//n) 21 and a frequency divider (1//n) 22, and becomes 4fc-, which is four times the low frequency conversion frequency.
n/, I are created, and the signal creation circuit (PS/
PI) 24 and the horizontal synchronization signal and terminal 25
PS or P according to the track discrimination signal PG input from
It is created by performing I processing. Further, the signal with the frequency 'fa is supplied to the human/D converter 33 as a clock, and the low frequency conversion carrier wave with the frequency fc is supplied to the decoder 34,
It is also used as a signal for demodulating the low frequency converted color signal into two color difference signal dental data both during recording and reproduction. Reproduction special program In order to convert the demodulated two color difference signal digital data (R-Y)I, (B'-Y)' into a carrier color signal with a reference carrier frequency fsc, the signal generator 48 performs frequency 1 phase control. Since the constant voltage from the constant voltage circuit (REF) 50 becomes the control input via the switch 45, a signal with a reference frequency of 4fSG is generated and supplied to the encoder 37.

APO動作は、ローパスフィルタ46を通過した制  
、 後の制御電圧をスイッチ20を介して電圧制御発振器2
1に供給して人/D変換器33に供給する周波数4/c
のクロック及びデコーダ34に供給する周波数f0の信
号の周波数1位相を制御し、最終的に人CCアンプ2を
通過後の低域変換色信号のバーストに信号作成回路24
て作成された低域変換搬送が同期するよう動作し、正確
に復調された2つの色差信号デジタルデータ(R−Y)
’、CB−Y)’が得られる。
APO operation is controlled by passing through the low-pass filter 46.
, the subsequent control voltage is passed through the switch 20 to the voltage controlled oscillator 2.
1 and the frequency 4/c supplied to the human/D converter 33.
The signal generating circuit 24 controls the frequency 1 phase of the signal with the frequency f0 supplied to the clock and decoder 34, and finally converts the burst of low frequency converted color signal after passing through the CC amplifier 2 into the signal generating circuit 24.
The low-frequency conversion carrier created by
', CB-Y)' is obtained.

キラー動作については同期検波の出力に相当する信号を
得れば良く、これはバースト部分のB−Yデータの符号
を反転した値にほかならない、例えばキラーデテクタ(
KILLERDICT)slてバースト部分の(B−Y
)’データの符号を反転し、内部で設定したカラーキラ
ー動作を行なうか否かを決定する境界をもうけ、1水平
期間毎に判別及び計数を行ない計数結果をコンパレータ
(GOMP )52に供給し、コンパレータ52は計数
結果より、例えば5水平期間連続して境界より低い値が
出た場合、カラーキラーを動作させ、6水平期間連続し
て境界より高い値が出た場合カラーキラーを解除するよ
うキラースイッチ7を制御すれば全動作をデジタルで行
なう事ができるし、(B −Y )’データをそのまま
D/A変換し、従来例と同じようにローパスフィルタを
通した後、アナログコンパレータでカラーキラー動作を
行なうか否かを決定することも可能である。以上説明し
たように本発明では2つの色差信号デジタルデータから
人CC動作1人PC動作、カラーキラー動作を行なうデ
ータを取り込み主な検出動作を行なうACCデテクタ4
1、位相誤差検出回路44、キラーデテクタ61の各回
路の土な部分をデジタル化しており、さらにバースト部
分の色差信号データを平均する動作のように前記各回路
で共通な動作は1つの回路で共用し、1つのデジタル回
路53として構成することを可能にしている。また従来
例で3つの検波回路で行なっていた動作はA/D変換器
33、デコーダ34てバースト部分の2つの色差信号デ
ジタルデータを復調することで、すでに前記3つの検波
回路の動作を一部共通化するとともにデジタル化してい
る。
For killer operation, it is sufficient to obtain a signal equivalent to the output of synchronous detection, which is nothing but a value with the sign of the B-Y data in the burst part inverted. For example, a killer detector (
KILLERDICT) sl burst part (B-Y
)' Invert the sign of the data, create a boundary for determining whether or not to perform the internally set color killer operation, perform discrimination and counting every horizontal period, and supply the counting results to the comparator (GOMP) 52; Based on the counting results, the comparator 52 activates the color killer when the value is lower than the boundary for 5 consecutive horizontal periods, and releases the color killer when the value is higher than the boundary for 6 consecutive horizontal periods. By controlling switch 7, all operations can be performed digitally, and (B-Y)' data is directly D/A converted, passed through a low-pass filter as in the conventional example, and then converted to color killer using an analog comparator. It is also possible to decide whether to perform an action or not. As explained above, in the present invention, the ACC detector 4 receives data for performing the person CC operation, single person PC operation, and color killer operation from two color difference signal digital data, and performs the main detection operation.
1. The basic parts of the phase error detection circuit 44 and killer detector 61 are digitized, and the common operations of each circuit, such as the operation of averaging the color difference signal data of the burst portion, are performed in one circuit. This makes it possible to share the circuit and configure it as one digital circuit 53. In addition, the operation that was performed by the three detection circuits in the conventional example is already partly performed by demodulating the two color difference signal digital data of the burst part using the A/D converter 33 and the decoder 34. It is becoming common and digital.

以上本発明の一実施例について説明したが、A/D変換
器33、デコーダ34に相当する復調回路は低域変換色
信号を低域変換色信号と周波数1位相が同期した復調軸
で2つの色差信号デジタルデータに変換するものであれ
ば他のデジタル回路ても可能である。また、再生時の周
波数変換方法として従来例の周波数変換器3て周波数変
換を行ない、パーストゲート(BG)に2つの色差信号
デジタルデータを供給するためのデジタル復調回路を設
けても可能である。
One embodiment of the present invention has been described above, and the demodulation circuit corresponding to the A/D converter 33 and decoder 34 converts the low frequency converted color signal into two demodulation axes whose frequency 1 phase is synchronized with the low frequency converted color signal. Other digital circuits may be used as long as they convert color difference signals into digital data. Further, as a frequency conversion method during reproduction, it is also possible to perform frequency conversion using the conventional frequency converter 3 and provide a digital demodulation circuit for supplying two color difference signal digital data to the burst gate (BG).

発明の効果 以上の説明から明らかなように低域変換色信号を2つの
色差信号デジタルデータに復調した後、前記デジタルデ
ータのバースト部分のデジタルデータを演算処理するこ
とにより、ムCC動作、Apc動作、カラーキラー動作
の各動作の制御信号を作成する様にしているため、従来
必要たった3つの検波回路をすべてデジタル化し、共通
動作部分は兼用することにより回路を簡略化する効果が
ある。またデジタル化して演算処理を行なうことにより
、制御信号を自由に作成することができ回路設計の自由
度が増して、前記各動作の検出特性。
Effects of the Invention As is clear from the above description, by demodulating the low frequency conversion color signal into two color difference signal digital data and then arithmetic processing the digital data of the burst portion of the digital data, the MuCC operation and the Apc operation can be performed. Since the control signals for each operation of the color killer operation are created, the only three detection circuits that were conventionally required are all digitized, and the common operation parts are shared, which has the effect of simplifying the circuit. Furthermore, by digitizing and performing arithmetic processing, control signals can be created freely, increasing the degree of freedom in circuit design, and improving the detection characteristics of each operation.

応答特性の改善や組み合わせる回部装置や処理する信号
に合った特性を作り出せるとともに、MO5IC化して
高集積化、低消費電力化するという効果もある。
In addition to improving the response characteristics and creating characteristics that match the circuit devices to be combined and the signals to be processed, it also has the effect of achieving higher integration and lower power consumption by using MO5IC.

−さらに、記録時には記録すべく低域変換された低域変
換色信号をデジタル復調し、再生時には磁気テープから
再生された低域変換色信号をデジタル復調し、記録時、
再生時とも前記デジタル復調された低域変換色信号のバ
ースト部分のデータから前゛記各動作を行なうため従来
例同様、記録、再生で前記各動作を行なう回路が共通し
て使用でき回路簡略化する効果がある。
-Furthermore, during recording, the low-range converted color signal that has been low-range converted for recording is digitally demodulated, and during playback, the low-range converted color signal reproduced from the magnetic tape is digitally demodulated;
During playback, each of the above operations is performed from the data of the burst portion of the digitally demodulated low frequency conversion color signal, so as with the conventional example, the circuits that perform each of the above operations can be used in common for recording and playback, simplifying the circuit. It has the effect of

さらに、再生時に低域変換色信号を所定の搬送周波数に
変換する周波数変換方法として低域変換色信号を2つの
色差信号デジタルデータに復調後、前記2つの色差信号
デジタルデータを所定の搬送周波数の搬送色信号に変換
する方法を用いれば、前記各動作を行なうための低域変
換色信号を2つの色差信号デジタルデータに復調する回
路を別に設ける必要がなく回路を簡略化する効果がある
Furthermore, as a frequency conversion method for converting the low frequency converted color signal to a predetermined carrier frequency during reproduction, after demodulating the low frequency converted color signal into two color difference signal digital data, the two color difference signal digital data are converted to a predetermined carrier frequency. If the method of converting into a carrier color signal is used, there is no need to separately provide a circuit for demodulating the low-frequency converted color signal into two color difference signal digital data for performing each of the above operations, and the circuit can be simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の色信号処理装置の構成を示したブロック
図、第2図は本発明の色信号処理装置の一実施例におけ
るブロック図である。 1.8,23.25−・・端子、2− A CCアンプ
、3,17・ 周波数変換器、4.19.43゜46 
・ローパスフィルタ、6.20.32.47・ スイッ
チ、7・・・キラースイッチ、18 ・位相比較器、2
1・・・・電圧制御発振器、22.49・ ・・分周器
、24・・・−・信号作成回路、26 、39・・バン
ドパスフィルタ、33 ・ ム/D変換器、34  デ
コーダ、35 、36  ・・・デジタルくし形フィル
タ、37・ ・エンコーダ、3B 、 42 。 46・ D/ム変換器、40−パーストゲート、41・
・・・ムCOデテクタ、44 ・ 位相誤差検出回路、
48 ・・・信号発生器、60・・・定電圧回路、61
・・・ ・キラーデテクタ、62 ・・コンパレータ、
63− ・デジタル回路。
FIG. 1 is a block diagram showing the configuration of a conventional color signal processing device, and FIG. 2 is a block diagram of an embodiment of the color signal processing device of the present invention. 1.8, 23.25--Terminal, 2- AC amplifier, 3, 17- Frequency converter, 4.19.43゜46
・Low pass filter, 6.20.32.47・ Switch, 7... Killer switch, 18 ・Phase comparator, 2
1... Voltage controlled oscillator, 22.49... Frequency divider, 24...- Signal creation circuit, 26, 39... Band pass filter, 33 ・Mu/D converter, 34 Decoder, 35 , 36...Digital comb filter, 37...Encoder, 3B, 42. 46. D/mu converter, 40-purst gate, 41.
... Mu CO detector, 44 ・ Phase error detection circuit,
48...signal generator, 60...constant voltage circuit, 61
... ・Killer detector, 62 ・Comparator,
63- ・Digital circuit.

Claims (3)

【特許請求の範囲】[Claims] (1)低域変換色信号を2つの色差信号デジタルデータ
にデジタル復調する復調手段と、前記2つの色差信号デ
ジタルデータのバースト部分を抽出し、前記抽出したバ
ースト部分の2つの色差信号デジタルデータを演算処理
後、D/A変換器、アナログフィルタ、コンパレータを
通して色信号レベル調整用の制御信号と色信号の周波数
及び位相を制御するための制御信号と色信号の有無を判
断し色信号を出力するか否かを制御する制御信号を作成
する制御信号作成手段を備え、前記制御信号作成手段に
より得られた制御信号により、ACC動作、APC動作
、カラーキラー動作を行なうことを特徴とする色信号処
理装置。
(1) demodulating means for digitally demodulating a low-pass converted color signal into two color difference signal digital data; extracting a burst portion of the two color difference signal digital data; and extracting the two color difference signal digital data of the extracted burst portion. After arithmetic processing, it passes through a D/A converter, an analog filter, and a comparator to determine the presence or absence of a control signal for adjusting the color signal level, a control signal for controlling the frequency and phase of the color signal, and a color signal, and outputs the color signal. Color signal processing characterized in that the color signal processing comprises a control signal generating means for generating a control signal for controlling whether or not the image is displayed, and an ACC operation, an APC operation, and a color killer operation are performed by the control signal obtained by the control signal generating means. Device.
(2)復調手段は記録時には記録すべく低域変換された
記録低域変換色信号を2つの色差信号デジタルデータに
復調し、再生時には磁気テープから再生された再生低域
変換色信号を2つの色差信号デジタルデータに復調する
ことを特徴とする特許請求の範囲第1項記載の色信号処
理装置。
(2) During recording, the demodulating means demodulates the recorded low-frequency converted color signal into two color difference signal digital data for recording, and during playback, demodulates the reproduced low-frequency converted color signal reproduced from the magnetic tape into two color difference signal digital data. The color signal processing device according to claim 1, wherein the color signal processing device demodulates the color difference signal into digital data.
(3)再生時に低域変換色信号を所定の搬送周波数に変
換する周波数変換方法として低域変換色信号を2つの色
差信号デジタルデータに復調後、前記2つの色差信号デ
ジタルデータを所定の搬送周波数の搬送色信号に変換す
る方法を使用し、前記周波数変換方法として用いる低域
変換色信号を2つの色差信号デジタルデルデータに復調
する復調手段を前記ACC動作、APC動作、カラーキ
ラー動作を行なうための復調手段に兼用することを特徴
とする特許請求の範囲第1項記載の色信号処理装置。
(3) As a frequency conversion method for converting the low frequency converted color signal to a predetermined carrier frequency during reproduction, after demodulating the low frequency converted color signal into two color difference signal digital data, the two color difference signal digital data are converted to a predetermined carrier frequency. In order to perform the ACC operation, APC operation, and color killer operation, the demodulation means demodulates the low-pass converted color signal used as the frequency conversion method into two color difference signal digital del data using a method of converting it into a carrier color signal. 2. The color signal processing device according to claim 1, wherein the color signal processing device also serves as demodulation means.
JP59215418A 1984-10-12 1984-10-15 Chrominance components processing device Granted JPS6194488A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP59215418A JPS6194488A (en) 1984-10-15 1984-10-15 Chrominance components processing device
KR1019850007124A KR900006490B1 (en) 1984-10-12 1985-09-27 Chrominance signal processing device
CN85107257A CN1010272B (en) 1984-10-12 1985-09-28 Chrominance signal processing apparatus
US06/785,204 US4724476A (en) 1984-10-12 1985-10-07 Chrominance signal processing apparatus
EP85307312A EP0178868B1 (en) 1984-10-12 1985-10-11 Chrominance signal processing apparatus
DE8585307312T DE3586030D1 (en) 1984-10-12 1985-10-11 DEVICE FOR PROCESSING A COLOR SIGNAL SIGNAL.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59215418A JPS6194488A (en) 1984-10-15 1984-10-15 Chrominance components processing device

Publications (2)

Publication Number Publication Date
JPS6194488A true JPS6194488A (en) 1986-05-13
JPH058630B2 JPH058630B2 (en) 1993-02-02

Family

ID=16672005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59215418A Granted JPS6194488A (en) 1984-10-12 1984-10-15 Chrominance components processing device

Country Status (1)

Country Link
JP (1) JPS6194488A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62292090A (en) * 1986-06-11 1987-12-18 Nec Corp Magnetic video recording and reproducing system
JP2008209319A (en) * 2007-02-27 2008-09-11 Honda Motor Co Ltd Automobile positioning system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5778292A (en) * 1981-09-08 1982-05-15 Sanyo Electric Co Ltd Color gain variable circuit
JPS57118489A (en) * 1980-09-11 1982-07-23 Sanyo Electric Co Ltd Color killer circuit
JPS5836873A (en) * 1981-08-28 1983-03-03 株式会社日立製作所 Protective device for tail cord of oblique elevator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118489A (en) * 1980-09-11 1982-07-23 Sanyo Electric Co Ltd Color killer circuit
JPS5836873A (en) * 1981-08-28 1983-03-03 株式会社日立製作所 Protective device for tail cord of oblique elevator
JPS5778292A (en) * 1981-09-08 1982-05-15 Sanyo Electric Co Ltd Color gain variable circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62292090A (en) * 1986-06-11 1987-12-18 Nec Corp Magnetic video recording and reproducing system
JP2008209319A (en) * 2007-02-27 2008-09-11 Honda Motor Co Ltd Automobile positioning system

Also Published As

Publication number Publication date
JPH058630B2 (en) 1993-02-02

Similar Documents

Publication Publication Date Title
KR900006490B1 (en) Chrominance signal processing device
JPH0591522A (en) Digital oscillator and chrominance subcarrier reproducing circuit using same
US4326216A (en) Synchronous color conversion system
JPS5912224B2 (en) Signal generation circuit in color television system
JPS6194488A (en) Chrominance components processing device
US4704639A (en) Video signal reproduction apparatus
JPS6362157B2 (en)
JPS60130293A (en) Chrominance signal processing device
JPS6193794A (en) Color signal processor
JPS5921590Y2 (en) Color video signal reproducing device
JPS61262392A (en) Sampling circuit for video signal
JPS5940354B2 (en) Chromaticity signal recording and playback method
JPS6193792A (en) Color signal processor
JPH02179190A (en) Chrominance signal processor
JPS5812793B2 (en) Eizoushingouno Kirokusaiseiki
JPS62294394A (en) Chrominance signal processor
JPS5819194B2 (en) Recording/playback device
JPS61265995A (en) Video signal reproducing device
JPS5943695A (en) Picture recorder and reproducer
JPH0352717B2 (en)
JPS63232693A (en) Chrominance component processing device
JPS6132693A (en) Signal converting circuit
JPH01162495A (en) Color signal processor
JPH05244639A (en) Chroma signal processing circuit
JPS62277885A (en) Viddeo signal reproducing device