JPS6191568A - Identification of defect echo for ultrasonic flaw detection - Google Patents

Identification of defect echo for ultrasonic flaw detection

Info

Publication number
JPS6191568A
JPS6191568A JP59212535A JP21253584A JPS6191568A JP S6191568 A JPS6191568 A JP S6191568A JP 59212535 A JP59212535 A JP 59212535A JP 21253584 A JP21253584 A JP 21253584A JP S6191568 A JPS6191568 A JP S6191568A
Authority
JP
Japan
Prior art keywords
defect
frequency
ultrasonic
pulse
inspected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59212535A
Other languages
Japanese (ja)
Inventor
Hisao Okada
久雄 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59212535A priority Critical patent/JPS6191568A/en
Publication of JPS6191568A publication Critical patent/JPS6191568A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/348Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with frequency characteristics, e.g. single frequency signals, chirp signals

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To detect a true defect alone identifying echoes from a worked surface and defect echoes accurately, by making an ultrasonic pulse from a part of a plurality of probes incident into a portion looking like a defect of an object to be inspected to vary the ultrasonic wave frequency. CONSTITUTION:In an ultrasonic flow detection using a plurality of probes 3 and 5, an ultrasonic pulse from the probe 3 is made incident into a portion looking like a defect of an object 1 to be inspected and the other probe 5 is so arranged at such a position as to almost maximize the received signal considering the directivity of the reflected pulse. Then, the frequency of the ultrasonic wave made incident into a portion looking like a defect 2 of the object 1 being inspected is varied with a frequency setter 14. A corrector 10 corrects the attenuation of the distance according to the frequency of the signal received with an ultrasonic wave receiver 9 and from the relationship between the relative value of the amplitude of the received pulse with respect to the incident wave and the frequency thereof, the received pulse is judged to correspond to either a defect echo or an echo based on the shape with a memory-arithmetic unit 11 and the results are shown on a display 15 together with the amplitude, frequency and defect position.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は超音波探傷方法に係り、特に被検査物体の加工
面からのエコーと欠陥面からのエコーとを識別するのに
好適な欠陥エコー識別方法に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an ultrasonic flaw detection method, and particularly to a defect echo identification method suitable for distinguishing between echoes from a machined surface of an object to be inspected and echoes from a defective surface. Regarding the method.

〔発明の背景〕[Background of the invention]

2個以上の探触子を使用する探傷方法として、日刊工業
新聞社列の超音波探傷法(1974年刊)249ページ
から256ページに示されるようなデルタ法があるが、
第4図に示した欠陥反射の場合と第5図に示した被検査
体の輪郭形状に基づく反射の場合は本質的に同じであり
、欠陥エコーと加工面からのエコーとの識別が非常に困
難となっている。
As a flaw detection method that uses two or more probes, there is the delta method as shown in Ultrasonic Flaw Detection Method (published in 1974) published by Nikkan Kogyo Shimbun, pages 249 to 256.
The defect reflection shown in Figure 4 and the reflection based on the contour of the inspected object shown in Figure 5 are essentially the same, and it is very easy to distinguish between defect echoes and echoes from the machined surface. It has become difficult.

周波数とエコー高さの関係から欠陥の判定をする探傷方
法としては、特開昭52−134491のように周波数
の変化に対する受信パルスの波高値の変化に応じて欠陥
であるか否か判定していた。しがし、材料の減衰特性や
入射パルスの振幅が周波数によって異なることに対する
補正手段が講じられていないため、材料の減衰特性や入
射パルスの振幅が周波数に大きく依存する場合には受信
パルスの波高値と周波数の関係が欠陥を判定するのに不
適当になることがあり得る。また探触子を1個しか使用
していないので、欠陥エコーの指向性が探触子がある方
向からずれていれば受信信号は非常に小さくなり正確な
判定ができなくなる0例えば第6図に示したような底面
に直角な欠陥に60°の角度で横波を入射させると反射
角は50″となり、60”方向の反射波は非常に小さく
なるにの場合の50°方向及び60”方向の反射波の入
射波に対する相対振幅と周波数の関係を第7図に示す。
As a flaw detection method that determines defects based on the relationship between frequency and echo height, as in JP-A-52-134491, it is determined whether or not there is a defect according to the change in the peak value of the received pulse with respect to the change in frequency. Ta. However, since there is no correction method for the fact that the attenuation characteristics of the material and the amplitude of the incident pulse differ depending on the frequency, if the attenuation characteristics of the material or the amplitude of the incident pulse are highly dependent on the frequency, the wave of the received pulse The relationship between high value and frequency may become inappropriate for determining defects. In addition, since only one probe is used, if the directivity of the defective echo deviates from the direction of the probe, the received signal will be very small and accurate determination will not be possible.For example, as shown in Figure 6. If a transverse wave is incident at an angle of 60° into a defect perpendicular to the bottom surface as shown, the reflection angle will be 50'', and the reflected wave in the 60'' direction will be very small. FIG. 7 shows the relationship between the relative amplitude and frequency of the reflected wave with respect to the incident wave.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、欠陥からのエコーと被検査物体の加工
面からのエコーとを識別するのに好適な欠陥エコー識別
方法を提供することにある。
An object of the present invention is to provide a defect echo identification method suitable for distinguishing between echoes from a defect and echoes from a machined surface of an object to be inspected.

〔発明の既要〕[Existing necessity of the invention]

本発明は、複数の探触子を用いる超音波探傷方法におい
て、前記探触子の一部から超音波パルスを被検査物体の
欠陥と思われる部分に入射させ、他の残りの探触子は反
射パルスの指向性を考慮して受信信号がほぼ極大となる
位置に配置し、前記被検査物体の欠陥と思われる部分に
入射させる超音波の周波数を変化させ、その時の受信パ
ルスの入射波に対する相対値が、欠陥からのエコーの場
合には周波数とともに増加するが加工面からのエコーの
場合には周波数にかかわらずほぼ一定であることから欠
陥からのエコーと加工面からのエコーとを識別するもの
である。
The present invention provides an ultrasonic flaw detection method using a plurality of probes, in which an ultrasonic pulse is made to enter a part of an object to be inspected that is considered to be a defect from a part of the probes, and the remaining probes The ultrasonic wave is placed at a position where the received signal is almost at its maximum considering the directivity of the reflected pulse, and the frequency of the ultrasonic wave incident on the part of the object to be inspected that is thought to be defective is changed, and the The relative value increases with frequency in the case of echoes from defects, but remains almost constant regardless of frequency in the case of echoes from machined surfaces, so it is possible to distinguish between echoes from defects and echoes from machined surfaces. It is something.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第3図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

第3図に本実施例の装置の概略構成を示す。超音波送受
信器13は横波探触子3、距離測定器12及び周波数設
定器工4と接続している。超音波受信器9は縦波探触子
5と距離測定器12に接続している。補正器10は超音
波受信器9、距離測定器12、周波数設定器14及び記
憶演算器11と接続しており、記憶演算器11には記録
表示器15が接続されている。
FIG. 3 shows a schematic configuration of the apparatus of this embodiment. The ultrasonic transceiver 13 is connected to the transverse wave probe 3, the distance measuring device 12, and the frequency setting device 4. The ultrasonic receiver 9 is connected to the longitudinal wave probe 5 and the distance measuring device 12. The corrector 10 is connected to an ultrasonic receiver 9, a distance measuring device 12, a frequency setting device 14, and a storage calculator 11, and a recording display 15 is connected to the storage calculator 11.

次に動作を説明する。Next, the operation will be explained.

超音波送受信器13は横波探触子3を介して周波数設定
器14で設定された周波数の横波超音波パルス6を被検
査物体1の欠陥2に入射させる。
The ultrasonic transmitter/receiver 13 makes a transverse ultrasonic pulse 6 of a frequency set by a frequency setter 14 enter the defect 2 of the object 1 to be inspected via the transverse probe 3 .

欠陥2からの横波エコー7は横波探触子3を介して超音
波送受信器13で受信され、遅れ時間が測定され距離測
定器12によって欠陥までの距離が求められる。欠陥2
でモード変換によって発生した縦波エコー8は探触子5
を介して超音波受信器9によって受信されるとともに距
離測定器12に出力され欠陥までの距離が求められる。
The transverse wave echo 7 from the defect 2 is received by the ultrasonic transmitter/receiver 13 via the transverse wave probe 3, the delay time is measured, and the distance to the defect is determined by the distance measuring device 12. Defect 2
The longitudinal wave echo 8 generated by the mode conversion is transmitted to the probe 5.
The signal is received by the ultrasonic receiver 9 via the ultrasonic receiver 9 and output to the distance measuring device 12 to determine the distance to the defect.

補正器10は超音波受信器9で受信された信号を、距離
情報と周波数情報に基づいて周波数に応じた距離減衰補
正を行い、周波数情報に、基づいて超音波送信器や受信
器あるいは探触子等の周波数特性の補正が行われる。つ
まり、この処理の段階を経ることによって、受信信号の
振幅は欠陥の影響のみを受け1周波数特性を平坦に補正
されたため他の影響は受けないものとなる。つまり入射
波に対する相対値と考えることができる。補正がなされ
た受信信号は、距離情報や周波数情報とともに記憶演算
器11に入力され受信信号の振幅、欠陥までの距離及び
周波数が記憶され、欠陥位置が計算され、周波数と振幅
の関係も演算によって求められエコーが判定され、振幅
、周波数、欠陥位置とともに表示器15に表示される。
The corrector 10 performs distance attenuation correction on the signal received by the ultrasonic receiver 9 according to the frequency based on distance information and frequency information, and adjusts the signal to an ultrasonic transmitter, receiver, or probe based on the frequency information. Correcting the frequency characteristics of the child, etc. is performed. In other words, by going through this processing stage, the amplitude of the received signal is affected only by the defect and one frequency characteristic is corrected to be flat, so that it is not affected by other influences. In other words, it can be considered as a relative value to the incident wave. The corrected received signal is input to the storage calculator 11 along with the distance information and frequency information, the amplitude of the received signal, the distance to the defect, and the frequency are stored, the defect position is calculated, and the relationship between frequency and amplitude is also calculated by calculation. The echoes are determined and displayed on the display 15 along with the amplitude, frequency, and defect location.

第1図に示したパルス振幅相対値と周波数の関係は、第
2図に示した探傷条件によって得たものであり、反射波
の振幅の入射波の振幅に対する相対値であるパルス振幅
相対値は周波数に対して増加傾向にあるのがわかる。第
1図の欠陥反射横波RTは反射横波7を横波探触子4で
受信し、欠陥反射縦波RLは反射縦波8を縦波探触子5
で受信したものである。第1図の横軸に欠陥寸法Hの入
耐波の波長λに対する比−でも示しであるようにλ 欠陥寸法と波長がほぼ同じオーダーとなる周波数範囲で
前記探傷を行うのが好ましい。また、入射波には欠陥全
面に超音波が入射する大きさのビーム径を持たせた方が
よい。
The relationship between the pulse amplitude relative value and frequency shown in Figure 1 was obtained under the flaw detection conditions shown in Figure 2, and the pulse amplitude relative value, which is the relative value of the amplitude of the reflected wave to the amplitude of the incident wave, is It can be seen that there is an increasing tendency with respect to frequency. The defect-reflected transverse wave RT in FIG.
This is what I received. As shown by the ratio of the defect size H to the wavelength λ of the incoming wave resistance on the horizontal axis of FIG. Further, it is preferable that the incident wave has a beam diameter large enough to allow the ultrasonic wave to be incident on the entire surface of the defect.

前記実施例では、受信する波としてモード変換によって
生じた縦波を用いているので第1図に示したようにパル
ス振幅相対値と周波数がほとんど比例しているので判定
の精度が高くなり、さらに前記参考文献の超音波探傷法
250ページで説明されているように被検査物体底面に
垂直な面が存在することも判定できるという効果がある
In the above embodiment, since the longitudinal wave generated by mode conversion is used as the wave to be received, the relative value of the pulse amplitude and the frequency are almost proportional to each other as shown in FIG. As explained on page 250 of the ultrasonic flaw detection method of the above-mentioned reference, there is an effect that it can also be determined that there is a plane perpendicular to the bottom surface of the object to be inspected.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、欠陥エコーと加工面からのエコーを正
確に識別できるので、真の欠陥のみを正確に検出できる
効果がある。
According to the present invention, defect echoes and echoes from the machined surface can be accurately distinguished, so that only true defects can be accurately detected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は受信パルス振幅相対値の周波数依存性を表す図
、第2図は第1図の結果を得た超音波探傷条件を示す図
、第3図は本発明の一実施例を示す図、第4図、第5図
はデルタ法を示す図、第6図は反射角がずれることを考
慮した超音波探傷法を示す図、第7図は第6図の場合の
受信パルス振幅相対値の周波数依存性を表す図である。 2・・・欠陥、3,4・・・横波探触子、5・・・縦波
探触子、9・・・超音波受信器、10・・・補正器、1
1・・・記憶演算器、12・・・距離測定器、13・・
・超音波送受信器、14・・・周波数設定器、15・・
・表示器。
Fig. 1 is a diagram showing the frequency dependence of the relative received pulse amplitude value, Fig. 2 is a diagram showing the ultrasonic flaw detection conditions that obtained the results in Fig. 1, and Fig. 3 is a diagram showing an embodiment of the present invention. , Fig. 4 and Fig. 5 are diagrams showing the delta method, Fig. 6 is a diagram showing the ultrasonic flaw detection method considering the deviation of the reflection angle, and Fig. 7 is the relative value of received pulse amplitude in the case of Fig. 6. FIG. 2 is a diagram showing the frequency dependence of 2... Defect, 3, 4... Shear wave probe, 5... Longitudinal wave probe, 9... Ultrasonic receiver, 10... Corrector, 1
1... Memory calculator, 12... Distance measuring device, 13...
・Ultrasonic transmitter/receiver, 14... Frequency setting device, 15...
·display.

Claims (1)

【特許請求の範囲】[Claims] 1、複数の探触子を用いる超音波探傷方法において、前
記探触子の一部から超音波パルスを被検査物体の欠陥と
思われる部分に入射させ、他の残りの探触子は反射パル
スの指向性を考慮して受信信号がほぼ極大となる位置に
配置し、前記被検査物体の欠陥と思われる部分に入射さ
せる超音波の周波数を変化させ、その時の受信パルスの
振幅の入射波のそれに対する相対値と周波数との関係か
ら、前記受信パルスが欠陥エコーかあるいは形状に基づ
くエコーであるかを判定することを特徴とする超音波探
傷法における欠陥エコーの識別方法。
1. In an ultrasonic flaw detection method using multiple probes, some of the probes inject ultrasonic pulses into the part of the object to be inspected that is considered to be defective, and the remaining probes emit reflected pulses. The ultrasonic wave is placed at a position where the received signal is almost at its maximum considering the directivity of the object, and the frequency of the ultrasonic wave made to be incident on the part of the object to be inspected that is considered to be defective is varied, and the amplitude of the received pulse at that time is A method for identifying a defect echo in an ultrasonic flaw detection method, comprising determining whether the received pulse is a defect echo or a shape-based echo from a relationship between a relative value thereof and a frequency.
JP59212535A 1984-10-12 1984-10-12 Identification of defect echo for ultrasonic flaw detection Pending JPS6191568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59212535A JPS6191568A (en) 1984-10-12 1984-10-12 Identification of defect echo for ultrasonic flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59212535A JPS6191568A (en) 1984-10-12 1984-10-12 Identification of defect echo for ultrasonic flaw detection

Publications (1)

Publication Number Publication Date
JPS6191568A true JPS6191568A (en) 1986-05-09

Family

ID=16624280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59212535A Pending JPS6191568A (en) 1984-10-12 1984-10-12 Identification of defect echo for ultrasonic flaw detection

Country Status (1)

Country Link
JP (1) JPS6191568A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004303A1 (en) * 2005-07-06 2007-01-11 Central Research Institute Of Electric Power Industry Method and instrument for measuring flaw height in ultrasonic testing

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004303A1 (en) * 2005-07-06 2007-01-11 Central Research Institute Of Electric Power Industry Method and instrument for measuring flaw height in ultrasonic testing
JPWO2007004303A1 (en) * 2005-07-06 2009-01-22 財団法人電力中央研究所 Scratch height measuring method and apparatus in ultrasonic flaw detection test
JP4747172B2 (en) * 2005-07-06 2011-08-17 財団法人電力中央研究所 Scratch height measuring method and apparatus in ultrasonic flaw detection test
US8051717B2 (en) 2005-07-06 2011-11-08 Central Research Institute Of Electric Power Industry Method and apparatus for measuring flaw height in ultrasonic tests

Similar Documents

Publication Publication Date Title
US4437332A (en) Ultrasonic thickness measuring instrument
US5163027A (en) Calibration block and method for an ultrasonic system
CN104792866A (en) Ultrasonic detecting and positioning method and device based on TOFD (time of flight diffraction) and phased array
CN103529123A (en) Dual-probe manual ultrasonic detection method
US10816512B2 (en) Inspection of a structure with a sloped back wall
JPS6191568A (en) Identification of defect echo for ultrasonic flaw detection
JPH02129544A (en) Ultrasonic flaw detecting device
JP2006313115A (en) Ultrasonic flaw detecting method and ultrasonic flaw detector
JPH11248690A (en) Ultrasonic flaw detector
JP2997485B2 (en) Ultrasonic inspection apparatus and probe setting method for ultrasonic inspection apparatus
JPH02150766A (en) Ultrasonic flaw detecting device
JPH0545346A (en) Ultrasonic probe
JPS60170764A (en) Ultrasonic flaw detector for turbine disk
JPH01107149A (en) Standard test piece for ultrasonic flaw detector
JPH0679016B2 (en) Method and apparatus for ultrasonic inspection of concave corners
SU1293630A1 (en) Method of ultrasonic checking of articles
JPS6196461A (en) Ultrasonic reflectoscope
JPH08285824A (en) Measuring method of defective position of material having different elastic stiffness in thickness direction
JPH01203967A (en) Temperature compensation type ultrasonic flaw detector
JPS6244361Y2 (en)
SU996934A1 (en) Article ultrasonic checking method
JPS6247253B2 (en)
JPH04190156A (en) Method for inspecting spot welding
Gebhardt et al. Crack detection and defect classification using the LLT-technique
SU1185220A1 (en) Method of ultrasound structural analysis of material