JPS6191972A - Solar battery - Google Patents

Solar battery

Info

Publication number
JPS6191972A
JPS6191972A JP59213798A JP21379884A JPS6191972A JP S6191972 A JPS6191972 A JP S6191972A JP 59213798 A JP59213798 A JP 59213798A JP 21379884 A JP21379884 A JP 21379884A JP S6191972 A JPS6191972 A JP S6191972A
Authority
JP
Japan
Prior art keywords
type
film
tio2
junction
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59213798A
Other languages
Japanese (ja)
Other versions
JPH0213938B2 (en
Inventor
Nobuyuki Takamori
信之 高森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP59213798A priority Critical patent/JPS6191972A/en
Publication of JPS6191972A publication Critical patent/JPS6191972A/en
Publication of JPH0213938B2 publication Critical patent/JPH0213938B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/078Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers including different types of potential barriers provided for in two or more of groups H01L31/062 - H01L31/075
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To improve the photoelectric conversion efficiency while increasing shortcircuited photocurrent by a method wherein light receiving surface side of a semiconductor substrate with P-N junction is coated with an n type TiO2 film to constitute a solar battery. CONSTITUTION:n type impurity is diffused in one main surface of p type silicon substrate 1 to form a P-N junction 2. An n<+> type layer 3 further diffused with n type impurity is coated with an n type TiO2 film 7. The TiO2 film 7 is re duced to convert itself from an insulating material to a semiconductor resultant ly forming a hetero junction of n-TiO2/n-Si. Through these procedures, light receiving surface side electrodes 8 may be formed on the surface of converted n type TiO2 layer 7 to pick up the power generated from the space between the electrodes 8 and a backside electrode 4 formed on the p type silicon sub strate 1 side.

Description

【発明の詳細な説明】 く技術分野〉 本発明は太陽電池に関し、特にエネルギの変換効率の向
上を図った太陽電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a solar cell, and particularly to a solar cell with improved energy conversion efficiency.

〈従来技術〉 光エネルギを電気エネルギに変換する半導体装置として
太陽電池が広く用いられている。従来から用いられてい
る太陽電池は、第4図に示す如く、例えばp型シリコン
基板1の一生表面にn型不純物を拡散してPN接合2を
形成し、p型層1及びn型層3には発生した電力を取り
出すだめの裏面電極4及び表面電極5が夫々作製←呼伜
÷されている。尚表面電極5が作製された受光面側は、
照射された光の利用率を高めるために反射防止膜6で被
われている。
<Prior Art> Solar cells are widely used as semiconductor devices that convert light energy into electrical energy. As shown in FIG. 4, conventionally used solar cells are made by, for example, diffusing n-type impurities into the surface of a p-type silicon substrate 1 to form a PN junction 2, and forming a p-type layer 1 and an n-type layer 3. In the figure, a back electrode 4 and a front electrode 5 for extracting the generated electric power are prepared respectively. The light-receiving surface side where the surface electrode 5 is made is as follows.
It is covered with an anti-reflection film 6 to increase the utilization rate of the irradiated light.

処で反射防止膜6は一般にT i02膜が用いられてい
るが、該T ioz膜は絶縁膜として形成され、単に反
射防止機能と表面保穫機能が期待されているだけに過ぎ
ず、有効利用が図られているとはいい難かった。
Generally, the antireflection film 6 is a Ti02 film, but the Tioz film is formed as an insulating film and is only expected to have an antireflection function and a surface protection function, so it cannot be used effectively. It was difficult to say that this was planned.

〈発明の目的〉 本発明は上記従来の太陽電池の欠点を除去し、Ti(h
膜を改良してより変換効率の高い太陽電池を提供するも
ので、受光面を被うTiO2膜を還元処理してn型化し
、シリ−コン半導体基板本体との間にヘテロ接合を形成
し、短波長光の吸収率を高める。
<Object of the invention> The present invention eliminates the drawbacks of the conventional solar cells and
This method improves the film to provide a solar cell with higher conversion efficiency.The TiO2 film covering the light-receiving surface is reduced to become n-type, and a heterojunction is formed between it and the silicon semiconductor substrate body. Increases the absorption rate of short wavelength light.

〈実施例〉 第1図は本発明による一実施例を示す太陽電池の断面図
である。図において、従来装置と同様にp型シリコン基
板1の一主表面はn型不純物が拡散されてPN接合2が
形成されている。p型シリコン基板1は続いて拡散され
たnu層3の表面を被ってn型TiO2膜7が形成され
る。該n型TiO2膜7は、電気的絶縁性の膜として形
成されたTi0zをn型に半導体化することによって作
製される。
<Example> FIG. 1 is a sectional view of a solar cell showing an example according to the present invention. In the figure, as in the conventional device, n-type impurities are diffused into one main surface of a p-type silicon substrate 1 to form a PN junction 2. Next, an n-type TiO2 film 7 is formed on the p-type silicon substrate 1, covering the surface of the diffused nu layer 3. The n-type TiO2 film 7 is produced by converting Ti0z, which is formed as an electrically insulating film, into an n-type semiconductor.

即ちPN接合2が形成されたシリコン半導体基板1を加
熱し、該加熱保持されたn型層30表面に、fタン酸イ
ソプロピル等のチタン化合物をソースとしてCVDによ
りまず絶縁性のTi(h膜7を形成する。
That is, the silicon semiconductor substrate 1 on which the PN junction 2 has been formed is heated, and an insulating Ti (h film 7 form.

上記n型シリコン基板3の表面に積層される電気的絶縁
性のTiO2膜7の作製方法としては、上述の如(CV
D法による他、Tiを含む有機化合物溶液を塗布して化
学反応によりTiO2膜を作製する方法、或いは蒸着法
を利用することができる。
The method for producing the electrically insulating TiO2 film 7 to be laminated on the surface of the n-type silicon substrate 3 is as described above (CV
In addition to method D, a method of applying an organic compound solution containing Ti and producing a TiO2 film through a chemical reaction, or a vapor deposition method can be used.

上記シリコン基板表面に積層されたT i(h膜をn型
半導体に変換する処理は、CVDによって形成さハ′た
T’iCh膜7を還元処理することによって絶縁性から
半導体に変換される。該還元処理としては、真空中での
熱処理(約700℃)、減圧水素中下での熱処理(約I
 Torr +約700℃)、常圧水素中での熱処理、
或いは水素プ2ズマ中での熱処理(約I Torr w
約400℃)等を施こすことができ、該還元処理によっ
てTiO2膜中の酸素が抜−けて空格子点となり、絶縁
性Ti(h膜がn型TiO2半導体層に変換される。そ
の結果n+7937層3との間にn−TiO2/n−3
tのへテロ接合が形成される。
In the process of converting the Ti(h film laminated on the surface of the silicon substrate) into an n-type semiconductor, the T'iCh film 7 formed by CVD is reduced from an insulating property to a semiconductor. The reduction treatment includes heat treatment in vacuum (approximately 700°C), heat treatment in reduced pressure hydrogen (approximately I
Torr + about 700°C), heat treatment in normal pressure hydrogen,
Alternatively, heat treatment in a hydrogen plasma (about I Torr w
By this reduction treatment, the oxygen in the TiO2 film is removed and becomes a vacancy, and the insulating Ti (h film is converted to an n-type TiO2 semiconductor layer. As a result, n-TiO2/n-3 between n+7937 layer 3
A t heterojunction is formed.

上記変換されたn型Ti(h層7′の表面に受光面側電
極8が例えば格子状に形成され、p型シリコン基板l側
に形成された裏面電極4との間で発生した電力が取り出
される。
A light-receiving surface side electrode 8 is formed, for example, in a grid shape on the surface of the converted n-type Ti (h layer 7'), and the power generated between it and the back surface electrode 4 formed on the p-type silicon substrate l side is extracted. It will be done.

上記構造の太陽電池において、入射した光エネルギはn
−Ti0z/n+p−8iのへテロ接合でも光電流を発
生し、従来のシリコン基板におけるn+p接合のみで光
電流を発生させていた構造に比べて光出力電流は大きく
なる。即ち第2図を用いて模型的に示す如く、n−Ti
0zのバンドギャップは3.20eVを示し、第・3図
の従来の素子構造に示すシリコンのバンドギャップ1.
106eVに比べて非常に大きな値をもち、シリコン基
板に対して感度の小さかった短波長光を有効にオリ用す
ることができ、短絡光電流の増大を図り得る。
In the solar cell with the above structure, the incident light energy is n
A photocurrent is also generated at the -Ti0z/n+p-8i heterojunction, and the optical output current is larger than that of a conventional structure in which a photocurrent is generated only at an n+p junction in a silicon substrate. That is, as shown schematically in FIG. 2, n-Ti
The band gap of 0z is 3.20 eV, which is the band gap of silicon shown in the conventional device structure of FIG.
Short wavelength light, which has a much larger value than 106 eV and has low sensitivity to silicon substrates, can be effectively used, and the short-circuit photocurrent can be increased.

またT io2膜はn型半導体に変換されることにより
、負電荷を帯びて導電性が良好となシ、面抵抗が減少し
て電流−電圧曲線における曲率因子が著しく向上する。
Furthermore, by being converted into an n-type semiconductor, the Tio2 film is negatively charged and has good conductivity, and its sheet resistance is reduced and the curvature factor in the current-voltage curve is significantly improved.

尚TiO2膜は上述の如くヘテロ接合のための半導体層
として機能すると共に、本来の反射防止膜としての機能
を果しているつ 上記実施例は半導体基板としてシリコン基板をZnS、
* Zn5e L Ge r GaP等を用いた太陽電
池に対して、受光面側に上記実施例と同様にn型TiO
2膜を被着することにより、ヘテロ接合が付加された高
光電変換効率の太陽電池とな名。
Note that the TiO2 film functions as a semiconductor layer for the heterojunction as described above, and also functions as an original antireflection film.
* For solar cells using Zn5e L Ger GaP etc., n-type TiO is placed on the light-receiving surface side as in the above example.
A solar cell with high photoelectric conversion efficiency that has a heterojunction added by depositing two films.

〈効 果〉 以上本発明によれば、PN接合を備えた半導体基板の受
光面側にn型TiO2膜を被着して太陽電池を構成する
ことによシ、簡単な構成を付加するのみで、短絡光電流
の増加と、電流−電圧曲線における曲率因子の増加によ
る相乗効果に伴ない、光電変換効率を著しく向上させる
ことができる。
<Effects> According to the present invention, by forming a solar cell by depositing an n-type TiO2 film on the light-receiving surface side of a semiconductor substrate provided with a PN junction, it is possible to obtain solar cells by simply adding a simple structure. , the photoelectric conversion efficiency can be significantly improved due to the synergistic effect of increasing the short-circuit photocurrent and increasing the curvature factor in the current-voltage curve.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明7による一実施例を示す素子の断面図、
第2図は同実施例のバンドギャップ模型図、第3図は従
来素子のバンドギャップ模型図、第4図は従来素子の断
掌図である。 1:p型シリコン基板 3:n型シリコン基板7′:n
型TiO2膜  8:電極。
FIG. 1 is a sectional view of an element showing an embodiment according to the present invention 7,
FIG. 2 is a bandgap model diagram of the same embodiment, FIG. 3 is a bandgap model diagram of a conventional device, and FIG. 4 is a sectional view of the conventional device. 1: P-type silicon substrate 3: N-type silicon substrate 7': n
Type TiO2 film 8: Electrode.

Claims (1)

【特許請求の範囲】 1)TiO_2よりバンドギャップの小さいn型半導体
層が表面に形成され、p型半導体基板との間にPN接合
を形成してなる半導体基板と、上記n型半導体層の表面
に形成されてヘテロ接合をなすn型TiO_2膜とを備
えてなる太陽電池。 2)前記半導体基板はシリコンからなることを特徴とす
る請求の範囲第1項記載の太陽電池。 3)前記n型TiO_2膜は絶縁性TiO_2膜を還元
処理してn型化されていることを特徴とする請求の範囲
第2項記載の太陽電池。
[Claims] 1) A semiconductor substrate having an n-type semiconductor layer with a smaller band gap than TiO_2 formed on the surface and forming a PN junction with the p-type semiconductor substrate, and a surface of the n-type semiconductor layer. A solar cell comprising: an n-type TiO_2 film which is formed to form a heterojunction; 2) The solar cell according to claim 1, wherein the semiconductor substrate is made of silicon. 3) The solar cell according to claim 2, wherein the n-type TiO_2 film is made n-type by reducing an insulating TiO_2 film.
JP59213798A 1984-10-11 1984-10-11 Solar battery Granted JPS6191972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59213798A JPS6191972A (en) 1984-10-11 1984-10-11 Solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59213798A JPS6191972A (en) 1984-10-11 1984-10-11 Solar battery

Publications (2)

Publication Number Publication Date
JPS6191972A true JPS6191972A (en) 1986-05-10
JPH0213938B2 JPH0213938B2 (en) 1990-04-05

Family

ID=16645219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59213798A Granted JPS6191972A (en) 1984-10-11 1984-10-11 Solar battery

Country Status (1)

Country Link
JP (1) JPS6191972A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093360A1 (en) * 2010-02-01 2011-08-04 シャープ株式会社 Process for production of back-electrode-type solar cell, back-electrode-type solar cell, and back-electrode-type solar cell module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0320236U (en) * 1989-06-30 1991-02-27

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011093360A1 (en) * 2010-02-01 2011-08-04 シャープ株式会社 Process for production of back-electrode-type solar cell, back-electrode-type solar cell, and back-electrode-type solar cell module
JP2011159783A (en) * 2010-02-01 2011-08-18 Sharp Corp Process for production of back-electrode-type solar cell, back-electrode-type solar cell, and back-electrode-type solar cell module

Also Published As

Publication number Publication date
JPH0213938B2 (en) 1990-04-05

Similar Documents

Publication Publication Date Title
Rahman et al. Advances in surface passivation of c-Si solar cells
KR101000064B1 (en) Hetero-junction silicon solar cell and fabrication method thereof
EP1949450B1 (en) Solar cell of high efficiency
JP4257332B2 (en) Silicon-based thin film solar cell
JP3490964B2 (en) Photovoltaic device
JPS59205770A (en) Photovoltaic device
JP2001267598A (en) Laminated solar cell
Jeong et al. Preparation of born-doped a-SiC: H thin films by ICP-CVD method and to the application of large-area heterojunction solar cells
JPH05299677A (en) Solar battery and its manufacture
TW201818557A (en) Solar cell with high photoelectric conversion efficiency and method for producing solar cell with high photoelectric conversion efficiency
CN114582983A (en) Heterojunction solar cell and preparation method thereof
JPS6191972A (en) Solar battery
US20120255608A1 (en) Back-surface-field type of heterojunction solar cell and a production method therefor
JPS6225275B2 (en)
CN103107236B (en) Heterojunction solar battery and preparation method thereof
Hattori et al. High-conductive wide band gap p-type a-SiC: H prepared by ECR CVD and its application to high efficiency a-Si basis solar cells
JP7170817B1 (en) SOLAR CELL AND MANUFACTURING METHOD THEREOF, PHOTOVOLTAIC MODULE
RU2569164C2 (en) Thin-film solar cell
CN117410361B (en) Solar cell module and TOPCON structure cell with double-sided texturing
CN115172522B (en) Solar cell, preparation method and photovoltaic module
WO2015178307A1 (en) Photoelectric conversion element
JPH11307796A (en) Solar cell and its manufacture
RU2377698C1 (en) Method of making photoelectric element based on germanium
CN115863456A (en) perovskite/TOPCon tandem solar cell
JPS5842280A (en) Manufacture of photovoltaic element