JPS6192036A - Superconducting electronic circuit - Google Patents

Superconducting electronic circuit

Info

Publication number
JPS6192036A
JPS6192036A JP59213189A JP21318984A JPS6192036A JP S6192036 A JPS6192036 A JP S6192036A JP 59213189 A JP59213189 A JP 59213189A JP 21318984 A JP21318984 A JP 21318984A JP S6192036 A JPS6192036 A JP S6192036A
Authority
JP
Japan
Prior art keywords
current
magnetic flux
loop
superconducting
josephson
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59213189A
Other languages
Japanese (ja)
Other versions
JPH0262056B2 (en
Inventor
Tsutomu Yamashita
努 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP59213189A priority Critical patent/JPS6192036A/en
Publication of JPS6192036A publication Critical patent/JPS6192036A/en
Publication of JPH0262056B2 publication Critical patent/JPH0262056B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Logic Circuits (AREA)

Abstract

PURPOSE:To form a high-density superconducting electronic circuit by using the magnetic flux generated from a Josephson element to control the fluxoid quantum in a superconducting loop. CONSTITUTION:Since Josephson elements J3 and J3' of a superconducting loop R1 exist in a loop R2, both loops are coupled, and the magnetic flux generated by elements J3 and J3' passes the loop R2. At this time, it is judged that the product between an inductance L of loops R1 and R2 and a current I0 satisfies the condition of LI0<<PHI0, and the inductance L is ignored. In case that a current Ic is equal to 1.2I0, I1 is equal to I0, and an element J1 takes one fluxoid quan tum in the loop R1, and the current I1 is reduced up to 0.3I0. Since I2 is increased momently from about 0.2I0-0.9I2 at this time, the magnetic flux generated in elements J3 and J3' is applied to the loop R2. Since a current Ig flowed at this time is reduced quickly in case of Ic=1.2I0, Ig is shunt to a load resistance RL to supply a current IR to a load because the loop R2 goes to the voltage state if Ig is set to 1.5I0 and is flowed preliminarily.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は論理回路、記憶回路に用いる超伝導電子回路に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a superconducting electronic circuit used in logic circuits and memory circuits.

〔従来の技術〕[Conventional technology]

従来の超伝導n子回路は、情報の媒体として磁束量子4
1.:2D7刈g Webを、用いている。ために回路
のインダクタンスLと動作亀流工。の関係は’    
LI。= Φ。       □°(1)の関係を満足
することを必要としていた0(7−1)図はジョセフソ
ン素子JとインダクタンスL1とLlからなる超伝導ル
ープ内C二磁束社子を記憶する従来の超伝導記憶回路で
ある(石臼、柳用、吉清著「超伝導集積回路」第2章 
P44電子通信学会編 昭和58年)。(7−1)図に
示す11)、(1)’間にIgの電流を流し、(21,
(21間に工xの電流を流すことによってジョセフソン
素子Jより磁束量子を1個ないし数個ループ内に導入し
、これを記憶させる。Gは読み出しゲートで(3)、(
33′間に電流を流すとループ内に磁束量子が存在する
ときはゲー)Gは電圧状態となり、磁束量子の存在を検
出する。
Conventional superconducting n-n circuits use magnetic flux quanta 4 as an information medium.
1. :2D7Karig Web is used. Therefore, the inductance L of the circuit and the operation mechanism. The relationship is '
L.I. =Φ. The 0(7-1) diagram, which requires satisfying the relationship □°(1), is a conventional superconductor that stores two magnetic fluxes in a superconducting loop consisting of a Josephson element J and inductances L1 and Ll. It is a memory circuit.
P44, edited by the Institute of Electronics and Communication Engineers, 1981). (7-1) Ig current is passed between 11) and (1)' shown in the figure, and (21,
(By passing a current of x between 21 and 21, one or several magnetic flux quanta are introduced into the loop from the Josephson element J and stored. G is the readout gate (3), (
When a current is passed between 33' and a magnetic flux quantum exists in the loop, G becomes a voltage state, and the presence of a magnetic flux quantum is detected.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このループが磁束量子を少なくとも1個記憶できる条件
は (L、+L、) T4”  Φo(2)である。(7−
2)Ikは実際の回路構成法を示すもので簡単のために
ジョセフソン素子とループのみを示している。基板Sの
上に超伝導茫膜Gを形成しその上に絶縁層重を形成し、
この上にジョセフソン素子Jを含む幅W、全周41の超
伝導ループを形成して記憶回路とする。このときのイン
ダクタンスLを計算すると次式となる。
The condition that this loop can store at least one magnetic flux quantum is (L, +L,) T4" Φo(2). (7-
2) Ik shows the actual circuit configuration method, and only Josephson elements and loops are shown for simplicity. A superconducting film G is formed on the substrate S, and an insulating layer is formed thereon,
A superconducting loop having a width W and a total circumference 41 including the Josephson element J is formed on this to form a memory circuit. Calculating the inductance L at this time results in the following equation.

L: μo(”、”’  41    13)ここで八
は真空の透出率、λは超伝導磁界侵入長。
L: μo('',''' 41 13) where 8 is the vacuum permeability and λ is the superconducting magnetic field penetration depth.

aは絶縁層Iの厚さである。今、超伝導材料としテNb
ヲ用イ、λZ300X、a=10OA、W=1μmとし
、■。=50μAとして(2)の成立する長さノを求め
ると /  =XOOμm となる。この大きさを更に小さくして高密度電子回路を
形成するためには工。を大きくする必要があるが、動作
マージン等の制限からある程度以上に大きくすることは
困難である。従って従来の超伝導記憶回路は直径約10
μm以下に構成することは困難であった。
a is the thickness of the insulating layer I. Now, TeNb is used as a superconducting material.
For this purpose, λZ300X, a=10OA, W=1μm, ■. =50μA, and finding the length for which (2) holds, we get / =XOOμm. In order to further reduce this size and form high-density electronic circuits, there is a need for engineering. Although it is necessary to increase , it is difficult to increase it beyond a certain level due to limitations such as operating margin. Therefore, conventional superconducting memory circuits have a diameter of approximately 10
It was difficult to configure the thickness to be less than μm.

〔問題点を解決する為の手段〕[Means for solving problems]

本発明は上記困難をとり除き、超伝導電子回路を超小型
に構成できる超伝導を子回路を提供するものである。
The present invention eliminates the above-mentioned difficulties and provides a superconducting sub-circuit that allows superconducting electronic circuits to be configured in an ultra-small size.

まず、超伝導ループ又は円筒中の磁束量子の性質につい
て述べる。(8−1>図に示すような厚さd、半径rの
超伝導円筒中に磁束量予電が存在し、円筒に電流密度J
が流れている状態について考える。このとき次式が成立
する μ。λ22πrJ十Φ=Φ。 Φ;内部磁束    (
4)ここでマクスウェルの式J=Φ4.z r2.を(
4)式に代入すると次式となる。
First, we will discuss the properties of magnetic flux quanta in a superconducting loop or cylinder. (8-1> As shown in the figure, there is a magnetic flux preelectricity in a superconducting cylinder of thickness d and radius r, and the cylinder has a current density J
Think about the state where is flowing. At this time, the following formula holds true. λ22πrJ 10Φ=Φ. Φ;Internal magnetic flux (
4) Here, Maxwell's equation J=Φ4. z r2. of(
4) Substituting into the equation yields the following equation.

Φ =へ/(1+2λ”、、;、 )        
 15)(5)式よりλ2よりrdが小さくなるとΦの
値は気より小さくなり、このため円筒の内部磁束Φを検
出することは困難と考えられてきた。ところが(8−2
)図に示すような電子線の干渉を用いる測定装置を用い
て超伝導円筒の内部磁束Φを測定すると9図のようにな
ることが抄かった。(8−2)図の測定装置は、電子銃
から電子を発射し、超伝導円筒の両側を通過した電子が
干渉面で干渉を起こすように設計された装置であり、円
筒内部に磁束のない場合は(司のように中心点Oで電子
線強度の高い干渉模様が表われる。一方向部に磁束量子
が奇数個あるときはΦ)のように中心で電子線強度の低
い干渉模様が観察できる。これを用いて鉛超伝導円筒の
内部磁束を測定した結果が9図で、(5)式あるため、
理論値のΦはへより非常に小さくなるが、実測値は偽の
ままである。
Φ = to/(1+2λ”, ;, )
15) From equation (5), when rd becomes smaller than λ2, the value of Φ becomes smaller than 0. Therefore, it has been thought that it is difficult to detect the internal magnetic flux Φ of the cylinder. However, (8-2
) It was found that when the internal magnetic flux Φ of a superconducting cylinder is measured using a measuring device that uses electron beam interference as shown in Figure 9, it becomes as shown in Figure 9. (8-2) The measurement device shown in the figure is a device designed to emit electrons from an electron gun and cause the electrons that pass on both sides of a superconducting cylinder to cause interference on the interference surface, and there is no magnetic flux inside the cylinder. In this case, an interference pattern with high electron beam intensity appears at the center point O as shown in Tsukasa. If there is an odd number of magnetic flux quanta in one direction, an interference pattern with low electron beam intensity is observed at the center as shown in Φ. can. Figure 9 shows the results of measuring the internal magnetic flux of a lead superconducting cylinder using this, and since there is equation (5),
The theoretical value of Φ becomes much smaller, but the measured value remains false.

この現象はっぎのように理解できる。まず(4)式にマ
クスウェルの式Φ=hπ−dJを代入して電流密度Jの
みの式とすると μλ2πrJ十八π内J=へ。       (6)こ
こでλ=m/μ。2♂n(mik子it 、 e;電荷
This phenomenon can be easily understood. First, by substituting Maxwell's equation Φ=hπ-dJ into equation (4) to make the equation only for the current density J, we get μλ2πrJ=J within 18π. (6) Here, λ=m/μ. 2♂n(mik child it, e; charge.

n;電子密度)とJ =nev (v ;’C子速度)
を代入すると πyr(λ”−Md)=Φ。/2ep。n(7)Tc近
くではλが大となるからλ”>>rdが成立し従ってr
dを無視すると mvr=玉  h; ブランク定数        (
8)となる。左辺mvrは電子の角運動量で、(8)式
は周回電子の角運動量が五で量子化している状態を表わ
しており、これC二ともなう磁気モーメントMは、硼性
体の軌道運動に伴う磁気モーメントと同じ値を持つと考
えられ、磁束の大きさはh /2e = 4poとなる
n; electron density) and J = nev (v; 'C velocity)
By substituting
If you ignore d, mvr=ball h; blank constant (
8). The left side mvr is the angular momentum of the electron, and equation (8) represents the state in which the angular momentum of the orbiting electron is quantized by 5. The magnetic moment M associated with this C2 is the magnetic moment accompanying the orbital motion of the boron It is considered to have the same value as the moment, and the magnitude of the magnetic flux is h /2e = 4po.

即ち、(4)式の左辺第1項は従来、磁束としては観測
できないとされていたが、これは観測可能であると考え
られ、負S9図はその証明の1つである。
That is, although the first term on the left side of equation (4) was conventionally thought to be unobservable as magnetic flux, it is thought to be observable, and the negative S9 diagram is one of the proofs.

部ち、電子の角運動量に伴う磁束が発生していると考え
ることができる。
In other words, it can be considered that magnetic flux is generated due to the angular momentum of the electrons.

このことを更に証明するためにつぎのような実験を行っ
た。(10−1)図はジョセフソン素子1個を含む超電
う:3ループR1とR2を重ね合わせて配置し、外部か
ら磁束φ。を印加するとR1の内部磁束Φiは量子イヒ
され、これを、R2を駆動する電子回路とタンク回路T
より構成された磁束奸で測定する回路である。
To further prove this, we conducted the following experiment. (10-1) The figure shows a superconductor including one Josephson element: 3 loops R1 and R2 are placed one on top of the other, and a magnetic flux φ is applied from the outside. When R1's internal magnetic flux Φi is applied, the internal magnetic flux Φi of R1 is quantified, and this is transferred to the electronic circuit that drives R2 and the tank circuit T.
This is a circuit that measures magnetic flux.

(10−2)図はループR1に灸を印加したときに、周
回電流Iが流れ、このときの内部磁束Φ、の星 発生している状況を示す図である。ジョセフソン素子の
位相をψとすると工=工。sinψの関係があるから磁
束量子化の式は次式で表わされる。
(10-2) The figure shows a situation in which when moxibustion is applied to the loop R1, a circulating current I flows and a star of internal magnetic flux Φ is generated at this time. If the phase of the Josephson element is ψ, then engineering = engineering. Since there is a relationship of sin ψ, the equation for magnetic flux quantization is expressed by the following equation.

ここで工。はジョセフソン素子の最大電流である。Engineering here. is the maximum current of the Josephson device.

ψ 一Φo+ C%+ L i、pin ψ) =”Φ。 
     (9)2π この式は(4)式と対応し左辺の各1項は電子の運動量
による項で各第2項は磁束による項で、内部磁束Φ1は Φ1=Φ、 −1−L I、sinψ        
  a@である。
ψ one Φo+ C%+ L i, pin ψ) = “Φ.
(9) 2π This equation corresponds to equation (4), where each term on the left side is a term due to electron momentum and each second term is a term due to magnetic flux, and the internal magnetic flux Φ1 is Φ1 = Φ, −1−L I, sinψ
It is a@.

LI。/Φ。=0.52itび1/2πとしたときの実
験値と(9) ClO式から導かれる理論値の比較を1
1図に示す。
L.I. /Φ. A comparison of the experimental value when =0.52it and 1/2π and the theoretical value derived from the ClO equation (9) is shown in 1.
Shown in Figure 1.

図から判るように実験と理論は大きく相違し、特にL 
1.ylooの小さな場合に著るしく、観測される内部
磁束は常にΦ。となり、9図と同様である。このことは
内部磁束は(9)式の左辺第2項のみではなく、第1項
の寄与も観測できることを示している。即ちジョセフソ
ン素子は運動量に伴う磁束を発生していることを示して
いる。
As you can see from the figure, there are large differences between experiment and theory, especially L
1. It is remarkable when yloo is small, and the observed internal magnetic flux is always Φ. This is the same as in Figure 9. This indicates that the contribution of the internal magnetic flux not only from the second term on the left side of equation (9) but also from the first term can be observed. This indicates that the Josephson element generates magnetic flux associated with momentum.

本発明は、従来の電磁的インダクタンスLを介して磁束
量子を制御する方法に替えて、上にのべたジョセフソン
素子がもつ角運動量に伴5磁束によってフラクソイド量
子を制御する超伝導電子回路を供するもので、電磁気的
インダクタンスを全く必要としないため、ジョセフソン
素子の寸法にのみ規定される高密度電子回路を実現でき
るものである。
The present invention provides a superconducting electronic circuit that controls fluxoid quanta using 5 magnetic fluxes associated with the angular momentum of the Josephson element described above, instead of the conventional method of controlling magnetic flux quanta via electromagnetic inductance L. Since it does not require any electromagnetic inductance, it is possible to realize high-density electronic circuits defined only by the dimensions of the Josephson element.

(1−1)図は超伝導薄膜S、の上面を酸化して酸化石
工を2OA程の厚さに作り、この上に一部重ね合せて超
伝導薄膜S2を形成し、爪ね合わさった部分ニショセフ
ソン素子Jを形成させたトンネル型素子である。これに
ジョセフソン電流IJを流した8 合、ジョセフソン素
子の位相ψはIJ  =  Iosin9’     
       (11)となる。
(1-1) The figure shows the top surface of the superconducting thin film S being oxidized to make oxide masonry to a thickness of about 2OA, and a part of it being overlapped on top of this to form the superconducting thin film S2. This is a tunnel type element in which a Nisho-Sefson element J is formed. When a Josephson current IJ is passed through this, the phase ψ of the Josephson element is IJ = Iosin9'
(11).

ここで工。はジョセフソン最大電流である。Engineering here. is the Josephson maximum current.

私が最大となるのは、ψ=π/2のときで、このとキI
J = I。どなる。このときにジョセフソン素子の発
生する運動量に伴う磁束勺はQOI式左辺第1項より ’J =2K  2  =  4’        (
”Dとなる。即ちジョセフソン素子の発生しつる磁束は
、最大で磁束、量子丸の+である。
I is maximum when ψ=π/2, and in this case, I
J = I. bawl. At this time, the magnetic flux associated with the momentum generated by the Josephson element is calculated from the first term on the left side of the QOI equation as 'J = 2K 2 = 4' (
``D.'' That is, the maximum magnetic flux generated by the Josephson element is the + of the quantum circle.

(1−2)図は超伝導薄膜Sの一部に溝を作り、この溝
の下部をジぢセ7ソン素子とJとするブリッジ型素子で
、この場合も最大重/4の磁束Φ、を発生する0本発明
は、ジョセフソン素子の発生する最大Φ。/4の磁束を
利用してジョセフソン素子を含む超伝導ループ内のフラ
クソイド量子を制御するものである。
(1-2) The figure shows a bridge-type element in which a groove is formed in a part of the superconducting thin film S, and the lower part of this groove is a Gieseson element and J. In this case, the magnetic flux Φ of maximum weight /4, The present invention generates the maximum Φ generated by the Josephson element. /4 magnetic flux is used to control fluxoid quanta in a superconducting loop including a Josephson element.

〔作 用〕[For production]

即ち、(1−3)図に示すようにジョセフソン素子J、
に、J、の寸法程度に近接して接する様なジョセフソン
素子J、を含む超伝導ループRを配置してJlに入力電
流Iiを流し、この値をJ、の臨界電流I0程度にする
とJlの発生する磁束シは図に示すようにループRに結
合するため、ループRに磁束を印加することができ、こ
の磁束によってRには出力電流工が流れる。
That is, as shown in (1-3), a Josephson element J,
If we arrange a superconducting loop R including a Josephson element J, which is in close contact with the dimensions of J, and apply an input current Ii to Jl, and make this value about the critical current I0 of J, then Jl Since the magnetic flux generated by is coupled to the loop R as shown in the figure, a magnetic flux can be applied to the loop R, and an output current flows through R due to this magnetic flux.

この場合、J、の発生する磁束は寸法によらず一定の最
大値雪/4を与えるから、ジョセフソン素子J、とJ、
及びループRの寸法は(1−3)図のヨウな相対的関係
をもつ限り、いかに小さくしても良い。また、ループR
内の出力電流工2によってジョセフソン素子J2の発生
する磁束はJ、を含む入力回路から離れているために、
入力側への影脣は少なく、入力と出力は分離できる。(
1−4)図のように入力回路のJ、をループRの外側に
近接しておいてJlによる磁束をノν−プRに結合する
こともできる。
In this case, the magnetic flux generated by J gives a constant maximum value snow/4 regardless of the dimensions, so Josephson elements J and J,
The dimensions of the loop R and the loop R may be made as small as possible as long as the relative relationship shown in the diagram (1-3) is maintained. Also, loop R
Since the magnetic flux generated by the Josephson element J2 by the output current generator 2 in
There is little impact on the input side, and input and output can be separated. (
1-4) It is also possible to place the input circuit J close to the outside of the loop R as shown in the figure, and couple the magnetic flux due to Jl to the node ν-R.

〔実施例〕〔Example〕

(2−1)図は本発明(二よる論理回路に用いる為の零
電圧状態と有限電圧状態を用いるスイッチングゲートの
一例で、ジョセフソン素子J、、J2゜月、J、、Jt
を含む超伝導ループR1には入力電流■。が印加されジ
ョセフソン素子Ja=Jsを含むループR2には電源電
流胆が印加され、この端子には出力抵抗R1が接続され
ている。
(2-1) The figure shows an example of a switching gate using a zero voltage state and a finite voltage state for use in a logic circuit according to the present invention (2).
The superconducting loop R1 containing the input current ■. A power supply current is applied to the loop R2 including the Josephson element Ja=Js, and the output resistor R1 is connected to this terminal.

R1の素子J6とにがR2のループ内にある為、両ルー
プは結合しており、J、とJ−の発生する磁束はR2内
を通るようシニ設計されている。このときR1とR2の
インダクタンスLと工。の積がL I、<<気    
             C131の条件を充たして
いるとしてLは無視する。
Since element J6 of R1 and element J6 are in the loop of R2, both loops are coupled, and the magnetic flux generated by J and J- is designed to pass through R2. At this time, the inductance L of R1 and R2. The product of is L I,
L is ignored as it satisfies the condition of C131.

(2−2)図はR1のみをとり出したもので、入力電流
I。を流すと、Jに流れる電流工、とJ、以外の唱 分岐に流れる電流I2に分流するが、この様子は(2−
3〕図に示す。即ちICの+はI、に流れ残り4−が工
2に流れるが、貼=1.2I。のときI、=I。となり
J。
(2-2) The figure shows only R1, which is the input current I. When , the current is divided into the electric current flowing to J and the current I2 flowing to the branch other than J, but this situation is (2-
3] Shown in the figure. That is, the + of IC flows to I, and the remaining 4- flows to I, but the paste = 1.2I. When I, = I. Next door J.

はフラクソイド量子−個をR1内にとり込み、■。takes fluxoid quanta into R1, and .

は0.3 Ioまで減少する。このときに工、は約0.
2 I。
decreases to 0.3 Io. At this time, engineering is approximately 0.
2 I.

から0.91.までN間約に増加する。このとき(2−
1)図−C−J−とJ:にはQ、9I。流れているから
この2つの素子の発生する磁束は約 へ π 2Cπ X2X0.9=0.45Φ    α勺・ となり、この磁束はR2に印加される。
From 0.91. It increases approximately between N up to N. At this time (2-
1) Figure-C-J- and J: Q, 9I. Since they are flowing, the magnetic flux generated by these two elements is approximately π 2Cπ

(2−2>図のR2ループにおいて工、の流れる分岐に
ジョセフソン素子は5個あるのはっぎの理由による。
(2-2> This is the reason why there are five Josephson elements in the branch where the circuit flows in the R2 loop in the figure.

工。=1.2I。のときにフラクソイド量子−個がJ、
よりとり込まれたとき、工、の値は(2−3)図のよう
に急上昇するがこの値は工、以外でないと、とり込まれ
た量子は工、の分岐のいずれかの素子から逃げ出してし
まう0逃げ出さないで量子がR2内に停っている条件は
工の分岐に素子が5個以上あるときである。
Engineering. =1.2I. When the number of fluxoid quanta is J,
When the quantum is absorbed more, the value of q rises rapidly as shown in the diagram (2-3), but unless this value is other than q, the captured quantum escapes from one of the elements in the branch of q. The condition for the quantum to stay within R2 without escaping is when there are five or more elements in the branch of the finite element.

R2に外部磁束%を印加したときの1g−%特性を(2
−4)図に示す○R2のインダクタンスLとI、+7)
積LI。力穐四式の条件を満足するとき、(2−4)図
に示すように%=0では壕==2i。流れうるが・%:
o/2では(=0となる周期的変化をし、折線の内側は
超伝導状態であり、外側は電圧状態である。
The 1g-% characteristic when external magnetic flux % is applied to R2 is (2
-4) Inductance L and I of ○R2 shown in the figure, +7)
Product LI. When the conditions of the four formulas are satisfied, as shown in Figure (2-4), when % = 0, trench = = 2i. It can flow, but %:
At o/2, there is a periodic change such that (=0), the inside of the broken line is in a superconducting state, and the outside is in a voltage state.

今、■。を流してゆき、R1に量子1個がとり込まれた
ときにR2に瞬間的に印加される磁束はα4式であるか
ら(2−4)図(a)点となり、このとき流れる−は(
b)点までで、旬は(2−5)図に示すよ5(−Ic=
1.2I6のときに急激に減少テる。このたaO−を1
.5工。程あらかじめ流しておくと、R2が電圧状態と
なるため−は(2−1)図の負荷抵抗りに分流してIR
(7)TE流を負荷に供給する。
Now ■. , and when one quantum is taken into R1, the magnetic flux instantaneously applied to R2 is α4 equation, so it becomes point (a) in Figure (2-4), and the - flowing at this time becomes (
Up to point b), the season is 5 (-Ic=
It decreases rapidly at 1.2I6. This aO- is 1
.. 5 engineering. If you let the current flow in advance, R2 will be in a voltage state, so - will be shunted to the load resistance shown in the figure (2-1) and IR
(7) Supply TE flow to the load.

即ち(2−5)因で墳==Igt)、I。=J0まで流
し。
That is, (2-5) factor==Igt), I. = Sink until J0.

(a)点にバイアスしておき、入力信号Δ工。を印加す
るとO))点となるが、この状態は電圧状態であるから
(2−1)図においてI、)ま凡に分流し始め(2−5
)図で−が(C)点に達するまでは電圧状態を保つ。(
b)点と((J点の差の電流Δ工、が出力としてとり出
しつる最大電流であり、この値はΔ(よりも大きくとり
うるから電流利得は1よりも大で、増巾作用をもつこと
は明らかである。即ちこのゲートの電流利得ΔIg/Δ
には工。=1.2I。のときに急激に減少する−の傾斜
できまるから、電流利得は1より極めて大きな値をとる
ことができる。また、J、とJ−の発生する磁束はR2
に有効に印加されると共に4,4を入力回路R1から離
すことについてJ4,4の発生する磁束はR1に印加し
嫉いような配置をとることができるから入力と出力は直
流的にも交流的にも分離することができる。
(a) Bias is applied to the input signal Δ. When the voltage is applied, it becomes the point O)), but since this state is a voltage state, (2-1) in the figure I,) begins to shunt (2-5).
) The voltage state is maintained until - reaches point (C) in the figure. (
The current ∆, which is the difference between point b) and point It is clear that the current gain of this gate is ΔIg/Δ
There is no engineering. =1.2I. Since it is determined by the slope of - which decreases rapidly when , the current gain can take a value much larger than 1. Also, the magnetic flux generated by J and J- is R2
By separating 4 and 4 from the input circuit R1, the magnetic flux generated by J4 and 4 can be applied to R1, and the input and output can be applied to R1, so the input and output are both direct current and alternating current. It can also be separated.

このゲートを再び零状態にもど丁ζ二はkをIc < 
−0,4X。
Returning this gate to the zero state again, Dingζ2 makes k Ic <
-0,4X.

とすればよいことは(2−3)(2−5)図より明らか
である。このときR1内のL子はJから排出され工、と
工、は零に近い値に復帰し、■、も2 I、程度まで回
復する。
It is clear from Figures (2-3) and (2-5) that it is sufficient to do so. At this time, the L element in R1 is discharged from J, and , and , return to values close to zero, and ■, also recovers to about 2 I,.

ところで条件式(13の成立する寸法を試算するために
(7−2)図の回路を考えると(3)式のLの表穴から となる。
By the way, in order to estimate the dimensions for which conditional expression (13) holds, considering the circuit shown in figure (7-2), it becomes from the front hole of L in expression (3).

ノ=4Wの矩形を考えると 16μ。(2λ+a)IO<<Φ。      住5)
となり隅の例で2λ+a′:?500AとするとIo 
<<  2 mA となり、I、=100μA以下では(13式は充分成立
することは明らかである。
Considering a rectangle with = 4W, it is 16μ. (2λ+a)IO<<Φ. residence 5)
In the example of the adjacent corner, 2λ+a':? If it is 500A, Io
<< 2 mA, and it is clear that equation 13 holds true below I = 100 μA.

(2−6)図は零電圧状態と有限電圧状態を用いるスイ
ッチングゲートの他の一例で、ジョセフソン素子J、と
インダクタンスL、を含む超伝導ループR4には入力電
流kが印加され、ジョセフソン素子J、、J、とインダ
クタンスL、を含むループR3には電源電流Igが印加
され、この端子には出力抵抗RI、が接続されている。
(2-6) The figure shows another example of a switching gate using a zero voltage state and a finite voltage state, where an input current k is applied to a superconducting loop R4 including a Josephson element J and an inductance L, and the Josephson A power supply current Ig is applied to a loop R3 including elements J, , J, and an inductance L, and an output resistor RI is connected to this terminal.

2つのループR3とR4は磁気的に結合されており、J
、とり、の発生する磁束の約半分(50%)がR3に印
加されるように配置する。今、L、I。二1/2π=0
,17Φ。とすると、R4の(対内部磁束Φiの関係は
(2−7)図のようになリエ。=3I0でΦiは急激に
零からΦ。の値に変化する。一方、R3の一対印加磁束
%の関係は、R21,≦Φ。//2□とすると(2−8
)図のように%によって−が周期的に変化する。今(2
−7)図に工。を工。=3工。加えるとR4の発生する
磁束Φ。の半分がR3に加わるから、このとき(2−8
’)図ではeI)e−0,5Φ。加わることになりIg
−0となる。従ってkと工gの関係は(2−9)図のよ
うになり、I、= 3 I・を加えたときにζは2 I
oから急激にOとなる。この為、−をあらかじめ1゜8
工。程度流しておくとR3が電圧状態となるためIgは
(2−6)図の抵抗比に分流してこれが負荷電流となる
The two loops R3 and R4 are magnetically coupled and J
, and so that about half (50%) of the magnetic flux generated by the magnets is applied to R3. Now, L, I. 21/2π=0
, 17Φ. Then, the relationship between R4 and the internal magnetic flux Φi is as shown in Figure (2-7). At =3I0, Φi suddenly changes from zero to the value of Φ. On the other hand, the pair of applied magnetic flux % of R3 The relationship is R21,≦Φ.//2□, then (2-8
) As shown in the figure, - changes periodically depending on the percentage. Now (2
-7) Work on the diagram. Engineering. = 3 constructions. When added, the magnetic flux Φ generated by R4. Since half of is added to R3, at this time (2-8
') In the figure, eI) e-0,5Φ. I will be joining
-0. Therefore, the relationship between k and g is as shown in figure (2-9), and when I, = 3 I, is added, ζ becomes 2 I
It suddenly changes from o to o. For this reason, - is set to 1°8 in advance.
Engineering. If the current is allowed to flow to a certain extent, R3 becomes a voltage state, so that Ig is shunted to the resistance ratio shown in the diagram (2-6), and this becomes the load current.

即ち(2−9)図で−と■。を流して(a)点にバイア
スしておき、入力信号Δkを印加するとΦ)点となるが
この状態は電圧−状態であるから(2−6)図において
工、はR1に分流する。この分流電流は(2−9)図の
△Igだけ流すことができ、これが出力電流となるから
電流利得Δ■g/Δ工。は、(2−9)図で工。=31
0における変化が急激なため、1より非常に大きな値を
得ることができる。馬、J、の発生する磁束はR4に結
合しないようにしてありり、I。≦ηπ飛とするとR2
の発生する磁束は0.17Φ以下になるから、入力と出
力はほぼ分離される。
In other words, - and ■ in figure (2-9). When bias is applied to point (a) by applying the input signal Δk, it becomes point Φ), but since this state is a voltage-state (2-6), in the figure, the current is shunted to R1. This shunt current can flow by ΔIg in figure (2-9), and this becomes the output current, so the current gain is Δ■g/Δμ. is shown in figure (2-9). =31
Since the change at 0 is rapid, a value much larger than 1 can be obtained. The magnetic flux generated by J, is made not to couple to R4, and I. If ≦ηπ fly, then R2
Since the magnetic flux generated is less than 0.17Φ, the input and output are almost separated.

また(2−9)図に示すようにIg−I、特性がヒステ
リシスを持たないのでR3を零電圧にもどすにはΔ工。
Also, as shown in the figure (2-9), since the Ig-I characteristic does not have hysteresis, it takes Δ to return R3 to zero voltage.

を零とするだけでよい。Just set it to zero.

(3−1)図はフラクソイド量子状態を用いる論理ゲー
トの一例で、ジョセフソン素子J1 ’ ”21 ’5
1J4.J、、J6を含む超伝導ループR1:電源■流
工、を印加し、このループRに結合するジョセフソン素
子J、を含む入力回路に入力電流I、が加わるよう構ム 成されているo”(32)図はループRに外部磁角形の
内側ではフラクソイドに子のない状態を示し、1とボし
た三角形内は量子1個が安定に存在する領域を示す。今
、Igを(a)点にバイアスしておき、入力信号電流I
iを流しL程度とすると(3−1)図Jiの発生する磁
束は)/4の程度であるから、これがRに加わり、(3
−2)図に示す(b>点に到る。Φ)点は1量子状態で
あるから量子がJ、を通ってルー°プRに侵入したもの
で、これによる出力電流4が(3−1)図のように流れ
る。この出力電流は工。程度であり、またループR内の
’21J5’J4. J、、 J6は各々次ぎの段の出
力として用し\ることができるからファンアウトは5と
れる。即ち、入力電流I0で出力電流も入で5個の次段
を駆動できるかう信号増中度は5とれることになる。こ
の−ゲートに(3−3)図に示すようにIisとIia
の2つの入力電流を加えられるよう配置し、(3−4)
図のしきい値粕性のIglに1gをバイアスして、一つ
の入力屯流工i、によって町の磁束をループに印加する
と(3−4)図(a)点となるから、電力’ ”itの
入力カー入るとゲートは1状態となり、 ORゲートが
構成される。また(3−4)図の工 にIをバイアスす
pg 点に到るから、N山ゲートとなる。
(3-1) The figure shows an example of a logic gate using fluxoid quantum states, with a Josephson element J1 ' 21 '5
1J4. A superconducting loop R1 including J, , J6 is configured such that a power supply is applied, and an input current I is applied to an input circuit including a Josephson element J coupled to this loop R. ``(32) The figure shows a state in which the fluxoid has no children inside the external magnetic angle in the loop R, and the triangle marked with 1 shows a region where one quantum exists stably.Now, let Ig be (a) The input signal current I
If i is about flowing L, the magnetic flux generated in Figure Ji (3-1) is about )/4, so this is added to R and becomes (3
-2) The point (b> reaches the point Φ) shown in the figure is in a single quantum state, so the quantum enters the loop R through J, and the resulting output current 4 is (3- 1) Flow as shown in the diagram. This output current is '21J5'J4. in loop R. J, , J6 can each be used as an output of the next stage, so the fanout can be 5. That is, the degree of signal amplification is 5, which can drive 5 subsequent stages with input current I0 and output current. At this gate (3-3), Iis and Iia are connected as shown in the figure.
(3-4)
If the threshold value Igl in the figure is biased by 1g and the magnetic flux of the town is applied to the loop by one input tunnel flow I, (3-4) the point (a) in the figure is obtained, so the power ''' When the input signal of it enters, the gate enters the 1 state and an OR gate is formed.Also, (3-4) biasing I to the pg point in the figure is reached, so it becomes an N-mount gate.

このゲートは量子状態を情報の媒体としているから電圧
状態に入らず、従って7図のゲート(ニルして消費電力
が少ない利点がある。
Since this gate uses a quantum state as an information medium, it does not enter a voltage state, so it has the advantage of lower power consumption than the gate shown in Figure 7.

(4−1)図は本発明によるフラクソイド量子状態を用
いる高利得ゲートの実施例で、4個のジョセフソン素子
J6と1個のジョセフソン素子Jからなる超伝導ループ
R1と、4個の素子J4と1個の緊子愚からなるループ
R2が、4個の素子J、からなる出力回路内によって分
割された回路に電源電流Igv印加し、出力回路内の一
部にジョセフソン素子J、を含む入力回路が結合して、
入力電流Iiが印加しうるよう配置されている。
(4-1) The figure shows an example of a high-gain gate using fluxoid quantum states according to the present invention, including a superconducting loop R1 consisting of four Josephson elements J6 and one Josephson element J, and four elements. A loop R2 consisting of J4 and one conductor applies a power supply current Igv to a circuit divided by an output circuit consisting of four elements J, and a Josephson element J is connected to a part of the output circuit. Input circuits including
It is arranged so that an input current Ii can be applied thereto.

今、入力電流Iiを(4−1)図の方向に流すと1、こ
れに結合した出力回路にはIi+方向に微少な電流が流
れる。この電流はJ、とJ2には矢印で示すように逆方
向の電流に分流されるQこの状態で゛Igを増加してゆ
くとJ2では電流がたし合わされ、J、では差となるか
ら4が先に10に達してループR2にフラクソイド量子
が侵入しく4−2)図の円形矢印のように周回電流が1
.程度流れるため、出力素子J、には矢印の方向に1.
≦工。の電流が流れる。
Now, when the input current Ii is made to flow in the direction shown in the diagram (4-1), a small current flows in the output circuit connected thereto in the Ii+ direction. This current is divided into currents in the opposite direction to J and J2 as shown by the arrows.In this state, if Ig is increased, the currents in J2 are added together, and in J, there is a difference, so 4 reaches 10 first, and the fluxoid quantum invades loop R2. 4-2) As shown by the circular arrow in the figure, the circulating current becomes 1.
.. Since the current flows to an extent of 1.0% in the direction of the arrow, the output element J has a current of 1.
≦Eng. current flows.

もし入力電流工、が(4−3)図のように(4−1)図
と逆方向に流れるとiにはJ、と4には矢印の方向に微
少電流が流れ、■、を増加させると今度はJ。
If the input current flows in the direction opposite to that shown in (4-1) as shown in (4-3), a small current will flow in i and 4 in the direction of the arrow, increasing ■. And this time J.

で電流かたし合わされるからJ、が先に1.に達し、量
子がJ、から侵入して(4−4)図の円形矢印の周回電
流が流れて、出力素子J、には(4−2)図と反対方向
の電流が流れる。Jlと山のどちらが先にスイッチする
かは入力電流Iiの方向に・より、かつその値は原理的
にはいかに小さな値でもよいから、微少な入力電流I、
によって出力素子には1.程度の出力1流が発生し、大
きな電流増中度をえられる。
Since the currents are added at J, 1. , a quantum enters from J, and the circulating current shown by the circular arrow in the figure (4-4) flows, and a current flows in the output element J in the direction opposite to that shown in the figure (4-2). Which of Jl and the mountain switches first depends on the direction of the input current Ii, and in principle, its value can be any small value, so if the input current I is very small,
Accordingly, the output element has 1. A single output current of about 100% is generated, and a large current increase degree can be obtained.

(4−5)図は時間tと共にI+i t :t、 l 
Igが変化する様子を示すもので、入力電流Iiによる
微少電流Iliを加えて後Igを増加してゆくとIti
が負の場合は出力箆流工、は正に、、I、iが正の場合
は工、は負に流れ、電流増巾度”+ Aliが大きくと
れることを示している。また、(4−1)図の出力回路
内には出力素チが5個接続しているからファンアウトは
5とれる0 (4−1)図に示す本ゲートにおいてR1,R2゜■に
各々4個の接合を用いる理由は、(a)点と51点から
みた等価回路はJ、とJ4の並列接続にR1の素子J、
を直列に接続したものであるから(4−6)図のように
なり全体で(6+1)個のループに等しくなるように設
計されている。これはJ、から入るL子が安定にループ
内−に停まるためには(5+1)個以上の素子が必要な
為である。本ゲートによる信号の伝播は(5−1)II
Jのように初段ゲート(1)と次段ゲート(2)を配置
し、初段ゲート(1)には(5−2)図のように始めに
電源翫流埴を流して(1)の出カニ、を得た後に(5−
2)図に示すように1g2を加えると(2)の出力電流
12かえられ、信号が伝播する。この場合の信号入力は
”il ’ ”i!’ 工iiの3つの入力があるが、
これら入力は正か負のいずれかであるため初段(1)の
状態は3つの入力の多数決で決まり、多数決論理が行わ
れる。
(4-5) The figure shows that I+i t :t, l with time t
This shows how Ig changes, and when Ig is increased after adding a small current Ili due to input current Ii, Iti
When is negative, the output flow is positive, and when I and i are positive, the output is negative, indicating that the current amplification degree ``+Ali'' can be increased.Also, (4 -1) Since five output elements are connected in the output circuit shown in the figure, the fanout is 5.0 (4-1) In this gate shown in the figure, connect four junctions each to R1 and R2゜■. The reason for using this is that the equivalent circuit seen from point (a) and point 51 is the parallel connection of J and J4, and the element J of R1,
are connected in series, as shown in the (4-6) diagram, and the design is such that the total number of loops is equal to (6+1). This is because (5+1) or more elements are required for the L element entering from J to stay stably in the loop. The signal propagation through this gate is (5-1) II
Arrange the first stage gate (1) and second stage gate (2) as shown in J, and first flow the power supply current into the first stage gate (1) as shown in figure (5-2) and then connect the output of (1). Crab, after getting (5-
2) As shown in the figure, when 1g2 is added, the output current 12 in (2) is changed and the signal propagates. In this case, the signal input is “il '”i! 'There are three inputs for engineering ii,
Since these inputs are either positive or negative, the state of the first stage (1) is determined by a majority vote of the three inputs, and majority logic is performed.

従って、本ゲートは高利得で、量子状態を用いるため消
費電力が少なく、入力部分と出力素子が離れているため
入力と出力が直流的にも交流的にも分離した特徴をもつ
ゲートである。
Therefore, this gate has high gain, low power consumption because it uses a quantum state, and has the characteristics that the input and output are separated both in direct current and alternating current because the input part and the output element are separated.

(6−1)図は本発明によるフラクソイド量子記憶回路
の実施例で、ジョセフソン素子J、と2個の素子J及び
J′からなる超伝導ループR1にアドレδ      
  & スミ流Iylを印加し、このループR1に2個の素子J
4が結合されてこの素子にはピッ)E原型XIが印加さ
れる。
(6-1) The figure shows an embodiment of a fluxoid quantum memory circuit according to the present invention, in which an address δ is connected to a superconducting loop R1 consisting of a Josephson element J and two elements J and J'.
& Sumi current Iyl is applied, and two elements J are connected to this loop R1.
4 is coupled and the P) E prototype XI is applied to this element.

R1はフラクソイド量子を記憶する回路でそのJy+の
外部磁束Φによる変化は(6−2)図に示す。
R1 is a circuit that stores fluxoid quanta, and its change in Jy+ due to external magnetic flux Φ is shown in figure (6-2).

まずIXIに1.程度の電流を印加すると54の発生す
る磁束は3/2程度となるから(6−2)図Rx点に到
る。
First, IXI has 1. When a current of about 100% is applied, the magnetic flux generated by 54 becomes about 3/2, so it reaches point Rx in the figure (6-2).

ここでIylに工1の電流を加えるとW1点に到り、量
この状態はエエ、IIy、を零にもどしても1量子状態
が保たれ、情報1はR1内に記憶される。この情報1の
状態を読み出す回路がループR2で、このループはジョ
セフソン素子J5とにから成り、読み出しアドレス電流
1.が印加されるように配置されると共にループR1の
1個の素子J2がこのループR2に結合してループに磁
束が印加される。またR2には読み出しピットs流エエ
2の流れる素子J6が結合されている。R2のI、と外
部磁束Φ8の特性を(6二3)図に示す。今R1に情報
1が記憶されていると素子J2には入程度の電流が流れ
ており、これによってR2には町/4程度め磁束が加え
られているため(6−3)図M1点にある。このときI
X2に工。程度の電流を印加するとJ6が1/4の磁束
を発生してR2に加わるため(6−3)図Rx点に到る
Here, when a current of 1 is applied to Iyl, the point W1 is reached, and even if the quantities IIy and Iy are returned to zero, a one-quantum state is maintained, and information 1 is stored in R1. The circuit for reading out the state of information 1 is loop R2, which consists of a Josephson element J5 and a read address current 1. is applied, and one element J2 of loop R1 is coupled to this loop R2, so that a magnetic flux is applied to the loop. Further, an element J6 through which the readout pit s flow AE2 flows is coupled to R2. The characteristics of I of R2 and external magnetic flux Φ8 are shown in Figure (623). If information 1 is now stored in R1, a current of about 100% is flowing through element J2, and a magnetic flux of about 1/4 is applied to R2. (6-3) At point M1 in the diagram. be. At this time I
Worked on X2. When a certain amount of current is applied, J6 generates 1/4 of the magnetic flux and applies it to R2 (6-3), reaching point Rx in the figure.

更にI、2に工2だけ流すとRs点に到るが、この状態
は0でも1でもないため素子山とJ5゛は電圧状態とな
りI、端子に電圧が発生して情報1の記憶状態を読み出
すことができる。
Furthermore, when I and 2 are supplied with a current of 2, the point Rs is reached, but since this state is neither 0 nor 1, the element peak and J5 are in a voltage state, and a voltage is generated at the terminal I, changing the storage state of information 1. Can be read.

エエ、に負の電流な■。程加えると(6−2)図のWO
点に到るが、この点はR1の0状態しかないから情報0
が記き込まれる。R1のO状態のときはR1には電流が
流れていないためJ2の発生する磁束はOで、従ってR
2は(6−3)図のMO点にある。
Eh, there is a negative current ■. (6-2) WO in figure
The point is reached, but this point has only the 0 state of R1, so the information is 0.
is written. When R1 is in the O state, no current flows through R1, so the magnetic flux generated by J2 is O, and therefore R
2 is at the MO point in the (6-3) diagram.

このときIX2を工。程加えるとM1点になり、更にI
At this time, IX2 was installed. If you add a certain amount, it becomes M1 point, and
.

をLまで加えるとR0点に到るがこの状態はR2の0状
態のままであるから、J5.J、’には電圧は発生せず
、従って情報0と1は判別できる。
If you add up to L, you will reach the R0 point, but this state remains the 0 state of R2, so J5. No voltage is generated at J,', so information 0 and 1 can be distinguished.

R2がR1の1状態を読み出してJ、+にが電圧状態(
二なってもこれらの素子はR1に結合しないように配置
されているためこれらの素子の発生するされるためにこ
の記憶回路は非破壊読み出しができ、動作速度が速い利
点をもつ。更に電磁気的インダクタンスを必要としない
ために加工技術の許す限り小型に構成でき、高密度集積
回路が実現できる。
R2 reads the 1 state of R1 and J, + is the voltage state (
Since these elements are arranged so as not to be coupled to R1 even if the voltage is increased, the memory circuit has the advantage that non-destructive reading can be performed and the operation speed is high due to the generation of electricity by these elements. Furthermore, since no electromagnetic inductance is required, the structure can be made as small as processing technology allows, and a high-density integrated circuit can be realized.

〔発明の効果〕〔Effect of the invention〕

以上詳細にのべたように、本発明によるジョセフソン菓
子の発生する磁束を用いて超伝導ループ分の1以下にす
ることができるため、100倍以上の高密度な超伝導電
子回路を実現することが可能となる。
As described in detail above, since the magnetic flux generated by the Josephson confectionery according to the present invention can be reduced to less than one of the amount of the superconducting loop, it is possible to realize a superconducting electronic circuit with a density more than 100 times higher. becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

(1−1)IJ)ンネル型ジョセフソン素子図(1−2
)図  ブリッジ型ジョセ7ンン素子図(1−3)図 
超伝導ループへの本発明による磁束印加法図 (1−4”)図 超伝導ループへの本発明による磁束印
加法図 (2−1)図 本発明によるスイッチングゲートの構成
図 (2−2)図 入力回路図 (2−3)図 入力回路の特性図 (2−4)因 ゲート回路の特性図 (2−5)11   スイッチングゲートの特性図(2
−6)図 本発明によるスイッチングゲートの構成図 (2−7)図 入力回路の特性図□ (2−8)図 ゲート回路の特性図 (2−9)9  スイッチングゲートの特性図(3−1
)図 本発明によるスイッチングゲート図(3−2)図
 スイッチングゲートの特性図(3−3)図  に0ゲ
ートとびゲートの構成図(3−4)図  AND及びO
R動作の説明図(4−1)図 本発明によるスイッチン
グゲート図(4−2)図  スイッチングゲートの動作
説明図(4−3)IJ   スイッチングゲートの動作
説明図1(4−4)lla  スイッチングゲートの動
作説明図(4−5)図  スイッチングゲートの特性図
(4−6)図 スイッチングゲートの等価回路図(5−
1)図 本ゲートによる信号の伝播説明図(5−2)図
  を源電流の印加法図 (6−1)図 本発明による記憶回路図(6−2)因 
記憶回路の動作説明図 (6−3)図 記憶回路の動作説明図 (7−1)図 従来の超伝導記憶回路図(7−2)図 
超伝導電子回路の構成図(8−1)図 超伝導円筒内の
i東回 (,8−2)図 超伝導円筒内の磁束測定装置図(9)
図 超伝導円筒内の磁束測定結果図(10−1)図 超
伝導リング内の磁束測定回路図(10−2)図 超伝導
リングの等価回路図(11)[/  超伝導リング内の
磁束測定結果図昭和59年10月11日 スーZ−,ニア7m 7Z−2加 ]1−3M 7g−,1111 プ2−21         フz−vグ竿?−乞仰 ゴZ−f頬 7Z−ρ謂 ゴ?−7itj フi−斜鎖 プ!−〃側 7I7−1/II 7ノーり別 70−9刑 Aクー1加 72−酬 7β−却       7θ−2υ 10鼻 ′y%10−1欄 Φ6 7//側 手続補正書 昭和60年6月7日 特許庁長官志賀  字数 p、、、、、。 2、発明の名称  超伝導i子回路 3、補正をする者 事件との関係 特許出願人 山  下      努 5° 補正傘令0日付、自えF和  年  月  日6
、補正の対象 図面「第2−9図」(符号追加のみ〕礎
(1-1) IJ) Channel type Josephson device diagram (1-2)
) diagram Bridge type Jose7n element diagram (1-3) diagram
A diagram (1-4”) of a method of applying magnetic flux according to the present invention to a superconducting loop A diagram (2-1) of a method of applying magnetic flux according to the present invention to a superconducting loop A configuration diagram of a switching gate according to the present invention (2-2) Figure Input circuit diagram (2-3) Figure Characteristic diagram of input circuit (2-4) Characteristic diagram of gate circuit (2-5) 11 Characteristic diagram of switching gate (2)
Fig. -6) Configuration diagram of the switching gate according to the present invention (2-7) Fig. Characteristics of the input circuit (2-8) Fig. Characteristics of the gate circuit (2-9) 9 Characteristics of the switching gate (3-1)
) Figure Switching gate diagram according to the present invention (3-2) Characteristic diagram of switching gate (3-3) Figure 0 gate configuration diagram (3-4) Figure AND and O
R operation diagram (4-1) Figure switching gate according to the present invention (4-2) Figure switching gate operation diagram (4-3) IJ Switching gate operation diagram 1 (4-4) lla Switching gate (4-5) Characteristic diagram of switching gate (4-6) Equivalent circuit diagram of switching gate (5-5)
1) Figure 5-2 is a diagram explaining the propagation of a signal through this gate. Figure 6-1 is a diagram of how to apply a source current.
Diagram explaining the operation of the memory circuit (6-3) Diagram explaining the operation of the memory circuit (7-1) Diagram of the conventional superconducting memory circuit (7-2)
Configuration diagram of the superconducting electronic circuit (8-1) Diagram of the i-channel inside the superconducting cylinder (,8-2) Diagram of the magnetic flux measuring device inside the superconducting cylinder (9)
Figure Magnetic flux measurement result in superconducting cylinder (10-1) Figure Magnetic flux measurement circuit in superconducting ring (10-2) Equivalent circuit diagram of superconducting ring (11) [/ Magnetic flux measurement in superconducting ring Result chart October 11, 1980 Sue Z-, Near 7m 7Z-2 addition] 1-3M 7g-, 1111 Pu 2-21 Fu Z-V rod? - Begging Go Z - f cheek 7 Z - ρ So-called Go? -7itj F i - diagonal chain pu! -〃Side 7I7-1/II 7 No Separation 70-9 Penalty A Ku 1 Add 72-Reward 7β-Rejection 7θ-2υ 10 Nose'y%10-1 Column Φ6 7//Side Procedural Amendment 1985 6 Shiga, Commissioner of the Patent Office, July 7th Word count: p,,,,,. 2. Name of the invention Superconducting i-conductor circuit 3. Relationship with the case of the person making the amendment Patent applicant Tsutomu Yamashita 5° Amended Umbrella Ordinance dated 0, Self-Fwa Year Month Day 6
, Target of amendment Drawing "Figure 2-9" (symbol addition only) Foundation

Claims (1)

【特許請求の範囲】[Claims] 1個以上のジョセフソン素子を直列にもつ超伝導ループ
に近接して配置された1個以上の直列ジョセフソン素子
からなる入力回路に電流を印加することにより、直列ジ
ョセフソン素子の発生する磁束を超伝導ループに印加し
て、超伝導ループ内にフラクソイド量子を導入し、保持
し、又は排除することによって所定の機能を得ることを
特徴とする超伝導電子回路。
By applying a current to an input circuit consisting of one or more series Josephson elements placed in close proximity to a superconducting loop having one or more series Josephson elements, the magnetic flux generated by the series Josephson elements can be reduced. A superconducting electronic circuit characterized in that a predetermined function is obtained by applying flux to a superconducting loop to introduce, retain, or exclude fluxoid quanta into the superconducting loop.
JP59213189A 1984-10-11 1984-10-11 Superconducting electronic circuit Granted JPS6192036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59213189A JPS6192036A (en) 1984-10-11 1984-10-11 Superconducting electronic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59213189A JPS6192036A (en) 1984-10-11 1984-10-11 Superconducting electronic circuit

Publications (2)

Publication Number Publication Date
JPS6192036A true JPS6192036A (en) 1986-05-10
JPH0262056B2 JPH0262056B2 (en) 1990-12-21

Family

ID=16635009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59213189A Granted JPS6192036A (en) 1984-10-11 1984-10-11 Superconducting electronic circuit

Country Status (1)

Country Link
JP (1) JPS6192036A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019023000A1 (en) * 2017-07-25 2019-01-31 Northrop Grumman Systems Corporation Superconducting bi-directional current driver
US10236869B2 (en) 2016-11-18 2019-03-19 Northrop Grumman Systems Corporation Superconducting transmission driver system
US10355677B1 (en) 2018-05-07 2019-07-16 Northrop Grumman Systems Corporation Current driver system
US10389336B1 (en) 2015-11-17 2019-08-20 Northrop Grumman Systems Corporation Josephson transmission line (JTL) system
US10491178B2 (en) 2017-10-31 2019-11-26 Northrop Grumman Systems Corporation Parametric amplifier system
US11211722B2 (en) 2017-03-09 2021-12-28 Microsoft Technology Licensing, Llc Superconductor interconnect system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622389A (en) * 1979-07-31 1981-03-02 Tsukishima Kikai Co Ltd Treatment of pyrolysis gas
JPS572128A (en) * 1980-06-06 1982-01-07 Hitachi Ltd Superconductive direct current driving logical circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5622389A (en) * 1979-07-31 1981-03-02 Tsukishima Kikai Co Ltd Treatment of pyrolysis gas
JPS572128A (en) * 1980-06-06 1982-01-07 Hitachi Ltd Superconductive direct current driving logical circuit

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10389336B1 (en) 2015-11-17 2019-08-20 Northrop Grumman Systems Corporation Josephson transmission line (JTL) system
US10236869B2 (en) 2016-11-18 2019-03-19 Northrop Grumman Systems Corporation Superconducting transmission driver system
US11211722B2 (en) 2017-03-09 2021-12-28 Microsoft Technology Licensing, Llc Superconductor interconnect system
WO2019023000A1 (en) * 2017-07-25 2019-01-31 Northrop Grumman Systems Corporation Superconducting bi-directional current driver
US10622977B2 (en) 2017-07-25 2020-04-14 Northrop Grumman Systems Corporation Superconducting bi-directional current driver
AU2018307322B2 (en) * 2017-07-25 2020-11-12 Northrop Grumman Systems Corporation Superconducting bi-directional current driver
AU2021200464B2 (en) * 2017-07-25 2021-11-18 Northrop Grumman Systems Corporation Superconducting bi-directional current driver
US10491178B2 (en) 2017-10-31 2019-11-26 Northrop Grumman Systems Corporation Parametric amplifier system
US10355677B1 (en) 2018-05-07 2019-07-16 Northrop Grumman Systems Corporation Current driver system

Also Published As

Publication number Publication date
JPH0262056B2 (en) 1990-12-21

Similar Documents

Publication Publication Date Title
US4371796A (en) Josephson logic gate device
US2832897A (en) Magnetically controlled gating element
US4829476A (en) Differential magnetoresistive memory sensing
US6917216B2 (en) Superconductor output amplifier
US10651808B2 (en) Compound superconducting quantum interference device output amplifier and methods
SE512591C2 (en) Digital information device and method
US4361768A (en) Superconducting soliton devices
JPS6192036A (en) Superconducting electronic circuit
US4313066A (en) Direct coupled nonlinear injection Josephson logic circuits
US2888201A (en) Adder circuit
Shen Logic devices and circuits based on giant magnetoresistance
US10910544B2 (en) Using a magnetic Josephson junction device as a pi inverter
Hioe Quantum flux parametron: a single quantum flux superconducting logic device
Brock The NSA's frozen dream
JPH09504363A (en) Superconducting double junction gyroscope device
US3145310A (en) Superconductive in-line gating devices and circuits
US3987309A (en) Superconductive sensing circuit for providing improved signal-to-noise
JPH0262967B2 (en)
US4096508A (en) Multiple junction supercurrent memory device utilizing flux vortices
US3676869A (en) Integrated low-level magnetic decoder
US3168727A (en) Superconductive storage circuit with persistent circulating current
JPS6142452B2 (en)
JPH027582A (en) Semiconductor device
Fink et al. Variable superconducting quantum-interference device: Theory
USRE28853E (en) Superconductive shift register utilizing Josephson tunnelling devices