JPS6191331A - Manufacture of grain oriented high silicon electrical iron sheet - Google Patents

Manufacture of grain oriented high silicon electrical iron sheet

Info

Publication number
JPS6191331A
JPS6191331A JP59213196A JP21319684A JPS6191331A JP S6191331 A JPS6191331 A JP S6191331A JP 59213196 A JP59213196 A JP 59213196A JP 21319684 A JP21319684 A JP 21319684A JP S6191331 A JPS6191331 A JP S6191331A
Authority
JP
Japan
Prior art keywords
iron alloy
plate
silicon
annealing
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59213196A
Other languages
Japanese (ja)
Inventor
Toshiro Tomita
俊郎 富田
Hiroyoshi Yashiki
裕義 屋鋪
Atsuki Okamoto
篤樹 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP59213196A priority Critical patent/JPS6191331A/en
Publication of JPS6191331A publication Critical patent/JPS6191331A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • C21D8/1211Rapid solidification; Thin strip casting

Abstract

PURPOSE:To manufacture the titled iron sheet superior in magnetic characteristic stably and freely capable of setting magnetized direction easily, by providing grooves on surface of high Si iron alloy sheet having a specified Si content in a suitable direction, then annealing the sheet at a suitable temp.. CONSTITUTION:High Si iron alloy sheet contg. 2-8wt% Si has grooves having saw teeth shaped-section along a desired easily magnetized direction or that vertical thereto, or both thereof, on at least one part of upper and lower surface thereof, and is manufactured by cooling rapidly and solidifying continuously molten high Si iron alloy of said compsn. by using cooling body such as cooling roll providing grooves of a desired size. As the groove, about 60-120 deg. top angle theta or theta' and about 1-5mum depth are suitable. The grooved plate material is annealed at 800-1,300 deg.C, to obtain the titled sheet freely capable of setting easily magnetized direction.

Description

【発明の詳細な説明】 、 〈産業Eの利用分野〉 この発明は、優れた磁気特性を着する方向性高珪素電磁
鉄板を、容易磁化方向の設定自在に、かつ安定して製造
する方法に関するものである。
[Detailed Description of the Invention] <Field of Application in Industry E> This invention relates to a method for stably manufacturing a oriented high-silicon electromagnetic iron plate with excellent magnetic properties, easily and freely setting the magnetization direction. It is something.

〈従来の技術〉 一般に、Si含有量が3〜4%前後c以下、成分割合は
重量基準とする)である高珪素鉄合金板は、発電機、変
圧器、電動機等の磁心として用いられ。
<Prior Art> In general, high-silicon iron alloy plates with a Si content of around 3 to 4% c or less (component ratios are based on weight) are used as magnetic cores for generators, transformers, electric motors, etc.

電気工業上極めて重要な軟磁性材料とされている。It is considered to be a very important soft magnetic material in the electrical industry.

従来、と述のような高珪素鉄合金板は、熱間圧電と1.
中間焼綽を伴う多数回の冷間圧延とによって所定成分組
成の一片から薄板材を得、その後厳密な条件の磁気特性
向と焼鈍を施して製造されるのが普通であっ、た。
Conventionally, high-silicon iron alloy plates as mentioned above have been used for hot piezoelectric and 1.
It is common practice to obtain a thin sheet material from a piece of a predetermined composition by cold rolling multiple times with intermediate annealing, and then subjecting it to magnetic properties and annealing under strict conditions.

しかし、前記、方法では、製品が得られるまでに多数の
工程を必要とし、それだけ(二製造コストが極めて高く
なると言う不竺合を有していたことかう、近雫、塑性加
工の困難なSi:2〜84i?含有する亮珪素鉄合金の
薄板材製造に、所開”超急冷法”を適用し、毘珪素鉄合
金溶湯から圧延等の塑性加工を施すことなく直接的に薄
板材を製造し、これ1;磁気特性向上焼鈍!施して所望
の電磁鉄板とする方法が採用されるようになってきた。
However, the method described above requires a large number of steps to obtain a product, and has the disadvantage that the manufacturing cost becomes extremely high. : 2~84i?A proprietary "ultra-quenching method" is applied to the production of thin sheets of silicate iron alloys containing 2 to 84i?, and thin sheets are manufactured directly from molten silicate iron alloys without any plastic processing such as rolling. However, this 1: annealing to improve magnetic properties! A method of producing desired electromagnetic iron plates has come to be adopted.

なお、1超急冷法”には1例えば第2因及び第3図の模
式図で示されるような単ロール法や双ロール法のほかに
も、冷却円筒体を使用する方法等が知られているが、要
するに連続的に移動更新する冷却体表面に金属溶湯を噴
射し、直接的C薄帯化する手段は、総称して1超急冷法
”と呼ばれている。第2図及び第3図において、符号1
で示されるものは溶湯容器、符号2で示されるものは溶
湯噴出ノズル、符号3で示されるものは冷却ロール、符
号4で示されるものは帯状薄板製品である。
In addition to the single-roll method and twin-roll method as shown in the schematic diagram of the second factor and FIG. However, in short, the method of injecting molten metal onto the surface of a cooling body that is continuously moved and renewed, and directly converting it into a carbon ribbon, is collectively referred to as the 1 super-quenching method. In Figures 2 and 3, reference numeral 1
2 is a molten metal container, 2 is a molten metal spouting nozzle, 3 is a cooling roll, and 4 is a strip-shaped thin plate product.

ところで、前述のような高珪素鉄合金板は、゛特定の焼
鈍条件下では表面エネルギーの作用で板表面C(100
)面、若しくは(110)面を持つ結晶粒の優先成長を
起こすことが知られて−おり。
By the way, the above-mentioned high-silicon iron alloy plate has a plate surface C (100
It is known that preferential growth of crystal grains having ) planes or (110) planes occurs.

これを利用して(100)<ok/>、(11す<br
tz>又は(110)<001>なる集合組織を持つ電
磁鉄板を積極的に製造する方法も提案されている(例え
ば、特開昭57−94527号、特開昭58−4534
9号、特開昭58−113319号等)。
Using this, (100)<ok/>, (11s<br
tz> or (110)<001> has also been proposed (for example, JP-A-57-94527, JP-A-58-4534).
No. 9, JP-A-58-113319, etc.).

〈発明が解決しようとする問題点〉 しかしながら、上記従来法では、面内無方向性であった
り、特定方位の結晶粒を優先成長させる゛にあたって条
件規制の厳しい熱間圧延、冷間圧延等との組合せを必要
としたり、或いは所望磁気特性の方向性電磁鉄板が得ら
れるとしてもその磁化容易方向の調整が殆んど不可能で
あったりすることから、製品として板取りする際の歩留
り向丘のため磁・化容易方向が自由に設定でき、かつ工
業的に安定した方向性高珪素電磁鉄板の製造手段が強く
望まれているのが現状であった。
<Problems to be Solved by the Invention> However, the above conventional method does not require the use of hot rolling, cold rolling, etc., which have strict condition regulations in order to preferentially grow crystal grains that are non-oriented in the plane or have a specific orientation. Or, even if a oriented electromagnetic iron plate with desired magnetic properties can be obtained, it is almost impossible to adjust the direction of easy magnetization. Therefore, there is currently a strong desire for a means for manufacturing oriented high-silicon electromagnetic iron plates that is industrially stable and allows the direction of easy magnetization to be set freely.

〈問題点を解決するための手段〉 本発明者等は、上述のような観点から、磁気特性の優れ
た製品を得られることはもちろんのこと、材料の成分組
成や圧延条件C:影響されることのな:い工業的に安定
な−しかも容易磁化方向σ設定が自在な方向性高珪素電
磁鉄板製造手段を見出すべく研究を行ったところ。
<Means for Solving the Problems> From the above-mentioned viewpoints, the present inventors have not only been able to obtain a product with excellent magnetic properties, but also improved the composition of the material and the rolling conditions C: We have conducted research to find a means of manufacturing oriented high-silicon electromagnetic iron plates that are industrially stable and easy to set the magnetization direction σ.

(JLl  2〜8重量%のSi″4に一含有する高珪
素鉄合金板に対して表面エネルギーが作用して粒成長が
なされる再結晶焼鈍を施す際、前記高珪素鉄合金板の両
面又は片面に、或いはそれらの少なくとも一部に断面鋸
刃状の溝を形成しておくと(例えば、第1図は溝を形成
した高珪素鉄合金板の形状の1例を模式的に示した概略
斜挑図である)、焼鈍時の表面エネルギーによる再結晶
によっソ、″  ■ 成る種の焼鈍条件C例えば、板表
面のエネルギーにより板表面に(110)面を持つ結゛
晶粒が優先成長することが知られてい!、温度=110
0〜1200℃、真空度: 10−’Torr’の真空
焼鈍)では、第4図に示されるよ仙:、前記鋸刃状溝の
斜面に(110)面を持つ結晶粒が一先成長することと
なるため、表面溝方面を<(401>方向とする(Zo
o)<001>集合組織を持つ2方同性晶珪素鉄合金板
が得られ。
(JLl) When performing recrystallization annealing in which surface energy acts on a high silicon iron alloy plate containing 2 to 8% by weight of Si″4 to cause grain growth, both sides of the high silicon iron alloy plate or If a groove with a sawtooth cross section is formed on one side or at least a part thereof (for example, FIG. For example, crystal grains with (110) planes grow preferentially on the plate surface due to the energy on the plate surface. Known to do!, temperature = 110
During vacuum annealing at a temperature of 0 to 1200°C and a degree of vacuum of 10-'Torr, crystal grains with (110) planes first grow on the slopes of the sawtooth grooves, as shown in Figure 4. Therefore, the surface groove direction is set to the <(401> direction) (Zo
o) A bidirectional isotropic silicon-iron alloy plate having a <001> texture was obtained.

■ 成る種の焼鈍条件(例えば、板表面のエネルギーに
より板表面に(100)面を持?結晶粒が優先成長する
ことが知られている一温度=1000〜1150℃、真
空度: 10””Torrの真空焼鈍)では、第5図に
示されるよう”s前記と同様の理由から表面溝方向を<
001>方向とする(110 )<001>集合組織の
方向性高珪素鉄合金板が得られる。
■ Type of annealing conditions (for example, the plate surface has (100) planes due to the energy of the plate surface. It is known that crystal grains preferentially grow. Temperature = 1000 to 1150°C, degree of vacuum: 10") Torr vacuum annealing), as shown in Figure 5, the surface groove direction is
A oriented high-silicon iron alloy plate having a (110)<001> texture in the 001> direction is obtained.

(b)  従って、再結晶焼鈍前に行う高珪素鉄合金板
の溝付けの際、・該溝の方向を適宜に設定することによ
り、方向性高珪素鉄合金板の磁化容易方向を自在に調整
できる、 (C)前記(a)項6二示した手段を実施すれば、高珪
素鉄合金板の成分組成や圧電条件等にそれほど影響され
ることなく、磁気特性の優れた方向性高珪素鉄合金板を
安定して製造することができる。 ・以f (a)〜(
C)に示される如き知見が得られたのである。
(b) Therefore, when grooving a high-silicon iron alloy plate before recrystallization annealing, the direction of easy magnetization of the oriented high-silicon iron alloy plate can be freely adjusted by appropriately setting the direction of the grooves. (C) By implementing the means shown in item (a) 62 above, oriented high silicon iron with excellent magnetic properties can be produced without being affected by the composition of the high silicon iron alloy plate or the piezoelectric conditions. Alloy plates can be stably manufactured.・After f (a)~(
The findings shown in C) were obtained.

この発明は、上記知見に基づいてなされたものであり、 2〜8重量%の珪素を含有する高珪素鉄合金板であって
、しかもその上下面のうちの少なくとも一部4:、希望
する容易磁化方向、又はそれに垂直な方向、若しくは両
方向(二沿った断面鋸刃状の溝を有する板材を用意し、
これに800〜1300℃の温度での焼鈍な施工ことで
、優れた磁気特性を有する方向性高珪素電磁鉄板を、容
易磁化方向の設定自在C二、かつ安定して製造する点、
に特徴を有するものである。
The present invention has been made based on the above findings, and provides a high-silicon iron alloy plate containing 2 to 8% by weight of silicon, and at least a portion of the upper and lower surfaces thereof. Prepare a plate material having a sawtooth cross-section groove along the magnetization direction, or in a direction perpendicular to it, or in both directions,
In addition, by annealing at a temperature of 800 to 1300°C, a oriented high-silicon electromagnetic iron plate with excellent magnetic properties can be easily and freely set in the magnetization direction, and stably manufactured.
It has the following characteristics.

次に、この発明の方法において、高珪素鉄合金中のSi
含有量、及び焼鈍温度を前記の如くに数値限定した理由
とともに、この発明の方向性高珪素電磁鉄板の製造方法
をより具体的に説明する。
Next, in the method of this invention, Si in the high silicon iron alloy is
The method for producing a grain-oriented high-silicon electromagnetic iron plate of the present invention will be explained in more detail, along with the reasons for numerically limiting the content and annealing temperature as described above.

A)高珪素鉄合金板のSi含有量 Si成分は電磁鉄板の軟磁気特性改善に欠かせない元素
であるが、その含有量が2重量%未満では高温焼鈍の際
にr相が出現して集合組織を壊わ丁ので所望の磁気特性
を確保することができず、一方、8重#%を越えて含有
させると鉄板の脆化や飽和磁束密度の低下が著しくなる
ことから、Si含有量は2〜8重量%と定めた。
A) Si content of high-silicon iron alloy plate The Si component is an essential element for improving the soft magnetic properties of electromagnetic iron plates, but if its content is less than 2% by weight, r-phase will appear during high-temperature annealing. It is difficult to ensure the desired magnetic properties because the texture is broken, and on the other hand, if the Si content exceeds 8%, the iron plate becomes brittle and the saturation magnetic flux density decreases significantly. was determined to be 2 to 8% by weight.

なお、c 、 N I O、S I’P 5AJt、v
d電mcreNi 、Cu 、5nlCQ 、MO等の
不純物が存在していてもこの発明の効果は妨げられるこ
とがない。特に、Ni 、 A1. MOは加工性向と
のために1重量%以下のψ1囲で積極的に含有させるこ
とができ、またV。
In addition, c, NIO, S I'P 5AJt, v
Even if impurities such as d-electronic mcreNi, Cu, 5nlCQ, MO, etc. are present, the effects of the present invention are not hindered. In particular, Ni, A1. MO can be actively included in the ψ1 range of 1% by weight or less for processing properties, and V.

Mn * Cr 、 co  を磁気特性向上のため1
重量%以下の範囲で含有させることも可能である。
Mn * Cr, co 1 to improve magnetic properties
It is also possible to contain it in a range of less than % by weight.

B)高珪素鉄合金板表面の形状 この発明の電磁鉄板の製造方法では、再結晶焼鈍時に表
面エネルギーによる再結晶(:より特定方位の結晶粒を
優先成長させるため、例えば先に示した第1図の如き断
面鋸刃状の@を有する高珪素鉄合金板l使用することが
大きな特徴となっているが、その溝の方向は、希望する
方向に磁気方向性を持たせるため、方向性ケ持たせたい
方向(軟磁気特性を良くする板面内の方向)か、又はそ
の方向に垂直な方向、若しくはその両方向と丁゛・る。
B) Shape of surface of high-silicon iron alloy plate In the method for producing an electromagnetic iron plate of the present invention, recrystallization (: for example, the first A major feature is the use of a high-silicon iron alloy plate l with a sawtooth cross-section as shown in the figure, but the direction of the grooves is determined by the directionality plate in order to have magnetic directionality in the desired direction. Either the direction you want it to have (the direction in the plane of the plate that improves the soft magnetic properties), the direction perpendicular to that direction, or both directions.

また、溝の深さは格別に制限されるものではなく、深さ
:1〜5μm程度の非常に細かい溝であっても゛十分な
効果が発揮される。そして、溝の深さが1〜5μm程度
であれば、再結晶焼鈍の後(:該溝を除去することなく
、そのまま通常の電磁鋼板として供することができる上
1例えば約100μm厚程度の高珪素□鉄合金板の場合
でも、再結晶焼鈍後圧工率=109!1程度の冷間圧延
、更に800℃程度の歪取り焼鈍?施すことにより1μ
m以下の表面粗さの方向性高珪素電磁鉄板にすることも
容易である。
Further, the depth of the groove is not particularly limited, and even a very fine groove with a depth of about 1 to 5 μm can exhibit a sufficient effect. If the depth of the grooves is about 1 to 5 μm, after recrystallization annealing (: without removing the grooves, it can be used as a normal electrical steel sheet). □Even in the case of iron alloy plates, after recrystallization annealing, cold rolling with a rolling ratio of about 109!1, and further strain relief annealing at about 800°C, can reduce the thickness to 1μ.
It is also easy to make a directional high silicon electromagnetic iron plate with a surface roughness of m or less.

断面鋸刃状溝の頂角θ又はθ′C第1図参照)は。The apex angle θ or θ'C of the sawtooth cross-sectional groove (see Fig. 1) is.

好ましくは90〔度〕であるほうが良いが、60〜12
0〔度〕程度の角度であれば十分な効果が得られる。そ
して、その角は完全に鋭くなっている必要はなく、丸味
を帯びていても良い。
Preferably it is 90 [degrees], but 60 to 12
A sufficient effect can be obtained with an angle of about 0 degrees. And the corners don't have to be completely sharp, they can be rounded.

更に、溝は高珪素鉄合金板表面の全面シ;設ける必要は
なく、片面だけでも良いし、また片面又は両面の1部だ
けC;設けられていても良い。
Furthermore, the grooves do not need to be provided on the entire surface of the high-silicon iron alloy plate; they may be provided on only one side, or may be provided on only a portion of one or both surfaces.

高珪素鉄合金板表面C;@を形成するには、圧延によっ
て得た合金板表面を研削したり、ロール加工を施しぶり
する方法を採用しても良いが、溶湯超急冷法を用い、溶
湯から直接所定の表面形状を有する板を製造するのが有
利である。
To form the high-silicon iron alloy plate surface C;@, the surface of the alloy plate obtained by rolling may be ground or rolled. It is advantageous to produce a plate with a defined surface shape directly from.

溶湯超急冷法5二よって直接溝付板を得るには。To obtain a directly grooved plate by the molten metal super-quenching method 52.

外6図に示されるように1表面に所望寸法の溝を設けた
冷却体(冷却ロール等)を用いて連続的に溶湯を急冷凝
固せしめ、冷却体表面の溝模様を板表面シ;転写するだ
けで良いが、深さ:1〜20μm程度の非常に細かい溝
を有する高珪素鉄合金板であっても、この方法によれば
簡単に、かつ精度、良<御造することができる。
As shown in Figure 6, the molten metal is continuously rapidly solidified using a cooling body (such as a cooling roll) with grooves of the desired size on one surface, and the groove pattern on the surface of the cooling body is transferred to the plate surface. However, even high-silicon iron alloy plates having very fine grooves with a depth of about 1 to 20 μm can be manufactured easily and with good accuracy using this method.

C)焼鈍温度 焼鈍温度が800℃未満では表面エネルギーによる再結
晶が十分に起らず、一方、1300℃を越える温度で焼
鈍することは工業的(;みて極めて困嬉であることから
、焼鈍温度は800〜1300℃と定めた。
C) Annealing temperature If the annealing temperature is less than 800°C, recrystallization due to surface energy will not occur sufficiently.On the other hand, annealing at a temperature exceeding 1300°C is extremely difficult for industrial purposes. was set at 800 to 1300°C.

なお、焼鈍゛温度i含めた焼鈍条件は、先にも述べたよ
うに、板表面に(110)面を平行に持つ結晶粒が優先
成長するような条件C例えば温度=1100〜1200
℃程度、乾水素雰囲気又は真空度: 10−6Torr
の条件)、或いは板表面C二(100)面を平行に持つ
結晶粒が優先成長するような焼鈍条件(例えば温度: 
1000−1150℃程度、真空度: l Q−”l’
orrの条件)ケ適宜選択すれば良い。
As mentioned earlier, the annealing conditions including the annealing temperature i are such that crystal grains having (110) planes parallel to the plate surface grow preferentially, for example, temperature = 1100 to 1200.
℃ degree, dry hydrogen atmosphere or degree of vacuum: 10-6 Torr
conditions), or annealing conditions (for example, temperature:
About 1000-1150℃, degree of vacuum: l Q-"l'
Conditions for orr) may be selected as appropriate.

欠いで、この発明を、実施例により比較例と対比しなが
ら更に具体的に説明する6 〈実施例〉 実施例 l まず、第1表に示されるような成分組成の高珪素鉄合金
A及びBを用意し、熱間圧延により1端厚の板とした後
、冷間圧延にて0.3鱈厚とした3%珪素鋼板(第1表
のA合金)と、更なる熱間圧延により0.5簡厚とした
696珪素鋼板(第1表のB合金)に、表面研削によっ
て、頂角θ及びθ′が85〜95〔度〕、溝幅が20〜
25μmの断面鋸刃状溝を設け、第1図に示されるよう
な微小溝付板とした。
Without further ado, this invention will be explained in more detail with reference to Examples and in comparison with Comparative Examples. A 3% silicon steel plate (alloy A in Table 1) was prepared, hot-rolled to make one edge thick, and then cold-rolled to 0.3mm thickness (alloy A in Table 1). .5 A slightly thickened 696 silicon steel plate (Alloy B in Table 1) was surface ground to have apex angles θ and θ' of 85 to 95 [degrees] and a groove width of 20 to 20.
A sawtooth groove with a cross section of 25 μm was provided to obtain a microgrooved plate as shown in FIG.

また、比較のため、同じ材料ではあるが表面粗さを0.
3μmとし−た平坦材も用意した。
For comparison, the surface roughness of the same material was set to 0.
A flat material with a thickness of 3 μm was also prepared.

次に、第2表に示すように、軟水素中又は10″″2T
orr  の真空中で、これらに加熱温度:1150℃
、保持時間=4時間の焼鈍を施した。
Next, as shown in Table 2, in soft hydrogen or 10''2T
Heating temperature: 1150℃ in a vacuum of orr
, annealing was performed for a holding time of 4 hours.

このようにして得られた焼鈍材について、溝方向及び溝
に直角方向の、磁化カニ100A/mのときの磁束密度
を測足するとともに、X線極点因による集合組織解析を
行った。
For the annealed material thus obtained, the magnetic flux density at a magnetization speed of 100 A/m in the groove direction and in the direction perpendicular to the grooves was measured, and texture analysis was performed using the X-ray pole factor.

これらの結果も、第2増に併せて示した。These results are also shown together with the second increase.

第2表に示される結果からも、軟水素中では板表面に(
110)面を平行書二持つ結晶粒が優先成長するので、
A、B両合金とも表面平坦材の場合は(ito)面内無
方向組織となっているのに対して5表面溝付材の場合は
(100)<001>集合組織となり、溝方向及び溝ξ
二直角な方向の磁束密度は表面平坦材に比べ0.33〜
0.48 T高くなっていることがわかる。
From the results shown in Table 2, it is clear that (
110) Since grains with two parallel planes grow preferentially,
For both alloys A and B, the surface flat material has an (ito) in-plane non-directional texture, while the 5 surface grooved material has a (100) <001> texture, with no direction in the groove direction. ξ
The magnetic flux density in two orthogonal directions is 0.33~ compared to a flat surface material.
It can be seen that the height is 0.48 T higher.

一方、 10−”TOrrの真空中では板表面に(10
0)面を平行に持つ結晶粒が優先成長するため、表面平
坦材の場合には(100)面内無方向組織となるが、表
面溝付材の場合は(1107<001>集合組織となっ
て、溝方向の磁束密度は表面平坦材に比べ0.12 T
高くなっていることがわかる。
On the other hand, in a vacuum of 10-” TOrr, (10
0) Because crystal grains with parallel planes grow preferentially, a material with a flat surface has a (100) in-plane non-oriented texture, but a material with a surface groove has a (1107<001> texture). Therefore, the magnetic flux density in the groove direction is 0.12 T compared to the flat surface material.
You can see that it's getting higher.

このように1本発明の方法によると、従来のように厳密
な熱間圧延条件や冷間圧延条件、更には微量元素量の調
整を行うことなしに、方向性珪素鋼板を安定して製造し
得ることが明らかである。
As described above, according to the method of the present invention, grain-oriented silicon steel sheets can be stably produced without requiring strict hot rolling conditions, cold rolling conditions, or adjusting the amount of trace elements as in the past. It is clear what you get.

実施例 2 まず、第3表に示されるような成分組成の高珪素鉄合金
Cの溶湯を用意し、双ロール方式溶湯急冷法(表面に、
頂角=85〜95〔度〕、溝幅:5μmの、第6図に示
されるような凹凸を持った直径=100簡のロールを使
用)にて、厚さ:約100μm、幅:約1工の表面溝付
薄帯な直接製造した。
Example 2 First, a molten metal of high-silicon iron alloy C having the composition shown in Table 3 was prepared, and a twin-roll molten metal quenching method (on the surface,
Vertical angle = 85 to 95 [degrees], groove width: 5 μm, diameter = 100 rolls with unevenness as shown in Fig. 6), thickness: approximately 100 μm, width: approximately 1 The surface grooved ribbon was directly manufactured.

なお、得られた溝付薄帯は、表面に冷却ロールとほぼ同
じ凹凸が転写されていた。
Note that the obtained grooved ribbon had almost the same irregularities as the cooling roll transferred onto its surface.

次に、この薄帯な露点ニー45℃の水素中又は10−2
Torrの真空中にて、1150℃で4時間焼鈍したと
ころ、各々第7図及び第8図で示されるX線(200)
極点図で示されるようにs (100)<001>或い
は(] 10)<001>集合組織となっていることが
確認された。
Next, this thin ribbon was placed in hydrogen with a dew point of 45°C or 10-2
When annealed at 1150°C for 4 hours in a Torr vacuum, the X-rays (200) shown in Figures 7 and 8, respectively.
As shown in the pole figures, it was confirmed that the texture was s(100)<001> or (]10)<001>.

このようCニ一本発明の方法では溶湯超急冷法を有効に
利用することができ、方向性高珪素鉄合金板を工業的規
模で、安定してi1得ることが明らかである。
As described above, it is clear that in the method of the present invention, the molten metal super-quenching method can be effectively utilized, and a grain-oriented high-silicon iron alloy plate can be stably obtained on an industrial scale.

参考例 まず、前記第1表に示されるような成分組成の高珪素鉄
合金Bの溶湯を用意し%第6図に示される如き1表面に
断面鋸刃状凹凸を設けたロール(直径:100m)を有
する双ロール方式溶湯超急冷装置で、厚さ:約iooμ
m、幅:約ICl11の表面溝付薄帯な直接製造した。
Reference Example First, a molten metal of high-silicon iron alloy B having the composition shown in Table 1 was prepared, and a roll (diameter: 100 m ) with a twin roll type molten metal super-quenching device, thickness: approx. iooμ
A surface-grooved ribbon with a width of approximately ICl11 was produced directly.

得られた薄帯表面及び断面を光学顕微鏡にて観察すると
、前記冷却ロール表面の形状と同じ凹凸が薄帯表面に転
写されていた。
When the surface and cross section of the obtained ribbon were observed under an optical microscope, it was found that the same irregularities as the surface of the cooling roll were transferred to the surface of the ribbon.

このようにして、断面鋸刃状溝の頂角θを株々に変えた
薄帯を数種類作成した。
In this way, several types of thin strips were created in which the apex angle θ of the sawtooth cross-sectional grooves was varied.

次に、これらの薄帯を露点ニー45℃の水素中にて、1
200℃で4時間焼鈍した後、その薄帯長手方向C溝の
方向)の磁化特性を調査した。
Next, these thin strips were soaked in hydrogen with a dew point of 45°C for 1 hour.
After annealing at 200° C. for 4 hours, the magnetization characteristics in the longitudinal direction of the ribbon (direction of the C groove) were investigated.

得られた結果を、第9因に示す。The results obtained are shown in factor 9.

第9図は、試料の長手方向に磁化カニ100A/mの磁
場ケ印加した際の、前記頂角θと磁束密度の関係(磁束
密度の頂角依存性)V示すグラフであるが、第9図から
は、出来れば断面鋸刃状溝の頂角θは60〜12’0[
度〕、特に80〜100〔度〕に定めるのが良いことが
窺える。
FIG. 9 is a graph showing the relationship between the apex angle θ and magnetic flux density (vertex angle dependence of magnetic flux density) when a magnetic field of 100 A/m is applied in the longitudinal direction of the sample. From the figure, if possible, the apex angle θ of the cross-sectional sawtooth groove is 60 to 12'0[
It can be seen that it is best to set the temperature at 80 to 100 degrees.

上述のように、焼鈍前の昼珪素鉄合金板表面の凹凸溝は
、この発明の方法において重要な役割りを果た丁もので
あるが、これまで述べた以外にも。
As mentioned above, the uneven grooves on the surface of the silicon-iron alloy plate before annealing play an important role in the method of the present invention, but in addition to those described above.

前記溝は、板をコイル状若しくは積層状にして焼鈍する
際の、各層間の焼付き軽減作用や、焼鈍雰囲気を眉間に
侵入しや丁くし、表面エネルギーを利用した焼鈍に好結
果を与える作用をも有しているのである。
The grooves have a function of reducing seizure between each layer when the plate is annealed in a coiled or laminated form, and also have a function of preventing the annealing atmosphere from penetrating between the eyebrows and providing good results in annealing using surface energy. It also has.

〈総括的効果〉 以1説明したように、この発明によれば、材料の成分組
成や圧延条件等に影響されることなく、磁気特性の優れ
た高珪素電磁鉄板を安定して製造できることはもちろん
、製造される高珪素型磁鉄  −板の容易磁化方向の設
定を自在に行うことができるなど、工業上極めて有用な
効果がもたらされるのである。
<Overall Effects> As explained above, according to the present invention, it is possible to stably manufacture high-silicon electromagnetic iron sheets with excellent magnetic properties without being affected by the material composition, rolling conditions, etc. This brings about extremely useful industrial effects, such as being able to freely set the direction of easy magnetization of the produced high-silicon magnetic iron plate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、断面鋸刃状の溝を上下面に形成した板材の概
略斜視図、 第2図は、単ロール方式超急冷法にて溶湯から薄板材を
製造している様子を模式化した概略図、第3図は、双ロ
ール方式超急冷法にて薄板材を製造している様子を模式
化した概略図。 第4図は、上下面に断面鋸刃状溝を設けた高珪素鉄合金
板に優先成長させる、板表面に平行な(110)面を持
つ結晶粒の状態!模式化した概略図。 第51図は、上下面に断面鋸刃状溝を設けた高珪素鉄合
金板に優先成長させる、板表面に平行な(100)面を
持つ結晶粒の状態を模式化した概略図、 j146図は、表面に断面鋸刃状凹凸を設けた溶湯超急
冷用冷却ロールの櫨略斜視図、 IJ!7図は、実施例2(二おいて軟水素中焼鈍した後
の高珪素鉄合金板の(200)極点図。 第8図は、実施例2において10−”l’orr真空中
焼鈍した後の高珪素鉄合金板の(200)極点図。 第9図は、焼鈍後磁気特性の、高珪素鉄合金板表面ζ=
影形成た断面鋸刃状溝の頂角Cθ)依存性を示すグラフ
である。 回置において、 1・・・溶湯容器、  2・・・溶湯噴出ノズル。 3・・・冷却ロール、  4・・・帯状薄板製品。 出願人  住友金属工業株式会社 代理人  富 1)和 夫  ほか2名′    。 第4図 年5図 、   ゛  華6図
Figure 1 is a schematic perspective view of a plate material with grooves with a sawtooth cross-section formed on the upper and lower surfaces. Figure 2 is a schematic diagram of manufacturing a thin plate material from molten metal using the single-roll ultra-quenching method. Schematic diagram, FIG. 3 is a schematic diagram illustrating how a thin plate material is manufactured by the twin-roll ultra-quenching method. Figure 4 shows the state of crystal grains with (110) planes parallel to the plate surface, which are preferentially grown on a high-silicon iron alloy plate with saw-tooth grooves on the top and bottom surfaces! Schematic diagram. Figure 51 is a schematic diagram illustrating the state of crystal grains with (100) planes parallel to the plate surface, which are preferentially grown in a high-silicon iron alloy plate with saw-tooth grooves on the upper and lower surfaces, Figure j146. IJ! is a schematic perspective view of a cooling roll for ultra-quenching molten metal with a sawtooth-like unevenness on its surface. Figure 7 shows the (200) pole figure of the high silicon iron alloy plate after annealing in soft hydrogen in Example 2. Figure 8 shows the (200) pole figure after annealing in a 10-"l'orr vacuum in Example 2. (200) pole figure of the high silicon iron alloy plate. Figure 9 shows the magnetic properties of the high silicon iron alloy plate surface ζ= after annealing.
3 is a graph showing the dependence of a shadow-formed cross-sectional sawtooth groove on the apex angle Cθ). In rotation, 1... molten metal container, 2... molten metal spouting nozzle. 3... Cooling roll, 4... Strip-shaped thin plate product. Applicant Sumitomo Metal Industries Co., Ltd. Agent Tomi 1) Kazuo and 2 others'. Figure 4 Figure 5, ゛ Flower 6 Figure

Claims (1)

【特許請求の範囲】[Claims] 2〜8重量%の珪素を含有する高珪素鉄合金板であつて
、しかもその上下面のうちの少なくとも一部に、希望す
る容易磁化方向、又はそれに垂直な方向、若しくはその
両方向に沿つた断面鋸刃状の溝を有する板材を用意し、
これに800〜1300℃の温度での焼鈍を施すことを
特徴とする、方向性高珪素電磁鉄板の製造方法。
A high-silicon iron alloy plate containing 2 to 8% by weight of silicon, and in which at least a portion of the upper and lower surfaces thereof has a cross section along a desired easy magnetization direction, a direction perpendicular thereto, or both directions. Prepare a plate material with sawtooth grooves,
A method for producing a grain-oriented high-silicon electromagnetic iron plate, which comprises annealing it at a temperature of 800 to 1300°C.
JP59213196A 1984-10-11 1984-10-11 Manufacture of grain oriented high silicon electrical iron sheet Pending JPS6191331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59213196A JPS6191331A (en) 1984-10-11 1984-10-11 Manufacture of grain oriented high silicon electrical iron sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59213196A JPS6191331A (en) 1984-10-11 1984-10-11 Manufacture of grain oriented high silicon electrical iron sheet

Publications (1)

Publication Number Publication Date
JPS6191331A true JPS6191331A (en) 1986-05-09

Family

ID=16635124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59213196A Pending JPS6191331A (en) 1984-10-11 1984-10-11 Manufacture of grain oriented high silicon electrical iron sheet

Country Status (1)

Country Link
JP (1) JPS6191331A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100414461B1 (en) * 2000-05-30 2004-01-07 세이코 엡슨 가부시키가이샤 Cooling roll, ribbon-shaped magnetic materials, magnetic powders and bonded magnets

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100414461B1 (en) * 2000-05-30 2004-01-07 세이코 엡슨 가부시키가이샤 Cooling roll, ribbon-shaped magnetic materials, magnetic powders and bonded magnets

Similar Documents

Publication Publication Date Title
KR850000596B1 (en) Iron-boron-silicon ternary armorphous alloys
JP2535963B2 (en) Silicon steel sheet having excellent magnetic properties and method for producing the same
KR930005897B1 (en) Very thin electrical steel strip having low core loss and high magnetic flux density and a process for producing the same
JPH0665724B2 (en) Manufacturing method of electrical steel sheet with excellent magnetic properties
JP2021105212A (en) Soft magnetic alloy, soft magnetic alloy ribbon, method of manufacturing the same, magnetic core, and component
JPS6191331A (en) Manufacture of grain oriented high silicon electrical iron sheet
JP2001303261A (en) Low core loss, grain-oriented silicon steel sheet having tension-applied anisotropic film
JPH02209455A (en) Silicon steel sheet having excellent magnetic properties
JPH0742559B2 (en) Amorphous alloy ribbon for magnetic core with excellent space factor and method for producing the same
US3124491A (en) Heavy gauge double oriented magnetic sheet material
JP3251899B2 (en) Wear-resistant high permeability alloy and magnetic recording / reproducing head
KR101066584B1 (en) Method for manufacturing grain oriented and non-oriented electrical steel sheet using laser and control method of texture using laser
JPH04224624A (en) Manufacture of silicon steel sheet excellent in magnetic property
JP3504283B2 (en) Manufacturing method of grain-oriented electrical steel sheet with extremely low iron loss
JPH0717951B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JPS6372824A (en) Rolling method for improving magnetic characteristic of rapidly cooled foil of high silicon steel
JPH0733549B2 (en) Method for manufacturing bidirectional silicon steel sheet
JPH02274845A (en) Semiprocessed silicon steel sheet
JPS6256203B2 (en)
JPS62270748A (en) High-silicon iron sheet excellent in soft-magnetic property
JPS63109114A (en) Manufacture of fe-sn soft-magnetic sheet metal
JPS61246318A (en) Improvement of surface property and magnetic characteristic of thin strip of amorphous magnetic alloy
JPH0737651B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JPH0310699B2 (en)
JPS6191330A (en) Manufacture of nonoriented electrical iron sheet in plane