JPS6191616A - Method and device for digital display of right ascension and celestial declination of quatorial - Google Patents

Method and device for digital display of right ascension and celestial declination of quatorial

Info

Publication number
JPS6191616A
JPS6191616A JP21146984A JP21146984A JPS6191616A JP S6191616 A JPS6191616 A JP S6191616A JP 21146984 A JP21146984 A JP 21146984A JP 21146984 A JP21146984 A JP 21146984A JP S6191616 A JPS6191616 A JP S6191616A
Authority
JP
Japan
Prior art keywords
right ascension
declination
value
axis
ascension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21146984A
Other languages
Japanese (ja)
Inventor
Masahiro Nakamura
政広 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOTAKE SEISAKUSHO KK
Original Assignee
OOTAKE SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOTAKE SEISAKUSHO KK filed Critical OOTAKE SEISAKUSHO KK
Priority to JP21146984A priority Critical patent/JPS6191616A/en
Publication of JPS6191616A publication Critical patent/JPS6191616A/en
Pending legal-status Critical Current

Links

Landscapes

  • Telescopes (AREA)

Abstract

PURPOSE:To attain an easy-to-see display, to eliminate variation in right ascension accompanying diurnal motion, and to reduce a device in weight and size by storing a right ascension value which is increased to the east corresponding to a unit time, calculating the right ascension value, celestial declination value, and said displacement value by a microcomputer, and displaying them digitally. CONSTITUTION:The right ascension and celestial declination values of an optional star put in the visual field of a telescope are inputted to a digital setter 5 and a right ascension axis is rotated to the west according to the diurnal motion of the star, so that a right ascension axis rotary encoder 1 outputs two pulse train signals CW and CCW. The microcomputer 13 converts the number of pulses into the quantity of deviation in right ascension value and subtracts this from a right ascension value stored in a RAM10 previously, so that the right ascension value on a digital display device 6 is constant even when the right ascension axis is rotated according to the diurnal motion. Then, the right ascension and declination axes are rotated to catch a desired star. Therefore, the display of the right ascension value is constant regardless of diurnal motion to facilitate astronomic observation, the right ascension and celestial declination are made easy to see and have high precision; and the device is reduced in weight and size.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は天体望遠鏡用赤道儀の赤経軸と赤緯軸の回動を
検知して赤経と赤緯の値に変換し、これをデジタル表示
する方法及び装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention detects the rotation of the right ascension axis and the declination axis of an equatorial mount for an astronomical telescope, converts it into right ascension and declination values, and converts this into right ascension and declination values. The present invention relates to a method and apparatus for digital display.

[従来技術] 第4図に示すこの種従来の赤道儀Xでは、赤経と赤緯は
赤経軸aと赤緯軸すに環設された赤経目盛環Cと赤緯目
盛環dにより表示される。
[Prior Art] In the conventional equatorial mount X of this kind shown in Fig. 4, right ascension and declination are determined by right ascension scale ring C and declination scale ring d, which are arranged around the right ascension axis a and the declination axis. Is displayed.

この赤経目盛環Cと赤緯目盛環dは天球上の赤経と赤緯
をもとに天体望遠鏡eで肉眼では見えない星を捜し出す
場合に使用するもので、例えばソンブレロ星雲で有名な
M2O3を捜す場合に、捜し易い輝星であるおとめ座の
スピカをガイド星とすれば、両星の赤経と赤緯差は赤経 赤  緯 となるから、まずスピカを天体望遠鏡eの視野中央に捕
えたならば、次に経度差45  (45分)だけ赤経目
盛環Cの目盛りに合わせて赤経軸aを回せば良い。尚、
赤経目盛環Cは赤経目盛点固定ネジ(図示せず)を締め
れば赤経軸aと共に回動し、ゆるめると赤経目盛環Cは
赤経軸aから解放されて赤経目盛環Cのみ回転させるこ
とができるようになっているからスピカを視野中央に捕
えた時点で前記赤経目盛点固定ネジをゆ、るめて、すば
やく赤経目盛環Cを回してOに合せて再び固定し、後は
目盛に従って赤経差451 (分)だけ回しても良いし
、経度差計算が面倒であるならばスビカを視野中央に捕
えた時点で赤経目盛点固定ネジをゆるめて、すばやく赤
経目盛環Cを回してスピカの赤経13h22mに合わせ
て固定し、後は目盛指示に従ってM2O3の赤経12”
 37Il′まで回せば良く、いずれの方法でもM2O
3は視野に捕えることができる。
The right ascension scale ring C and the declination scale ring d are used when searching for stars that cannot be seen with the naked eye with an astronomical telescope e based on the right ascension and declination on the celestial sphere.For example, M2O3, which is famous for the Sombrero Nebula, If you are looking for Spica in the constellation Virgo, which is a bright star that is easy to find, as your guide star, the difference in right ascension and declination of both stars will be the right ascension and declination, so first place Spica in the center of the field of view of the astronomical telescope e. Once you have captured it, all you have to do is turn the right ascension axis a by a longitude difference of 45 (45 minutes) to match the scale of the right ascension scale ring C. still,
When the right ascension scale point fixing screw (not shown) is tightened, the right ascension scale ring C rotates with the right ascension axis a, and when it is loosened, the right ascension scale ring C is released from the right ascension axis a and the right ascension scale ring C When the spica is captured in the center of the field of view, loosen the right ascension scale point fixing screw, quickly turn the right ascension scale ring C to set it at O, and fix it again. Afterwards, you can turn the right ascension difference by 451 (minutes) according to the scale, or if calculating the longitude difference is troublesome, loosen the right ascension scale point fixing screw as soon as you capture Subika in the center of the field of view and quickly turn the red ascension point. Turn the scale ring C to set it to Spica's right ascension of 13h22m, then follow the scale instructions to set M2O3's right ascension to 12".
All you have to do is turn it up to 37Il', and either method will turn M2O
3 can be captured in the visual field.

以上のように赤道儀Xにとって赤経目盛環Cと赤緯目盛
環dは極めて重要な機能を有するも ・のである。
As described above, for the equatorial mount X, the right ascension scale ring C and the declination scale ring d have extremely important functions.

ところがこの赤経目盛環Cと赤緯目盛環dは円環上に細
かく目盛を刻み込んだものであって、赤経赤緯はあまり
見取り易くないことと、又中型以下の赤道儀Xでは目盛
りの精度が悪り(1目盛が赤経又は時角で10分、赤緯
で2°程度である。)、仮に前述の経度差45(分)を
赤経目盛環Cで合わせても正確にはM2O3を視野中央
に捕えられず天体望遠鏡eをのぞきながら調整している
のが実情であり、不便であった。又更に、星は日周運動
により1恒星日に1回転の速度でほぼ北極星を中心とし
て円を描いて東から西へ移動するから、星の観測は目指
す星を捕えた後は赤経軸aを回転させつつ行われるが、
この時赤経目盛環Cも一緒に回転してしまい、つまり前
述例でいえば、天体望遠鏡eは常にM2O3に向けつつ
動かしているからその赤経は12h371であるにもか
かわらず赤経軸aとともに赤経目盛環Cも一緒に回って
しまうため、赤経目盛環C上の指示からでは天体望遠鏡
が赤経何時何分を向いているのか判定し得ない不便さが
あった。
However, the right ascension scale ring C and the declination scale ring d are circular rings with finely carved scales, and the right ascension and declination are not very easy to see, and on medium-sized and smaller equatorial mounts The accuracy is poor (one scale is about 10 minutes in right ascension or hour angle, and about 2 degrees in declination), and even if the above-mentioned longitude difference of 45 (minutes) is combined with right ascension scale ring C, it will not be accurate. The reality is that M2O3 cannot be captured in the center of the field of view and adjustments are made while looking through the astronomical telescope e, which is inconvenient. Furthermore, stars move from east to west in a circle around Polaris at a rate of one rotation per sidereal day due to diurnal motion, so when observing a star, once you have captured the star you are aiming for, you should follow the right ascension axis a. This is done while rotating the
At this time, the right ascension scale ring C also rotates.In other words, in the above example, the astronomical telescope e is always moving toward M2O3, so even though its right ascension is 12h371, the right ascension axis a Since the right ascension scale ring C also rotates at the same time, it is inconvenient that it is impossible to determine from the indications on the right ascension scale ring C what time and minute of right ascension the astronomical telescope is facing.

もっとも以上の不便さのうち指示が見取りにくいという
点に対しては赤道儀の赤経と赤緯をデジダル表示する装
置もあるが、これらは専らアップダウンカウンターやフ
ルアダーなどのハードウェアで構成されていて部品点数
が多く大型で高価であった。
Of the above inconveniences, it is difficult to read the instructions, but there are devices that digitally display the right ascension and declination of equatorial mounts, but these are exclusively composed of hardware such as up-down counters and full adders. It had a large number of parts, was large, and was expensive.

[発明が解決しようとする問題点] しかして本発明は赤経と赤緯の表示が見易くその精度も
高くかつ日周運動に伴う赤経の変化もないうえ、軽量小
型で赤道儀に組み込める赤道儀の赤経赤緯デジタル表示
方法及び装置を提供せんとするものである。
[Problems to be Solved by the Invention] However, the present invention provides an equatorial system that displays right ascension and declination in an easy-to-see manner, has high accuracy, does not change right ascension due to diurnal movement, is light and small, and can be incorporated into an equatorial mount. The present invention aims to provide a method and device for digitally displaying the right ascension and declination of a given area.

E問題点を解決するための手段] 本発明方法は赤経軸と赤緯軸の回転方向と回転ωを各々
電気信号に置き換えてマイクロコンピュータ−(以下マ
イコン)に入力し、当該マイコンで前記電気信号を赤経
値と赤緯値の変位量にそれぞれ変換する一方、別途入力
された赤経値と赤緯値のうち赤経値を単位時間毎に単位
時間分東方向に増した値で記憶しておき、この赤経値及
び赤緯値と前記電気信号として送られてくる赤経軸と赤
1i!軸の回転量、即ち赤経値と赤緯値の変位量とを演
算してデジタル表示するものである。
Means for Solving Problem E] The method of the present invention replaces the rotation direction and rotation ω of the right ascension axis and the declination axis with electric signals and inputs them into a microcomputer (hereinafter referred to as microcomputer), and the microcomputer converts the electric signals. While converting the signal into the displacement amount of the right ascension value and declination value, the right ascension value of the separately input right ascension value and declination value is stored as a value that increases eastward by the unit time for each unit time. Then, the right ascension value, the declination value, the right ascension axis and the red 1i! which are sent as the electric signal. The rotation amount of the axis, that is, the displacement amount of the right ascension value and the declination value is calculated and displayed digitally.

本発明方法の実施に直接使用する装置を第1図乃至第3
図につき説明する。
The apparatus directly used for carrying out the method of the present invention is shown in FIGS. 1 to 3.
This will be explained with reference to the diagram.

本発明装置Aは、赤経軸a及び赤m情すに各々環設され
る赤経目盛環Cと赤緯目rl!1環dに代えて仮想線に
示すようそれぞれ取付けたインクリメント型の赤経軸ロ
ータリーエンコーダ1と、赤緯軸ロータリーエンコーダ
2と、当該赤経軸ロータリーエンコーダ1と赤緯軸ロー
タリーエンコーダ2より送られてくる信号cw、ccw
のいずれかの通過を開閉制御する赤経軸ゲート3および
赤緯軸ゲート4と、外部にデジタル設定器6とデジタル
表示器5を、かつ内部にデジタルインターフェース7、
CPU8.ROM9゜RAM10と単位時間毎に信号を
発する水晶発信器11とを、バス12を介して系統実装
するマイコン13からなる。
The device A of the present invention has a right ascension scale ring C and a declination scale ring C, which are provided on the right ascension axis a and the red ascension axis, respectively. An incremental type right ascension axis rotary encoder 1 and a declination axis rotary encoder 2 are installed as shown in the imaginary line in place of the first ring d, and the signals sent from the right ascension axis rotary encoder 1 and the declination axis rotary encoder 2 are installed as shown in the imaginary lines instead of the first ring d. coming signal cw, ccw
A right ascension axis gate 3 and a declination axis gate 4 for controlling the opening and closing of passage of any one of the above, a digital setting device 6 and a digital display 5 on the outside, and a digital interface 7 on the inside.
CPU8. It consists of a microcomputer 13 in which a ROM 9° RAM 10 and a crystal oscillator 11 which emits a signal every unit time are installed in a system via a bus 12.

前記赤経軸ロータリーエンコーダー1と赤緯軸ロータリ
ーエンコーダ2は周縁部の周方向等間隔にスリット20
′群が置設されたディスク板20と当該ディスク板20
の一側と対応する位置に臨み、かつ所定間隔隔てた2ケ
所にスリット21.21’群を置設したスリット板23
と、当該スリット板23と前記ディスク板20を挾んで
相対向配架する発光ダイオード24゜24′とフォトダ
イオード25.25’からなり、赤経軸aと赤緯軸すの
回転とともにディスク板20が回転すると発光ダイオー
ド24.24′から発しスリット板23のスリット21
゜21′群を通った光がディスク板20のスリット20
′群と合致すると透過する。この光はスリット20’ 
を介しそれぞれのスリット21゜21′に向かい合うフ
ォトダイオード25.25′で電流に変えられ波形整形
によって2つの矩形波列信号cw、ccwとして出力さ
れる。
The right ascension axis rotary encoder 1 and the declination axis rotary encoder 2 have slits 20 at equal intervals in the circumferential direction on the periphery.
' group is placed on the disk plate 20 and the disk plate 20
A slit plate 23 facing a position corresponding to one side and having slits 21 and 21' groups placed at two locations separated by a predetermined interval.
The slit plate 23 and the disk plate 20 are sandwiched between a light emitting diode 24.24' and a photodiode 25.25', which are arranged opposite to each other. When rotates, light is emitted from the light emitting diode 24, 24' and the slit 21 of the slit plate 23
The light passing through the ゜21' group passes through the slit 20 of the disk plate 20.
′ group, it is transmitted. This light is slit 20'
The current is converted into a current by photodiodes 25 and 25' facing the respective slits 21 and 21', and outputted as two rectangular wave train signals cw and ccw by waveform shaping.

(第3図参照) この2つの出力は位相が90° (電気角)異なるから
先に来るパルスによりディスク板20の回転方向が判別
できるとともにパルス数により回転量を測定することが
できる。
(See FIG. 3) Since these two outputs have a phase difference of 90° (electrical angle), the direction of rotation of the disk plate 20 can be determined from the pulse that comes first, and the amount of rotation can be measured from the number of pulses.

前記赤経軸ゲート3と赤緯軸ゲート4は、各々2つのA
ND素子30.31からなり、当該AND素子30.3
1は入力側の一方を赤経軸ロータリーエンコーダ1及び
赤緯軸ロータリーエンコーダ2に各々接続し、他方を開
指令信号をタイミング出力するデジタルインターフェー
ス7と接続して、出力側はデジタルインターフェース7
に入力しており、前記赤経軸ロータリーエンコーダ1と
赤緯軸ロータリーエンコーダ2より送られてくる各々2
つのパルス信号列Cw、ccwのうちいずれか一方がA
ND素子30.31に入力された時点でデジタルインタ
ーフェース7からの開指令信号が持続し、残る一方のA
ND素子30.31にはデジタルインターフェース7か
らの開指令信号の入力は中絶して閉じられるよう構成し
て逆方向のパルス列信号cw、ccwがデジタルインタ
ーフェース7に入力されないようにしである。尚、一定
時間パルス列信号cw、ccwが送られてこない時には
、それまで閉じていた一方のAND素子30.31に再
びデジタルインターフェース7から開指令信号が送られ
、いずれのAND素子30.31も同状態となって次の
パルス列信号Cw、ccwを待機する。
The right ascension axis gate 3 and the declination axis gate 4 each have two A
Consists of ND element 30.31, and the AND element 30.3
One of the input sides of 1 is connected to the right ascension axis rotary encoder 1 and the declination axis rotary encoder 2, and the other side is connected to the digital interface 7 that outputs the timing of the open command signal, and the output side is connected to the digital interface 7.
and the respective 2 signals sent from the right ascension axis rotary encoder 1 and the declination axis rotary encoder 2.
Either one of the two pulse signal trains Cw and ccw is A
The open command signal from the digital interface 7 continues at the time it is input to the ND elements 30 and 31, and the remaining A
The ND elements 30 and 31 are configured so that the input of the open command signal from the digital interface 7 is interrupted and the ND elements 30 and 31 are closed to prevent pulse train signals cw and ccw in the opposite direction from being input to the digital interface 7. Incidentally, when the pulse train signals cw and ccw are not sent for a certain period of time, an open command signal is sent again from the digital interface 7 to one AND element 30.31 that was closed until then, and both AND elements 30.31 are closed in the same manner. state and waits for the next pulse train signals Cw and ccw.

前記マイコン13は、デジタル設定器5により任意の赤
経値と赤緯値とをそれぞれ入力すればこれをRAM10
の所定指定番地に格納記憶するとともに、当該赤経値に
ついては水晶発信t!R11から単位時間(例えば恒星
時間の1秒)ごとにCPtJ8に信号を送り、東方向に
単位時間分増してRAM10の所定指定番地に格納する
一方、前記赤経軸ロータリーエンコーダ1と赤緯軸ロー
タリーエンコーダ2および赤経軸ゲート3と赤緯軸ゲー
ト4を介して送られてくるパルス列信号cw、ccwの
いずれかを、ROM9に予め記憶しであるプログラムに
則りCPU8の演算処理で、赤経値および赤緯値の変位
量に換算して前記RAM10に格納された赤経値と赤I
Q値にそれぞれ加鈴あるいは減算し、これをデジタル表
示器6に表示する。
The microcomputer 13 inputs arbitrary right ascension values and declination values through the digital setting device 5, and stores them in the RAM 10.
The right ascension value is stored at a predetermined designated address, and the crystal transmission t! A signal is sent from R11 to CPtJ8 every unit time (for example, 1 second of sidereal time), and the signal is incremented by the unit time in the east direction and stored at a predetermined address in RAM10. Either the pulse train signal cw or ccw sent via the encoder 2, right ascension axis gate 3, and declination axis gate 4 is stored in the ROM 9 in advance, and the right ascension value is determined by the arithmetic processing of the CPU 8 according to a program. and the right ascension value and red I converted into the displacement amount of the declination value and stored in the RAM 10.
The Q value is incremented or subtracted, respectively, and this is displayed on the digital display 6.

[作  用] しかして本発明装置Aの動作を説明すると、まず任意の
星を望遠鏡eの視野内中央に導入し、その赤経値及び赤
緯値をデジタル設定器5より入力すれば、マイコン13
のCPLJ8はこの圃をRAMl0の所定指定番地に格
納し、デジタル表示器6に表示する。その後星の日周運
動に合わせ赤経軸aを西方向に回転させれば、赤経軸ロ
ータリーエンコーダ1のディスク板20も回転し2つの
パルス列信号cw、ccwが出力されるが、赤経軸ゲー
ト3にて回転方向によりいずれか一方のパルス列信号c
w、ccwのみがマイコン13に入力される。当該マイ
コン13ではこのパルス数を赤経値の変位量に換算し、
先にRAM10に格納された赤経値から減算するが、当
該RAM10に格納されている赤経値はデジタル設定器
5より入力された時点から単位時間毎に東方向(つまり
日周運動と反対方向)に単位時間弁理してRAM10の
所定指定番地に格納されているから、減算の結果は当初
入力した赤経値であり、この値がデジタル表示器6に表
示される。つまり日周運動に伴い赤経軸aを回転させて
もデジタル表示器6の赤経値は一定となる。
[Function] To explain the operation of the device A of the present invention, first, an arbitrary star is introduced into the center of the field of view of the telescope e, and its right ascension value and declination value are inputted from the digital setting device 5. 13
The CPLJ8 stores this field at a predetermined designated address in the RAM10 and displays it on the digital display 6. If the right ascension axis a is then rotated westward in accordance with the diurnal motion of the star, the disk plate 20 of the right ascension rotary encoder 1 will also rotate and two pulse train signals cw and ccw will be output. At gate 3, either one of the pulse train signals c is generated depending on the rotation direction.
Only w and ccw are input to the microcomputer 13. The microcomputer 13 converts this number of pulses into the amount of displacement of the right ascension value,
The right ascension value stored in the RAM 10 is subtracted from the right ascension value stored in the RAM 10, but the right ascension value stored in the RAM 10 is subtracted in the east direction (that is, in the opposite direction to the diurnal movement) every unit time from the time it is input from the digital setting device 5. ) is stored at a predetermined designated address in the RAM 10, the result of the subtraction is the initially input right ascension value, and this value is displayed on the digital display 6. In other words, even if the right ascension axis a is rotated with the diurnal movement, the right ascension value on the digital display 6 remains constant.

又他の星を捕える場合には、赤経軸a及び赤緯軸すを回
転させれば赤経軸ロータリーエンコーダ1.赤緯軸ロー
タリーエンコーダ2及び赤経軸ゲート3と赤緯軸ゲート
4により各々の回転方向と回転量が検知されてマイコン
13に入力され、内部のCPLJ8で演算処理されて逐
次赤経値と赤緯値がデジタル表示されるから目指す星の
赤経値と赤緯値になるまで適宜赤経軸aと赤緯@bを回
せば良く、この場合にも現在視野内に捕えている星の赤
経値が一定で常に表示されているから、他の星を捕える
場合に従来のように現在視野内に捕えている星の赤経値
に赤経目盛環Cを合わせ直す必要はなく、単に赤経軸a
を回転させるだけで良い。
In addition, when capturing other stars, by rotating the right ascension axis a and the declination axis a, the right ascension axis rotary encoder 1. The direction and amount of rotation are detected by the declination axis rotary encoder 2, right ascension axis gate 3, and declination axis gate 4, and input to the microcomputer 13, which is then processed by the internal CPLJ 8 and sequentially outputs the right ascension value and the red ascension value. Since the latitude value is displayed digitally, all you have to do is turn the right ascension axis a and the declination @b until you reach the right ascension and declination values of the star you are aiming for. Since the longitude value is constant and always displayed, when capturing another star, there is no need to readjust the right ascension scale ring C to the right ascension value of the star currently captured in the field of view, as in the conventional method. longitudinal axis a
All you have to do is rotate it.

本発明装置Aで表示する赤経値及び赤緯値の精度を説明
すれば、−例として赤経Ohaと赤緯軸すとも144:
  1のウオームfとウオームギヤQを噛合使用して 
1回転100パルスのエンコーダ1.2を使用した場合
には ○赤緯軸 全周 360@(21600’ ) エンコーダ1パルスの角度は ○赤経軸 全周 24時(86400秒) エンコーダ1パルスの角度は の精度で表示される。
To explain the accuracy of the right ascension and declination values displayed by the device A of the present invention, for example, the right ascension Oha and the declination axis are 144:
Using worm f and worm gear Q of 1 in mesh
When using encoder 1.2 with 100 pulses per rotation, the angle of one encoder pulse is ○all around the declination axis 360 @ (21600').The angle of one encoder pulse is ○all around the right ascension axis 24:00 (86400 seconds). is displayed with precision.

[効  果] 以上のように本発明方法及び装置は赤道儀の赤経と赤緯
をデジタル表示するから、極めて児取り易く、又表示さ
れる赤経値と赤緯値の精度は従来の目盛環に比べはるか
に高いとともに、日周運動に伴う赤経軸の回転にもかか
わらず常に一定の赤経値を表示するから天体観測には極
めて便利である。又更に構成部品が少ないところから製
造コストも安く小形化でき赤道儀に一体組込み可能であ
り、優れた効果を有する。
[Effects] As described above, since the method and device of the present invention digitally display the right ascension and declination of the equatorial mount, it is extremely easy to detect children, and the accuracy of the displayed right ascension and declination values is higher than that of the conventional scale. It is extremely convenient for astronomical observation because it is much taller than the ring and always displays a constant right ascension value despite the rotation of its right ascension axis due to diurnal motion. Furthermore, since the number of component parts is small, the manufacturing cost is low, the size can be reduced, and it can be integrated into an equatorial mount, which has excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置のブロックダイヤグラム、第2図及
び第3図は各々本発明装置を構成するインクリメンタル
形ロータリーエンコーダの概略的斜面図とその出力波形
図、第4図は従来の赤道儀の側面図である。 X・・・赤道儀 A・・・赤道儀の赤経赤緯デジタル表示装置a・・・赤
経軸  b・・・赤緯軸  C・・・赤経目盛環d・・
・赤緯目盛環  e・・・天体望遠鏡1・・・赤経軸ロ
ータリーエンコーダ 2・・・赤緯軸ロータリーエンコーダ 3・・・赤経軸ゲート   4・・・赤緯軸ゲート5・
・・デジタル設定器  6・・・デジタル表示器7・・
・デジタルインターフェース 8・・・CPU9・・・
ROM  10・・・RAM  11・・・水晶発信器
12・・・バス 13・・・マイクロコンピュータ−2
0・・・ディスク板  21.21’・・・スリット2
3・・・スリット板 24.24’・・・発光ダイオード 25.25’ ・・・フォトダイオード30.31・・
・AND素子 第2図 2υ 第3図 手続補正書 昭和60年 1月21日 特許庁長官   志 賀  学 殿 1、事件の表示 昭和59年 特 許 願 第211469号2、発明の
名称  赤道儀の赤経赤緯デジタル表示方法及び装置 3、補正をする者 事件との関係  特許出願人 住所   東京都港区西麻布2−7−7号名称    
 有限会社 大岳製作所 4、代  理  人   〒105 住所 東京都港区虎ノ門1丁目12番8号 半島ビル6
、補正の対象 明細書の発明の詳細な説明の欄 7、補正の内容 (1)明細書第13頁第1行〜第16行「本発明装置A
で〜で表示される。」 とあるのを [本発明装置Aで表示する赤経値及び赤緯値の精度を説
明すれば、−例として第4図に示す従来のドイツ式赤a
 IRXにおいてウオームf、f側の軸に1回転100
パルスのエンコーダ1.2を取り付ければ、ウオームf
、fとウオームギヤc+、qの比が144:1の場合、
赤経軸a、赤緯軸すの1回転で発生するパルス数は14
4X  100= 14400パルスである。従って ○赤緯軸 全周 360° (21600’  )エンコーダ1パ
ルスの角度は ○赤経軸 全周 24時(86400秒) エンコーダ1パルスの角度は の精度で表示される。尚、エンコーダ1゜2を第4図に
示す赤経軸aと赤緯軸すの各部位に直接取り付けた場合
には、ウオームf、fとウオームギヤG、 gのギヤ比
に関係なくエンコーダ1.2の1回転で発生するパルス
数で赤経軸a、赤緯軸すの全周(360°、24時)を
割れば1パルスあたりの角度が求められる。従って1回
転14400パルスのエンコーダ1.2を使用すれば1
パルスは同様に赤緯の1,5(分)、赤経の6(秒)と
なる。Jと訂正する。
Figure 1 is a block diagram of the device of the present invention, Figures 2 and 3 are schematic diagrams of the incremental rotary encoder constituting the device of the present invention and their output waveforms, and Figure 4 is a diagram of the conventional equatorial mount. FIG. X...Equatorial mount A...Equatorial mount's right ascension and declination digital display device a...Right ascension axis b...Declination axis C...Right ascension scale ring d...
- Declination scale ring e... Astronomical telescope 1... Right ascension axis rotary encoder 2... Declination axis rotary encoder 3... Right ascension axis gate 4... Declination axis gate 5.
...Digital setting device 6...Digital display 7...
・Digital interface 8...CPU9...
ROM 10...RAM 11...Crystal oscillator 12...Bus 13...Microcomputer-2
0...Disc plate 21.21'...Slit 2
3...Slit plate 24.24'...Light emitting diode 25.25'...Photodiode 30.31...
・AND element Figure 2 2υ Figure 3 Procedural amendment January 21, 1985 Manabu Shiga, Commissioner of the Patent Office 1, Indication of the case 1981 Patent Application No. 211469 2, Title of invention Red equatorial mount Longitudinal/declination digital display method and device 3, relationship with the case of the person making the amendment Patent applicant address: 2-7-7 Nishiazabu, Minato-ku, Tokyo Name
Otake Manufacturing Co., Ltd. 4, Agent 105 Address 6, Peninsula Building, 1-12-8 Toranomon, Minato-ku, Tokyo
, Detailed Description of the Invention Column 7 of the Specification Subject to Amendment, Contents of the Amendment (1) Page 13 of the Specification, Lines 1 to 16, “Device of the Invention A
It is displayed as ~. ” [To explain the accuracy of the right ascension and declination values displayed by the device A of the present invention, for example, the conventional German type red a shown in FIG.
In IRX, worm f, 1 rotation 100 on the f side axis
If you install pulse encoder 1.2, the worm f
, when the ratio of f and worm gears c+, q is 144:1,
The number of pulses generated in one rotation of the right ascension axis a and the declination axis is 14.
4X 100 = 14400 pulses. Therefore, the angle of one encoder pulse (360 degrees (21,600') around the entire circumference of the declination axis is 24 o'clock (86,400 seconds) around the entire right ascension axis.The angle of one encoder pulse is displayed with the accuracy of. If the encoder 1°2 is directly attached to each part of the right ascension axis a and the declination axis shown in Fig. 4, the encoder 1. The angle per pulse can be found by dividing the entire circumference (360 degrees, 24 o'clock) of the right ascension axis a and the declination axis a by the number of pulses generated in one rotation of 2. Therefore, if you use encoder 1.2 with 14,400 pulses per rotation, 1
Similarly, the pulses are 1.5 (minutes) in declination and 6 (seconds) in right ascension. Correct it with J.

Claims (1)

【特許請求の範囲】 1 天体の日周運動観測に当り、赤経軸と赤緯軸の回転
方向と回転量を各々電気信号に置き換えてマイクロコン
ピューターに入力し、当該マイクロコンピューターは前
記電気信号を赤経値と赤緯値の変位量にそれぞれ変換す
る一方、別途入力された赤経値と赤緯値のうち赤経値を
単位時間毎に単位時間分東方向に増した値で記憶してお
き、この赤経値および赤緯値と前記変位量とを演算し、
これを逐次デジタル表示してなる赤道儀の赤経赤緯デジ
タル表示方法 2 赤経軸と赤緯軸に各々取付けられ、前記赤経軸と赤
緯軸の回転に伴い各々位相の異なる2つの電気信号を出
力する赤経軸ロータリーエンコーダおよび赤緯軸ロータ
リーエンコーダと、各々2つのAND素子からなり前記
2つの電気信号のうちいずかが入力された時点で残る一
方は閉じられる赤経軸ゲートおよび赤緯軸ゲートと、当
該赤経軸ゲートおよび赤緯軸ゲートを介し送られてくる
前記電気信号を赤経値と赤緯値の変位量にそれぞれ変換
する一方、別途入力された赤経値と赤緯値のうち赤経値
を単位時間毎に単位時間分東方向に増して記憶し、この
赤経値および赤緯値と前記変位量とを演算し、逐次デジ
タル表示するマイクロコンピューターからなる赤道儀の
赤経赤緯デジタル表示装置 3 マイクロコンピューターは、外部にデジタル設定器
とデジタル表示器を、かつ内部にデジタルインターフェ
ース、CPU、ROM、RAMと単位時間毎に信号を発
する水晶発信器とを、バスを介して系統実装してなる特
許請求の範囲第2項記載の赤道儀の赤経赤緯デジタル表
示装置
[Claims] 1. When observing the diurnal motion of a celestial body, the direction and amount of rotation of the right ascension axis and the declination axis are each replaced with electric signals and input into a microcomputer, and the microcomputer converts the electric signals into electric signals. While converting the right ascension value and declination value into displacement amounts respectively, the right ascension value of the separately input right ascension value and declination value is stored as a value that increases eastward by the unit time for each unit time. and calculate the right ascension value and declination value and the displacement amount,
Digital display method 2 of right ascension and declination on an equatorial mount that sequentially displays this digitally. Two electric lights are installed on the right ascension and declination axes, respectively, and that have different phases as the right ascension and declination axes rotate. a right ascension axis rotary encoder and a declination axis rotary encoder that output signals, a right ascension axis gate each consisting of two AND elements, the remaining one of which is closed when one of the two electrical signals is input; The electric signals sent through the declination axis gate and the right ascension axis gate and the declination axis gate are respectively converted into displacement amounts of right ascension values and declination values, while separately input right ascension values and The equator comprises a microcomputer that stores the right ascension value of the declination value by incrementing it eastward by a unit time every unit time, calculates the right ascension value, the declination value, and the displacement amount, and sequentially displays it digitally. Right Ascension, Declination Digital Display Device 3 The microcomputer has an external digital setting device and a digital display, and an internal digital interface, CPU, ROM, RAM, and a crystal oscillator that emits a signal every unit time. The right ascension and declination digital display device for an equatorial mount according to claim 2, which is systemically implemented via a bus.
JP21146984A 1984-10-11 1984-10-11 Method and device for digital display of right ascension and celestial declination of quatorial Pending JPS6191616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21146984A JPS6191616A (en) 1984-10-11 1984-10-11 Method and device for digital display of right ascension and celestial declination of quatorial

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21146984A JPS6191616A (en) 1984-10-11 1984-10-11 Method and device for digital display of right ascension and celestial declination of quatorial

Publications (1)

Publication Number Publication Date
JPS6191616A true JPS6191616A (en) 1986-05-09

Family

ID=16606451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21146984A Pending JPS6191616A (en) 1984-10-11 1984-10-11 Method and device for digital display of right ascension and celestial declination of quatorial

Country Status (1)

Country Link
JP (1) JPS6191616A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01155018U (en) * 1988-04-12 1989-10-25
US7079317B2 (en) 1998-10-26 2006-07-18 Meade Instruments Corporation Automated telescope with distributed orientation and operation processing
US7221527B2 (en) 1998-10-26 2007-05-22 Meade Instruments Corporation Systems and methods for automated telescope alignment and orientation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01155018U (en) * 1988-04-12 1989-10-25
US7079317B2 (en) 1998-10-26 2006-07-18 Meade Instruments Corporation Automated telescope with distributed orientation and operation processing
US7092156B2 (en) 1998-10-26 2006-08-15 Meade Instruments Corporation Automated telescope alignment and orientation method
US7221527B2 (en) 1998-10-26 2007-05-22 Meade Instruments Corporation Systems and methods for automated telescope alignment and orientation

Similar Documents

Publication Publication Date Title
WO2005111743A1 (en) A recently planet astronomy clock
JPS6191616A (en) Method and device for digital display of right ascension and celestial declination of quatorial
JPS5915215A (en) Method and device for microcomputer control of stand for equatorial of astronomical telescope
KR100347991B1 (en) Direction measuring method and clock for using this method
US4317612A (en) Sidereal time compensation device for astronomical telescope
JP2009229069A (en) Timepiece provided with mechanism displaying position and age of moon
Horowitz et al. Optical time-of measurements from the Crab pulsar: comparison of results from four observatories
JPS62168109A (en) Automatic tracking device for astronomical telescope
Gangui et al. On times and shadows: The observational analemma
Woodhouse Four Dimensions and Counting: Locating an object in 3-D space from a spinning and wobbling planet, which orbits a star, which orbits its galactic center that itself is receding from most other galaxies is… interesting
Lastra et al. On Times and Shadows: The Observational Analemma
US3133352A (en) Satellite alert
GB2243000A (en) Improvements in watches
Spencer Jones The Royal Greenwich Observatory
RU2082094C1 (en) Gyro compass
US1201895A (en) Apparatus for converting sidereal time to mean solar time and vice versa.
JPS60243588A (en) Machinery for displaying moon or sun
Bridges Fitting orbits to Jupiter's moons with a spreadsheet
Secchi On the Rings of Saturn
SU373752A1 (en)
KR200252342Y1 (en) Clock-type device for observing changes in the moon, sun and stars
JP2550504Y2 (en) Constellation chart
JPS6050477A (en) Timepiece with age-of-moon display
US7636276B2 (en) Device for measurement of geo-solar time parameters
Bullard Extrasolar Planetary Exploration