JPS6191066A - Manufacture of silicon nitride powder added with oxide of rare earth element on surface - Google Patents

Manufacture of silicon nitride powder added with oxide of rare earth element on surface

Info

Publication number
JPS6191066A
JPS6191066A JP59211495A JP21149584A JPS6191066A JP S6191066 A JPS6191066 A JP S6191066A JP 59211495 A JP59211495 A JP 59211495A JP 21149584 A JP21149584 A JP 21149584A JP S6191066 A JPS6191066 A JP S6191066A
Authority
JP
Japan
Prior art keywords
silicon nitride
hydroxide
rare earth
oxide
gel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59211495A
Other languages
Japanese (ja)
Inventor
洋 黒川
金田 朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP59211495A priority Critical patent/JPS6191066A/en
Publication of JPS6191066A publication Critical patent/JPS6191066A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は希土類元素の酸化物または、希土類元素c13
よびアルミニウムそれぞれの酸化物が44名した窒1ヒ
クイ索粉体の製法に関し、特に焼結体製造用原料として
適した窒化ケイ素の製法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to rare earth element oxides or rare earth element c13
The present invention relates to a method for producing nitride powder containing 44 oxides of aluminum and 44 oxides, and particularly relates to a method for producing silicon nitride suitable as a raw material for producing a sintered body.

従来の技術 窒化ケイ素は、高温で高い強度を持ち、耐熱衝撃性が高
く、耐食性が高いなどの諸特性を持つために、高強度耐
熱部品に応=lIJされ始めているが、共有性の強い物
質で、窒素の移動速度が非常に低く、単独組成で理論密
度を持つ緻密な焼結体を作成することは困難である。
Conventional technologySilicon nitride has various properties such as high strength at high temperatures, high thermal shock resistance, and high corrosion resistance, so it is beginning to be used for high-strength heat-resistant parts. However, the migration speed of nitrogen is extremely low, making it difficult to create a dense sintered body with a theoretical density using a single composition.

この難点を緩和するために、従来から酸化マグネシウム
、酸化ベリリウム、酸化アルミニウム、希土類元素の酸
化物等を添加し、焼 、結時に、窒化ケイ素粒子のまわ
りに、添加物と窒化ケイ素が随伴り゛るシリカとの反応
による高温融体を形成させ、この融体を経由した窒化ケ
イ素の移動を介して緻密化を進行さUる焼結法がとられ
ている。
In order to alleviate this difficulty, magnesium oxide, beryllium oxide, aluminum oxide, oxides of rare earth elements, etc. have traditionally been added, and during sintering, the additives and silicon nitride are entrained around the silicon nitride particles. A sintering method is used in which silicon nitride reacts with silica to form a high-temperature melt, and densification progresses through the movement of silicon nitride through this melt.

発明が解決しようとする問題点 従来、上記添加物の添加り法として、添加物粉と窒化ケ
イ素粉をボールミル等で1械的に混合する方法がとられ
てき!、−が、添加物粉及び窒化ケイ素粉が凝集してい
ること、添加物粉の粒度が窒化ケイ素粉の粒度ど同桿度
であるために、焼結時に窒化/フイ素粒子のまわりに添
加剤と窒化ケイ素に随伴するシリカにJ、る+、+i+
体を均 に牛成さUる様な粉体の均一なilj合(9未
知かしく、窒化ケイ糸焼結用157ミ料粉どして、添加
物を表面に11着した窒化クイ素粉は製造されていなか
った。
Problems to be Solved by the Invention Conventionally, the method of adding the above-mentioned additives has been to mechanically mix the additive powder and silicon nitride powder using a ball mill or the like. , - is that the additive powder and silicon nitride powder are agglomerated, and the particle size of the additive powder is the same as the particle size of the silicon nitride powder, so it is added around the nitride/fluorine particles during sintering. J, Ru+, +i+ to the silica accompanying the agent and silicon nitride
A uniform mixture of powders with a uniform body shape (9 unknown, silicon nitride powder with additives on the surface of 157 millimeter powder for sintering silicon nitride yarn) It wasn't manufactured.

問題点を解決覆るための手段 本発明者等は、表面に添加剤を付着した窒化//イ、<
<粉体について鋭意検討を重ねた結宋、希、に類元木及
びアルミニウムのゲル状水酸化物が、窒化ケイ素ね体に
(4’ nする現象を発見し、この希土類元素またはそ
れとアルミニウムのゲル状水酸化物を付着させた窒化ケ
イ素粉体を焙焼することにより希土類元素またはそれと
アルミニウムの酸化物を付17 L/た窒化クイ詣粉体
が1rJられることを見出し、本発明を完成した。
Means for solving and overcoming the problems The present inventors have developed a nitrided material with additives attached to the surface.
<The Sung Dynasty, who conducted extensive studies on powder, discovered the phenomenon that gel-like hydroxides of rare earth elements and aluminum form on silicon nitride bodies, and discovered that the rare earth element or the combination of it and aluminum. The inventors discovered that by roasting silicon nitride powder to which gelled hydroxide was attached, 17 L/1 rJ of nitride powder with rare earth elements or oxides of rare earth elements and aluminum added thereto could be obtained, and the present invention was completed. .

すなわち、本発明の構成は、希土類元素のゲル状水酸化
物、あるいは希土類元スiの水酸化物と水酸化アルミニ
ラ11との混合ゲル状水酸化物と、窒化ケイ素粉とを混
合し、窒化ケイ素粉の表面にゲル状水酸化物を付着させ
、ついぐ、該混合物を蛤力2することにJ、つ(、上記
元素の酸化物、混合lIり化物あるいは複合酸化物が表
面に何首しlζ窒化ケイ素粉体を製造する方法である。
That is, the structure of the present invention is to mix a gel hydroxide of a rare earth element or a mixed gel hydroxide of a hydroxide of a rare earth element and aluminum hydroxide 11 with silicon nitride powder, A gel-like hydroxide is attached to the surface of silicon powder, and then the mixture is heated. This is a method for producing ζ silicon nitride powder.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明に使用する窒化ケイ木粉体は特定の物に限られず
、使用目的に応じて粒度、α化率等を選択して用いれば
よく、どのような粉体を用いても本発明の効果に変りは
無い。窒化ケイ素焼結体の実用目的が?!l温、高強度
材料であるために本発明の実施も上記目的に通常使用さ
れている平均粒径が0.5μm〜5μm程度の原料窒化
ケイ素粉を用いることが適当である。
The silicon nitride powder used in the present invention is not limited to a specific one, and the particle size, gelatinization rate, etc. may be selected depending on the purpose of use, and the effects of the present invention can be achieved no matter what kind of powder is used. There is no change. What is the practical purpose of silicon nitride sintered bodies? ! Since the silicon nitride powder is a material with high temperature and high strength, it is appropriate to use silicon nitride powder as a raw material having an average particle size of about 0.5 μm to 5 μm, which is commonly used for the above purpose.

本発明でいう希土類元素とはランタン、セリウ11、プ
ラヒオジム、ネオジム、サマリウム、ユーロピウム、ガ
ドリニウム、i−ルピウム、イツトリウム、ツリウム、
イッテルビウム、ルテブーウム、エルビウム、ホルミウ
ム、ディスプロシウムのことである。
The rare earth elements referred to in the present invention include lanthanum, cerium-11, plagiodymium, neodymium, samarium, europium, gadolinium, i-lupium, yttrium, thulium,
These are ytterbium, luteboum, erbium, holmium, and dysprosium.

本発明に使用りる希1¥nまlζはアルミニウムのゲル
状水酸化物とは、希を類元素またはアルミニウムの水溶
f/I: 1B、例えば、塩化物、1’l M J7a
 ”!r ’/)鉱酸Ja!、酢1’l!I r=、1
’ M 塩”9 (1)イN1112塩/にどの水溶液
と、アルカリ、例えばjIン[ニア7 、 、’、T性
ソーダ、苛性カリ等の水溶液を・  反応さUて1!1
られる′1−透明の非晶7′1物Cあり、水中1こ分散
した状態ではノリ状を〒するもの(′ある。
The gel-like hydroxide of aluminum used in the present invention is a rare element or an aqueous solution of aluminum f/I: 1B, for example, chloride, 1'l M J7a
``!r '/) Mineral acid Ja!, Vinegar 1'l!I r=, 1
'M salt' 9 (1) React an aqueous solution of N1112 salt with an alkali, such as aqueous solution of sodium chloride, caustic potash, etc. 1!1
There is a '1-transparent amorphous 7'1 substance C, which forms a paste-like form when dispersed in water ('1').

ずη土カ′1ル48.シたはりアルミニウムの塩の水溶
、Ilと)アルカリの水溶液との反応IJ 、温1σ、
濃度、1)11等を変化さUることで生成1力の種類が
変わるものであり、本発明に使用づるゲル状水酸化物を
瀉11(的に作るツノ法として【よ、反応温度を好まし
くは40℃以下に調整し、希」−類元素またはアルミニ
ウムの淵麿を0.2モル/ぷ以下に調整し、p l−1
を好ましく(よ8.5以上に保持して、反応させること
により製;:5される。またアルカリの必要量は、希、
LV43′L索またはアルミニウムにえ1しく、3当量
以上であることが必要である。
48. Reaction of aqueous solution of aluminum salt, Il, with alkali aqueous solution IJ, temperature 1σ,
By changing the concentration, 1) etc., the type of force produced changes. Preferably, the temperature is adjusted to 40° C. or lower, and the amount of rare elements or aluminum is adjusted to 0.2 mol/P or less, p l-1
is preferably maintained at 8.5 or above and reacted. The required amount of alkali is diluted,
It is preferable to LV43'L cable or aluminum, and it is necessary to have 3 equivalents or more.

もらろん、本発明に使用ザる希土jf1元索及びアルミ
ニウムのゲル状水酸化物は、純粋にゲル状水酸化物のみ
から(j4成されているbのでなくとも、一部水酸化物
あるいは塩JJ性塩が混っているものも使用することが
できる。
Of course, the gelled hydroxide of rare earth jf1 and aluminum used in the present invention is made purely from gelled hydroxide (although it may not be made of gelled hydroxide, it may also contain some hydroxide). Alternatively, it is also possible to use a mixture containing JJ salt.

上記の方法で作られICゲル状水酸化1カの一例として
、イツトリウムのゲル状水酸化物のX線回折パターンを
第1図に示すが、非晶質特有のブロードな回折パターン
を示し、第2図に示した結晶質水M化イツトリウムのX
粍!回折チャートが示すシセープな回折パターンと明ら
かに賃なる。またイツトリウムのゲル状水酸化物を常温
1空乾燥したi粉の赤外吸収スペクトルを見ると、第3
図に示づように、水酸すに起因する吸収ピークがブロー
ドなものであり、第4図に示した結晶71水酸化イツト
リウムの赤外吸収スペクトルのように明1i’lfh水
72 B;tに起因りる吸収ピークをbつものと11月
らかに胃なっている。さらにイツトリウムのゲル状水酸
化物を水洗した後、酸に溶解して義溶液の成分を分析し
たどころ、アルカリ成分は無く、また1畠料として用い
たイットリ・り11塩の酸残基も存在しないことから、
イツトリウムとflit 、Lと水から措成されている
ことが判る。さらに、イツトリウムのゲル状水酸化物は
、水中分散状態て゛半透明であるにもかかわらず、20
000程度の01直で遠心沈降が可能C−あり、G3の
ガンスフイルターで水か4うd1位別できる。これらの
ことから判断して、水酸化イツトリウム分子が多数縮重
合した、ポリマーであることが予想される。上記の性質
はイソ1−リウム以外の第1類元県及びアルミニウムの
ゲル状水酸化物さらに、希土類元素とアルミニウムから
jハばれた2種汀1」ス[の金属イオンを有するゲル状
水酸化物に6共通している。
As an example of IC gel hydroxide produced by the above method, the X-ray diffraction pattern of yttrium gel hydroxide is shown in Figure 1. X of crystalline water yttrium hydride shown in Figure 2
粍! This clearly differs from the regular diffraction pattern shown in the diffraction chart. In addition, when looking at the infrared absorption spectrum of powder i, which is made by air-drying yttrium gel hydroxide at room temperature, the third
As shown in the figure, the absorption peak caused by hydroxide is broad, and like the infrared absorption spectrum of crystal 71 yttrium hydroxide shown in Figure 4, the absorption peak is broad. The absorption peak caused by the absorption peak in November has become more pronounced in the stomach. Furthermore, after washing the gelled hydroxide of yttrium with water, we analyzed the components of the solution by dissolving it in acid, and found that there was no alkaline component, and there were also acid residues of the yttrium salt used as a feedstock. Because I don't do it,
It can be seen that it is composed of yttrium, flit, L and water. Furthermore, although the gel-like hydroxide of yttrium is translucent when dispersed in water,
Centrifugal sedimentation is possible with 01 straight of about 000 C-, and water can be separated by G3 Gance filter. Judging from these facts, it is predicted that it is a polymer in which many yttrium hydroxide molecules are condensed and polymerized. The above properties apply to gel-like hydroxides of type 1 metals other than isolium and aluminum, as well as gel-like hydroxides containing rare earth elements and two types of metal ions derived from aluminum. Things have 6 things in common.

本発明でいう希り煩)j木、L /こLLそれどノZル
ミニウムの酸化物を付着しIζ窒化ケイ素粉体とは、希
土類元素またはそれとアルミニラl\の微細な酸化物を
均一に表面に付着した窒化ケイ素粉体を意味し、付着し
た酸化物は、超音波分離、振どう分N1、遠心分離等の
14械的分離によっては容易に剥離しないものであるこ
とは実施例からも明らかであり、F2酸化物と窒化ケイ
素とのliなる混合物と51i!なることは明らかであ
る。
In the present invention, silicon nitride powder is a material that has a rare earth element or a fine oxide of it and aluminum uniformly deposited on its surface. It is clear from the examples that the attached oxide is not easily peeled off by mechanical separation such as ultrasonic separation, shaking N1, centrifugation, etc. , a mixture of F2 oxide and silicon nitride li and 51i! It is clear that this will happen.

酸化物を付着した窒化11イ累粉体の例として、第5図
にイットリ?を5重量%付着した窒化ケイ素粉体の電子
線による写真を承りが、第6図に示した原料窒化ケイ素
υ)体の電子線による写真と比較すると、粒子径、粒子
形状にほとんどちがいがない。
As an example of nitrided powder with oxide attached, Fig. When comparing the electron beam photograph of silicon nitride powder with 5% by weight adhering to the electron beam photograph of the raw material silicon nitride υ) shown in Figure 6, there is almost no difference in particle size and particle shape. .

すなわち、イツトリウムのゲル状水酸化物を甲独に焙焼
しく1!Iられる酸化イツトリウムに特徴的な1粒径が
0.1μ以下の極めて柵かい一次粒子が凝集して出来る
球状の凝集粒子が観察されでいないわ4−1である。こ
の様に電子顕微鏡による観察では、窒化ケイ素粉の表面
に付着している酸化イツトリウム粒を見出ばないが、該
粉体を塩酸、硝酸などで処理し、処理液を測線し、得ら
れる固形分を焙焼りると、所定)11の酸化クツ1〜リ
ウムが回収されることから、酸化−rツhリウムが存在
りることは明らかである。
In other words, the gel-like hydroxide of yttrium is roasted to perfection! No spherical agglomerated particles, which are formed by agglomeration of very round primary particles with a particle size of 0.1 μm or less, which is characteristic of yttrium oxide, were observed (4-1). In this way, when observed using an electron microscope, no yttrium oxide particles were found adhering to the surface of silicon nitride powder, but when the powder was treated with hydrochloric acid, nitric acid, etc., and the treated solution was measured, the resulting solid It is clear that -rthium oxide is present because when the oxide is roasted, 1 to 1 to 10% of oxide (predetermined) is recovered.

以上のりt実より本発明の希土類元素またはそれとノフ
ルミニウムの酸化物を表面に付着し7j窒化クイ索粉の
構造は窒化ケイ素rlI)の表面に、該窒化ケイ木粒の
大きさに比べ数段小さい、すなわら、−次粒子の凝集麿
合いの少ない希土類元素またはそれとアルミニウムの酸
化物粒が付着している状fatであるとJIE定される
。特に本発明で使用りる希土類元素またはアルミニウム
のゲル状水酸化物は結晶質の微粒と異なり、(=Jる力
が強く、窒化ケイ、(tわ)と混合された場合、(の表
面に付rfする。このことは、実施例に示されるように
、上記ゲル状水酸化物のスラリー甲独の沈降速度と、該
ゲル状水酸化物のスラリー中に窒化ケイ素を分を加え混
合したスラリーの沈jff l Iiとを比べると、俊
者の方が明らかに人であること、および沈降した混合ス
ラリーのどの部分を取り出して分析しても、希土類元素
またはアルミニウムと窒化ケイ素との比率が同じである
事からも判る。また、上記ゲル状水酸化物は結晶質物質
と異なり、形状が不定であるため、被付着体である窒化
ケイ系表面の凹凸にイつて11着することが可能であり
、このために、該付着物を焙焼して生成りる酸化物は、
窒化ケイ素粉と単に接触している141合ど異なり、い
わゆるアンカー効果を有し強固に(’J 83している
状態をとるものと考えられる。
From the above results, the structure of the rare earth element or the oxide of the rare earth element and nofluminium of the present invention attached to the surface of the silicon nitride powder is several steps larger than the size of the silicon nitride grains. It is determined by JIE that the rare earth element is small, that is, it is a rare earth element with little agglomeration of primary particles, or fat, in which oxide particles of aluminum and the rare earth element are attached. In particular, the rare earth element or aluminum gel hydroxide used in the present invention differs from crystalline fine particles in that it has a strong As shown in the examples, this is based on the sedimentation rate of the gelled hydroxide slurry and the slurry in which silicon nitride is mixed into the gelled hydroxide slurry. Comparing the precipitated jff l Ii, Toshija is clearly more human, and no matter which part of the precipitated mixed slurry is taken out and analyzed, the ratio of rare earth elements or aluminum to silicon nitride is the same. Furthermore, unlike crystalline substances, the gel-like hydroxide has an indeterminate shape, so it can adhere to the irregularities of the silicon nitride-based surface of the adherend. Therefore, the oxides produced by roasting the deposits are
Unlike 141 which is simply in contact with silicon nitride powder, it is thought that it has a so-called anchor effect and takes a state of being strongly ('J83).

また、本発明で言う希土類シ1.索のhり化物d’+る
いはそれと酸化アルミニウムとの混合物とは、X腺回1
1iに、J、る解析C−結晶?1と(よ見4jされイ1
い、いわゆるJl−晶X′1酸化物をも含む。
In addition, the rare earth elements referred to in the present invention 1. The hydride d'+ or a mixture of it and aluminum oxide is the
1i, J, Ru analysis C-crystal? 1 and (see 4j and i 1
It also includes the so-called Jl-crystal X'1 oxide.

本庁用(” +”i ’)、希」汀1−i’l: 、+
rとアルミニウムとの112合酸化物と(よ、1浅箱ト
ズl′1元累と7ノルミーウムとのif1合ゲル状水酸
化1勿を焙焼して酸化1カに11ろ過程て゛生成が予想
される。固溶体、相聞化合物、あるい(ま刀−ンツト構
造物などのことCLbす、甲紳な酸化物どうしの11〜
合物どは種類の胃なるしののことである。
For the central office ("+"i'), rare"汀1-i'l: ,+
A 112 compound oxide of r and aluminum (1 shallow box) 1 compound of 1 element and 7 normium is produced by roasting 1 gel-like hydroxide and 11 filtration process to 1 oxidation. It is expected that solid solutions, intercompounds, or (component structures) CLb, 11 ~
A compound is a kind of stomach.

本発明にJ3いて、希土類元素またはそれとアルミニウ
ムの酸化物を付着しlこ窒化ケイ素粉体を製造JるIこ
めには、希土類元素またはアルミニウムのゲル状水酸化
物の付着性を利用する。
In the present invention, in order to produce silicon nitride powder by adhering rare earth elements or oxides of aluminum and rare earth elements, the adhesion properties of gelled hydroxides of rare earth elements or aluminum are utilized.

つまり、希土類元素またはアルミニウムのゲル状水酸1
ヒ物ルよ、通常の有機高分子、特に水酸基を多数有する
ポバールなどと同様に何首性が畠く、ゲル状水酸化物を
懸濁させた水中に窒化ケイ素粉を加えて攪拌を行なった
後放首すると、該溶液中に自由に分散した状態のゲル状
水酸化物は無くなり、窒化クイ木粉の表面に(=J首す
る。ぞの結宋、該溶液の]二ずみ液は透明にものとなる
。この場合の固形分沈降体積は、窒1ヒケイ、東扮のみ
のスラリーが示す沈降体積どほぼ同じてあり、もらろ/
υ、 。
In other words, rare earth elements or aluminum gelled hydroxyl 1
Hello, similar to ordinary organic polymers, especially poval which has many hydroxyl groups, silicon nitride powder was added to water in which gel-like hydroxide was suspended and stirred. When the head is released afterwards, the gel-like hydroxide that is freely dispersed in the solution disappears, and the solution becomes transparent on the surface of the nitrided wood flour. In this case, the solid content sedimentation volume is almost the same as the sedimentation volume shown by Nitrogen 1 Hikei and Azuma only slurries, and Moraro/
υ, .

ゲル状水酸化物が承り沈降体(1″(J、すし小さい。Gelled hydroxide is deposited and the sediment is small (1" (J).

この様にして作成したゲル状水酸化物を(=J着した窒
化ケイ素を焙焼することによりゲル状水酸化物は熱分解
して酸化物になり、1119化物が表面に付着した窒化
ケイ素粉体がi!tられる。
By roasting the silicon nitride prepared in this way, the gelled hydroxide thermally decomposes into oxides, and silicon nitride powder with 1119 oxides attached to the surface. The body is i!t.

この製造方法をさらに詳しく以下にのべる。This manufacturing method will be described in more detail below.

窒化ケイ素粉体表面に、希土類元素またはそれとアルミ
ニウムのゲル状水酸化物を(;1着させる方法には、所
定量のゲル状水酸化物を先に用意して、これど窒化ケイ
素粉体とを混合する方法、アルカリの水溶液中に窒化ケ
イ素粉体を懸濁さぜたのら、該懸濁液中に所定量の希土
類元素またはそれとアルミニウムの水溶液を添加し、ゲ
ル状水酸化物を析出させると同時に窒化ケイ素粉表面に
付着させる方法、あるいは、希−Fカ〕元本よIこはそ
れとアルミニ・°ツムの水溶液中に、窒化ケイ素粉体を
懸ン局さt!(おいて、該水溶液中にアルカリの水溶、
)りを加え、ゲル状水酸化物を析出させると同11,1
に窒化/フイ累粉の表面に付6さUる方法などがある。
To apply gel hydroxide of a rare earth element or rare earth element and aluminum to the surface of silicon nitride powder, first prepare a predetermined amount of gel hydroxide, and then apply it to the silicon nitride powder. After suspending silicon nitride powder in an aqueous alkali solution, a predetermined amount of a rare earth element or an aqueous solution of it and aluminum is added to the suspension to precipitate a gelled hydroxide. At the same time, silicon nitride powder can be attached to the surface of silicon nitride powder, or silicon nitride powder can be suspended in an aqueous solution of aluminum and aluminum. Aqueous solution of alkali in aqueous solution,
) to precipitate gel-like hydroxide, the same 11,1
Another method is to apply it to the surface of the nitrided/finished powder.

また、窒化ケイ素に付着させる希土類元素またはアルミ
ニウムのゲル状水酸化物の吊及び組成は、窒化ノフイ索
粉体に付着させる酸化物の設a1吊及び組成から決めれ
ばよく、製品の使用目的により随意法められる。
In addition, the composition and composition of the rare earth element or aluminum gel hydroxide to be attached to silicon nitride may be determined from the composition and composition of the oxide to be attached to the nitride powder, and can be determined as desired depending on the intended use of the product. It is lawful.

上記の水溶液から生成した、表面にに土類元本またはそ
れとアルミニウムのゲル状水酸化物を付着した窒化ケイ
素粉体を分離するには、通常実施されている方法、例え
ば、遠心濾過舎幾、プレスフアルター等を用いた固液弁
部1の方法で分離される。
To separate the silicon nitride powder produced from the above aqueous solution and having the earth base or gelled hydroxide of aluminum attached to its surface, there are commonly used methods such as centrifugal filtration. The solid-liquid valve section 1 is separated using a press filter or the like.

本発明の表面に希土類元素及びアルミニウムのゲル状水
酸化物を付着した窒化ケイ素粉(木を焙焼する際、焙焼
雰囲気としてはN2、Ar等の不活性雰囲気、02、空
気中古の0グ化性雰囲気のいずれも使用できるが、焙焼
温度が1000℃を越える様な場合にはIn’、 J’
31窒化クイ素の酸化を防ぐ意味で不活性雰囲気かりr
ましい。焙焼温度は製品の使用I」的により責4jるが
、分離生成ガスがほぼ発生しなくなる500℃以上が必
要であり、焙焼時間は焙焼温度により異なるが5分〜2
時間で充分である。
Silicon nitride powder with gelled hydroxides of rare earth elements and aluminum attached to the surface of the present invention (when roasting wood, the roasting atmosphere is an inert atmosphere such as N2, Ar, etc., Any chemical atmosphere can be used, but if the roasting temperature exceeds 1000℃, In', J'
31 An inert atmosphere is used to prevent oxidation of the silicon nitride.
Delicious. The roasting temperature depends on the use of the product, but it needs to be at least 500°C, at which almost no separated gas is generated, and the roasting time varies depending on the roasting temperature, but is 5 to 2 minutes.
Time is enough.

これらの焙焼条件は窒化クイ素粉表面に付着させる酸化
物の(14造をいかに設計するかで自由に設定すればよ
い。
These roasting conditions may be freely set depending on how the oxide (14 structure) to be attached to the surface of the silicon nitride powder is designed.

以下、本発明を実施例によって、具体的に説明する。Hereinafter, the present invention will be specifically explained with reference to Examples.

実施例 実施例1 △]ゲル状氷水酸化物作成 1i1’1Mイツトリウム、硝酸ジスプロシウム、硝酸
ランタン、硝酸アルミニウムの各0.1モル/β濶度の
水溶液4℃中に、3モル2′℃淵度のアンモニア水0.
45℃を一度に加え、Yf 濡130分攪拌を(jなっ
た。生成しIこ各ゲル状物をG−3の力゛ラスノイルタ
ー′C′ha別し、それぞれ水洗を行なった。
Examples Example 1 △] Preparation of gel-like ice hydroxide 1i1' In an aqueous solution of 1 M yttrium, dysprosium nitrate, lanthanum nitrate, and aluminum nitrate each at 0.1 mol/β degree at 4°C, 3 moles at 2' degree degree of ammonia water 0.
A temperature of 45 DEG C. was added all at once, and the mixture was stirred for 130 minutes. The resulting gels were separated using a G-3 filter and washed with water.

15!られた各ゲルの一部を取り出し、通常の方法でX
線回折を測定したところ、各ゲル状物とも第1図に示し
たチ1!−1−の通りであった。
15! Remove a portion of each gel and incubate with X in the usual manner.
When line diffraction was measured, it was found that each gel-like material showed the characteristics shown in Figure 1. -1-.

また、得られた各ゲルの一部を取り出し、常温で充分真
空乾燥を行なった後、それぞれの赤外線吸収スペクトル
を測定したところ第2図に示したチャートの通りであっ
た。
Further, a portion of each of the obtained gels was taken out and sufficiently vacuum dried at room temperature, and then the infrared absorption spectrum of each gel was measured, and the results were as shown in the chart shown in FIG.

また渭られた各ゲルの一部を取り出し、各ゲルを希Ju
酸に?a解し、通常の方法で1i11酸イオンの測定を
行なったが、各溶液中に硝酸イAンは検出されなかった
。また該溶液中の7ンモニウムイAンの測定を通常の方
法で行っだが、各溶液中にアンモニウムイオンは検出さ
れなかった。
Also, take out a portion of each gel and dilute each gel.
To acid? As a result, 1i11 acid ions were measured using the usual method, but no nitrate ions were detected in each solution. Furthermore, 7 ammonium ion A in the solutions was measured using a conventional method, but no ammonium ions were detected in each solution.

B1窒化ケイ索粉入面へのゲル状水酸化物の付着 硝酸イツトリウム、(11“l1lf2ジスプ1]シウ
ム、硝酸ランタンの各0,1シルア′1狙哀の水溶液4
β中に3モル/ +2 iP麿のアンし二i?水0.4
5℃を一度に加え、室温で30分間葭拝金行ない、生成
した各ゲル状物をG−3のガラスフィルターで濾別し、
それぞれ水洗を行なっl、:後、各ゲルを水中に分散さ
U、それそ゛れ4℃のスラリーを作った。
B1 Adhesion of gel-like hydroxide to the entrance surface of silicon nitride powder Aqueous solution of 0.1 each of yttrium nitrate, (11"l1lf2dysp1]ium, and lanthanum nitrate 4)
3 mol/+2 iPmaro's unshinii in β? water 0.4
Add 5°C all at once, stir at room temperature for 30 minutes, and filter each gel-like substance formed using a G-3 glass filter.
After washing each gel with water, each gel was dispersed in water to form a slurry at 4°C.

各スラリーを放置したところ、ゲル状物の沈降体積は1
時rm 後GC3、5、+2.4861m後に3.11
.24時間後に2.8℃になった。
When each slurry was left to stand, the sedimentation volume of the gel-like substance was 1
Hour rm after GC3, 5, +2.4861m after 3.11
.. After 24 hours, the temperature reached 2.8°C.

8液を再度攪拌し、均質なスラリーとした後、窒化ケイ
素粉(平均粒径0.1μm)を8液に4.8モル((i
72g)添加し、充分攪拌した襖、放置した。
After stirring the 8 liquid again to make a homogeneous slurry, 4.8 mol ((i
72g) was added, thoroughly stirred, and left to stand.

固形分の沈降体積を測定したところ、10.1間接ニ3
.0J2.4時間後ニ2.3.f2.24時間後には2
℃になっていた。また、上部の液は透明であった。
When the sedimentation volume of solids was measured, it was found that 10.1 indirect 3
.. 0J2.4 hours later 2.3. f2. 2 after 24 hours
It was ℃. Moreover, the liquid at the top was transparent.

各沈降スラリーの上部、中部、−上部のそれぞれの固形
分の一部を取り出し、ケイ光X線法を用い、それぞれの
組成を測定したところ、Y/Si Soy /Si 、
La /Siの比率はしル比で(0,028櫃二0,0
01) : (1±0.001 >の範囲にあった。
A portion of the solid content at the top, middle, and upper part of each sedimentation slurry was taken out and the composition of each was measured using a fluorescent X-ray method.
The ratio of La /Si is (0,028 to 20,0
01): It was in the range of (1±0.001>).

C1焙焼 B]でIQられた各スラリーを濾別し、固形分を900
℃に調温した電気炉中で1時間焙焼した。1【1られた
各粉体はほとんど凝集が見られず、原料として使用しl
、:窒化ケイ素の粉体挙動に類似していた。
C1 Roasted B] Each slurry IQ was filtered and the solid content was reduced to 900%.
It was roasted for 1 hour in an electric furnace whose temperature was controlled to ℃. 1. Each of the powders produced in 1. showed almost no agglomeration and could be used as a raw material.
, : The powder behavior was similar to that of silicon nitride.

各粉体のXF11回折を測定したところ、原料窒化ケイ
素のピークと、酸化イツトリウム、あるいは酸化ジスプ
ロシウム、あるいは酸化ランタンのピークがI!!察さ
れた。例としてゲル状水酸化イツトリウムを原13+と
して用いた物のX線回折チャートを第7図に承り。
When XF11 diffraction of each powder was measured, the peak of the raw material silicon nitride and the peak of yttrium oxide, dysprosium oxide, or lanthanum oxide were found to be I! ! It was noticed. As an example, Fig. 7 shows an X-ray diffraction chart using gelled yttrium hydroxide as the raw material 13+.

(!1られた各焙焼物それぞれ100 gを容量が1β
のビンに入れ、水を0 、5.9加え、振とう機で30
分撮とうした後、水を加え10J2どし、攪拌した後放
とした。30分後、大部分の固形分は底に沈降し、上t
Hfiはわずかに濁って0た。
(!100 g of each roasted product with a capacity of 1β
Put it in a bottle, add 0.5% of water, and shake it to 30%.
After taking a separate image, water was added to the mixture for 10J2 hours, and the mixture was stirred and then released. After 30 minutes, most of the solids have settled to the bottom and the top
Hfi was slightly cloudy and 0.

線上ずみ液を取り出し、G−5のガラスフィルターで固
形分を採取し、乾燥後重量を測定したところY/Siの
組合Uの6のが013(1、DY /St (7)[Q
t!−(7)(、+(7)が°0,210 La /3
iの組合せのものが0.22(lであった。1.lこそ
れぞれの組成をケイ光X線法で測定したところ、モル比
でY/5i−=1.27、l)y/Si= 3.58、
La /Si  −4,45であツIy。
The solid content was taken out using a G-5 glass filter, and the weight was measured after drying. The 6 of the Y/Si combination U was 013 (1, DY /St (7) [Q
T! −(7)(, +(7) is °0,210 La /3
The combination of i was 0.22 (l). When the composition of each of these was measured by fluorescent X-ray method, the molar ratio was Y/5i-=1.27, l)y/Si = 3.58,
La /Si -4,45 and Iy.

上記に(qられた各沈降物の上層部、中層部、下層部を
取り出し、ケイ光X線法で測定したところ、それぞれの
組成はY/S r 、I)V 、/Si 1La /S
iのモル比で(0,028,!−〇、003) : (
1± o、ooi )の範囲にあった。
The upper layer, middle layer, and lower layer of each precipitate (q) were taken out and measured by fluorescent X-ray method, and the composition of each was Y/S r , I) V , /Si 1La /S
The molar ratio of i is (0,028,!-〇,003): (
It was in the range of 1±o,ooi).

実施例2 実施例1と同様の方法ぐ、ゲル状水酸化イツトリウム(
Y20コlJt’Xで59)とゲル状水酸化アルミニウ
ム(AIzOx1%tXで5(1)をそれぞれ作り、各
スラリーを混合し充5)攪1tした。
Example 2 A method similar to Example 1 was used to prepare gelled yttrium hydroxide (
59) and gelled aluminum hydroxide (AIzOx 1% tX) were prepared, and each slurry was mixed and stirred for 1 t.

上記混合スラリー中に、実施例1で用いたのど同種の窒
化ケイ素粉90(lを加え充分混合した1殺、請別し、
固形分を2等分し、各々を900℃× 2時間、110
0℃×2時間、窒素雰囲気中で・焙焼した。
Add 90 (l) of the same kind of silicon nitride powder used in Example 1 to the above mixed slurry and mix well.
Divide the solid content into two equal parts and heat each at 900°C for 2 hours at 110°C.
It was roasted at 0°C for 2 hours in a nitrogen atmosphere.

焙焼物のX線回折を測定したところ、それぞれ第8図、
第9図に示すパターンを示した。
When the X-ray diffraction of the roasted product was measured, the results were shown in Figures 8 and 8, respectively.
The pattern shown in FIG. 9 was shown.

また、各焙焼物を実施例1と同様の方法で水に分散し、
振どう機で娠とうし、スラリーを静買し、底部にたまっ
た固形分の上層部、中層部、FIiM部をそれぞれ取出
し、ケイ光X線法で組成を測定したところ、各試料とも
、Y/△l /Siのモル比が(0,023±0.00
2 >、” (0,0514:0.005 > / (
1±0.001 >の範囲にあった。
In addition, each roasted product was dispersed in water in the same manner as in Example 1,
The slurry was stirred in a shaker, the slurry was bought statically, and the upper layer, middle layer, and FIiM portion of the solid content accumulated at the bottom were taken out and the composition was measured using fluorescent X-ray method. /Δl /Si molar ratio is (0,023±0.00
2 >,” (0,0514:0.005 > / (
It was in the range of >1±0.001.

実施例3 塩化イソ1−リウムの0.1モル/β・濃度の水溶di
4.Q中に3七ル、/βt7JUの苛性ソーダ水を0.
45ρ一度に加え、実施例1と同様なゲル状物を作った
。該ゲル状物の組成J3よび4713造を実施例1と同
様な方法で測定し!こところ、実施例で作ったゲル状物
と同じ物であることがわかった。このゲル状物を用いて
実施1り11と同様に窒化ケイ素へ付着させ、空気中9
00℃で1時間焙焼を行なった。17られ/、:粉末は
その組成、構造ともに実施例1で1!′7られた物と同
等であった。
Example 3 Aqueous solution of iso-1-lium chloride at a concentration of 0.1 mol/β.
4. Add 0.37 L/βt7JU of caustic soda water to Q.
A gel-like material similar to that in Example 1 was prepared by adding 45 ρ at once. The compositions J3 and 4713 of the gel-like material were measured in the same manner as in Example 1! In fact, it was found that it was the same gel-like material as the one made in the example. This gel-like material was used to adhere to silicon nitride in the same manner as in Example 1-11.
Roasting was performed at 00°C for 1 hour. 17/,: The composition and structure of the powder are 1 in Example 1! It was equivalent to the one given in '7.

実施例4 硝酸イツトリウムの0.1モル/工淵度の水溶液4J2
中に、実施例1で用いたのと同じ窒化ケイ素粉を4.8
モル加え、攪拌を1゛iない均一な懸濁液を作った。該
懸濁液中に3七ルア/λ淵度のアンモニア水0.454
を一度にbuえ、攪拌を30分間続けた後、2時間数イ
した。fl)器の底には固形分が沈降し、その沈降IA
偵2pであった。得られた沈澱をG−4のガラスフィル
ターで濾別し、空気中、900℃1時間焙焼した。得ら
れた粉体は、その組成構造とも、実施例1で得られたし
のと同等工・あった。
Example 4 Aqueous solution 4J2 of 0.1 mol/depth of yttrium nitrate
Inside, the same silicon nitride powder used in Example 1 was added to
mol was added to make a homogeneous suspension without stirring. In the suspension, 0.454 ammonia water of 37 Lua/λ depth is added.
After stirring was continued for 30 minutes, the mixture was heated for several hours. fl) Solid content settles at the bottom of the vessel, and its sedimentation IA
It was detective 2p. The obtained precipitate was filtered through a G-4 glass filter and roasted in air at 900°C for 1 hour. The obtained powder had the same composition and structure as that obtained in Example 1.

実施例5 濃度が0.3モル/!の1ンモニア水4.5pと、実施
例1で用いたのと同じ窒化ケイ素粉捧4モルとを混合し
、攪拌しながら、0.2モル、’ 、Q fi1度の硝
酸イツトリウム水溶液2J2を添加し、10分後に攪拌
を停止した。2時間数iQ t’2、上澄み液中のイソ
1−リウムの濃度を測定したところ、イツトリウムは検
出されなかった。上記(17られた固形分を濾取した後
、空気中、900℃で1時間焙焼を行なったところ、1
111うれた粉体、組成、構造とbに実施例1 e4!
7られたものと同等のらのであることが判った。
Example 5 Concentration is 0.3 mol/! 4.5 p of 1 ammonia water and 4 moles of silicon nitride powder, the same as used in Example 1, were mixed, and while stirring, 0.2 moles of yttrium nitrate aqueous solution of 1 degree of Q fi was added 2J2. After 10 minutes, stirring was stopped. When the concentration of iso-1-lium in the supernatant was measured for 2 hours iQ t'2, no yttrium was detected. After filtering the solid content obtained above (17), it was roasted in air at 900°C for 1 hour.
Example 1 e4 to 111 powder, composition, structure and b!
It turned out that it was the same as the one that was given.

実施例6 実施例1と同様な方法でイソ1−リウムのゲル状水酸化
物及び、アルミニウムのゲル状水酸化物を作り、実施例
1ぐ用いIこので同じ窒化グイ水粉体、酸化物操陣の1
0吊比で次の川に実施例1ど同様<c ii法でf=J
着した。。
Example 6 Iso-1-lium gel hydroxide and aluminum gel hydroxide were prepared in the same manner as in Example 1, and the same nitride water powder and oxide were prepared using Example 1. Maneuver 1
At 0 suspension ratio, as in Example 1, f=J using <c ii method.
I arrived. .

イ)Y203/△l 20:l /Si 3 N4−=
  2.5./  2.5/95 0) Y203 /AI 203 /Si 3 N4=
  2/  !+/93 ハ)Yz O3/AI 203 /St I N4= 
 6.8/  5.L/88.に )Y203/Al i03/S! 3 N4−10/ 
10.’80 各試料を空気中、900℃で 1115間焙焼した。
b) Y203/△l 20:l /Si 3 N4-=
2.5. / 2.5/95 0) Y203 /AI 203 /Si 3 N4=
2/! +/93 c) Yz O3/AI 203 /St I N4=
6.8/5. L/88. ) Y203/Al i03/S! 3 N4-10/
10. '80 Each sample was roasted in air at 900°C for 1115 minutes.

得られた各幼体100gを実施例1と同(王の方法で水
中に分散し、振とう機で抛とうした後、放置した。固形
分ははとlνど底部に沈、降し、上澄み液中にtY’i
fiシている固形分を線切回収し、乾燥fI!ffiを
測定したところ、イ):0.OQglo)=0.19g
、ハ) : 0.28(1、二):0.3917であり
た。
100 g of each juvenile obtained was dispersed in water using the same method as in Example 1 (Kou's method), shaken with a shaker, and then left to stand.The solid content quickly settled to the bottom, and the supernatant liquid inside tY'i
Collect the solid content by cutting and drying. When ffi was measured, a): 0. OQglo)=0.19g
, C): 0.28 (1, 2): 0.3917.

また、各沈降力の上層部、中層部、F層部を採取し、そ
れぞれの組成をタイ光X線法で測定したところ、それぞ
れY2O:l/AI 203/S! I N+ 17)
比;rが、イ) : (0,011±(1,002) 
/(0,024± 0.005)/  (1± 0.0
01 )口) : (o、oo9±0.002) /(
0,0493二  〇、0(1!+)  /  (1±
  0,001 )ハ) : (0,032±0.00
2> /(0,053L  01005)/  (1±
 0.001)二) : (0,052±0.002)
 /(0,114± 0.005>/  (1± 0.
001)の範囲にJ3さまった。
In addition, when the upper layer, middle layer, and F layer of each sedimentation force were sampled and their compositions were measured using Thai light X-ray method, they were found to be Y2O:l/AI 203/S! IN+17)
Ratio; r, a) : (0,011±(1,002)
/(0,024± 0.005)/(1± 0.0
01 ) 口) : (o, oo9±0.002) /(
0,04932 0,0(1!+) / (1±
0,001) C): (0,032±0.00
2> /(0,053L 01005)/(1±
0.001) 2): (0,052±0.002)
/(0,114± 0.005>/ (1± 0.
J3 fell within the range of 001).

また、各々のX線回折を測定したところ、それぞれ第1
0図、第11図、第12図、第13図に示した通りであ
った。
In addition, when each X-ray diffraction was measured, the first
It was as shown in Fig. 0, Fig. 11, Fig. 12, and Fig. 13.

比較例1 酸化イソ1〜リウム(平均粒径0,6μm)を5g、酸
化アルミニウム(平均粒径0.5μm)を59、および
実施例1で用いたのと同じ窒化ケイ素(平均粒1¥、 
o、7μm >を90(1711合し、ボールミル−e
 4時間混合したj9、混合物を10βの水内に分散し
充分11件した後、放置した。
Comparative Example 1 5 g of iso1-lium oxide (average particle size 0.6 μm), 59 g of aluminum oxide (average particle size 0.5 μm), and the same silicon nitride used in Example 1 (average particle size 1 yen,
o, 7 μm > 90 (1711), ball mill-e
After mixing for 4 hours, the mixture was dispersed in 10β water, stirred sufficiently for 11 times, and then left to stand.

3()分後該!Ik ’a−観察したどころ、上部はい
t!″/υ白潤してtljす、底部には原お1窒化ケイ
索と同様の灰色の粉体が沈降していた。
Applicable after 3 () minutes! Ik'a-I just observed it, the upper part is t! ''/υ When the mixture became white, a gray powder similar to that of the original silicon nitride rope had settled at the bottom.

上部の白濁水を取出し、線層し、固形分を乾燥し、その
重1r!(’ alす〉L゛シにどころ4.:+8!H
ニーあった。このbのの組成をケイ光X線法で測定した
ところY203 、/AI 20:l /3ixN4の
rI′IF/%比が1.88/ 1.73/ 1.05
テaつだ。
Take out the cloudy water at the top, layer it, dry the solid content, and weigh 1r! (' als〉L゛shinidokoro 4.:+8!H
There was a knee. When the composition of this b was measured by fluorescence X-ray method, the rI'IF/% ratio of Y203, /AI 20:l /3ixN4 was 1.88/1.73/1.05
It's tea.

また、底部に沈降した固形分の土層部、中層部、下層部
をそれぞれ取出し、それぞれの組成をケイ光X線法で測
定したところ、次のような結果となった。
In addition, the soil layer, middle layer, and lower layer of the solid matter that had settled at the bottom were taken out, and the composition of each layer was measured by fluorescent X-ray method, and the following results were obtained.

上ff1nllY203 /AI 203 /Si 3
 N 4= 2.58/ 2.33/ 1 中層部        = 1.13/ 1,53/’
 1下層部       =0.01/ 0,008.
/1発明の詳細 な説明したように、本発明によると、窒化ケイ素粉体の
h面に、希土類元素の酸化1カ、まIζはこれと酸化ア
ルミニウムからなる酸化物層が強く均一に11首しIこ
郭)体を比較白部(11に製造することができ、この窒
化ケイ素粉体は焼結体のう′I造血料として優れたムの
である。
Upper ff1nllY203 /AI 203 /Si 3
N 4 = 2.58/ 2.33/ 1 Middle part = 1.13/ 1,53/'
1 lower layer =0.01/0,008.
/1 As described in detail, according to the present invention, on the h-plane of silicon nitride powder, an oxide layer consisting of rare earth element oxide, or Iζ, and aluminum oxide is strongly and uniformly formed. This silicon nitride powder is excellent as a sintered hematopoietic agent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、イツトリウムのゲル状水酸化物のX線回折パ
ターン、 第2図は、結晶質水酸化イツトリウムのXFA回折パタ
ーン、 第3図は、常温内空乾燥後のイソ1〜リウムのゲル状水
酸化物の赤外吸収スペクト ル、 第4図は、結品y1水酸化イッI・リウムの赤外吸収ス
ペクトル、 第5図は、イットリ))を5重ω%f−J着した窒化ケ
r累粉体の電子線による1j貞、 第6図は、イツ1−リアを14老1するに用いた原石窒
化ケイ木防体の電子線による写 q、 第7図は、実施例1−01にJjいてイン1−リウム−
’= mE 21としU f’l−’!l′l L/人
:窒化9イ;Rf′I) I木のX籾!11す折7−1
・−ト、第8図は、実施例2において、900”CX2
04間焙焼を行なった窒化ケイ木粉のX 線回折パターン、 第9図は、実施例2にJ3いて、 1loO’cx 2
時間焙焼を行なった窒化ケイ木わ)のX 線回折チト−1−1 第10図は、実施例5にJjいて、r)の条1′1で作
成した窒化ケイ素粉体のX線回 折チャート、 第11図は、実施例5に43いて、口)の条f′[で作
成した窒化11イスも粉体のX線回折チャート、 第12図は、実施例5にJ3いて、ハ)の条1′1で作
成した窒化リイ先粉体のX線回 折 ブー 1・ −1・ 、 第13図は、実MI!例5にJ3いて、二)の条(’1
で作成した窒化りイ素粉体のX線回 折チャー1−をそれそ゛れ小寸。 2゛   胛 1・ 茎 (2θ) (2θ) (2θ) (2θ)
Figure 1 is an X-ray diffraction pattern of gelled yttrium hydroxide. Figure 2 is an XFA diffraction pattern of crystalline yttrium hydroxide. Figure 3 is a gel of iso1-lium after air drying at room temperature. Figure 4 shows the infrared absorption spectrum of crystalline y1 hydroxide, and Figure 5 shows the infrared absorption spectrum of yttrium hydroxide. Fig. 6 is a photo taken with an electron beam of the raw silicon nitride wood shield used in the preparation of Itsu 1-rea by electron beam; Fig. 7 is a photo taken by electron beam of Example 1- Jj in 01 and in1-lium-
'= mE 21 and U f'l-'! l'l L/person: Nitriding 9i; Rf'I) I tree's X rice! 11 fold 7-1
- Figure 8 shows the 900"CX2 in Example 2.
The X-ray diffraction pattern of silicon nitride wood powder roasted for 04 days, Figure 9 shows J3 in Example 2, 1loO'cx 2
Figure 10 shows the X-ray diffraction of the silicon nitride powder prepared in Example 5 in Jj and r) 1'1. Chart, FIG. 11 is an X-ray diffraction chart of the nitrided 11 powder made from the nitrided 11-sheet f′ [43 in Example 5, and C). X-ray diffraction of the nitrided tip powder prepared in Section 1'1 of Figure 13 shows the actual MI! In Example 5, there is J3, and Article 2) ('1
The X-ray diffraction chart 1- of the silicon nitride powder prepared in 1- is very small. 2゛ Cap 1・ Stem (2θ) (2θ) (2θ) (2θ)

Claims (1)

【特許請求の範囲】 希土類元素のゲル状水酸化物、あるいは、 希土類元素の水酸化物と水酸化アルミニウムとの混合ゲ
ル状水酸化物と、窒化ケイ素粉とを混合し、窒化ケイ素
粉の表面にゲル状水酸化物を付着させ、ついで、該混合
物を焙焼することを特徴とする、希土類元素の酸化物、
あるいは希土類元素の酸化物と酸化アルミニウムとの混
合物、あるいは、希土類元素とアルミニウムとの複合酸
化物が表面に付着した窒化ケイ素粉体の製法。
[Claims] A gel hydroxide of a rare earth element or a mixed gel hydroxide of a hydroxide of a rare earth element and aluminum hydroxide is mixed with silicon nitride powder, and the surface of the silicon nitride powder is an oxide of a rare earth element, characterized in that a gel-like hydroxide is attached to the hydroxide, and then the mixture is roasted;
Or a method for producing silicon nitride powder with a mixture of a rare earth element oxide and aluminum oxide, or a composite oxide of a rare earth element and aluminum attached to the surface.
JP59211495A 1984-10-11 1984-10-11 Manufacture of silicon nitride powder added with oxide of rare earth element on surface Pending JPS6191066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59211495A JPS6191066A (en) 1984-10-11 1984-10-11 Manufacture of silicon nitride powder added with oxide of rare earth element on surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59211495A JPS6191066A (en) 1984-10-11 1984-10-11 Manufacture of silicon nitride powder added with oxide of rare earth element on surface

Publications (1)

Publication Number Publication Date
JPS6191066A true JPS6191066A (en) 1986-05-09

Family

ID=16606891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59211495A Pending JPS6191066A (en) 1984-10-11 1984-10-11 Manufacture of silicon nitride powder added with oxide of rare earth element on surface

Country Status (1)

Country Link
JP (1) JPS6191066A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317260A (en) * 1985-08-01 1988-01-25 ジ−・テイ−・イ−・ラボラトリ−ズ・インコ−ポレイテツド Manufacture of homogeneous doping agent-containing silicon nitride product
JPS63156070A (en) * 1986-12-17 1988-06-29 京セラ株式会社 Silicon nitride base sintered body and manufacture
JPH01305864A (en) * 1988-05-12 1989-12-11 Internatl Business Mach Corp <Ibm> Production of ceramic

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6317260A (en) * 1985-08-01 1988-01-25 ジ−・テイ−・イ−・ラボラトリ−ズ・インコ−ポレイテツド Manufacture of homogeneous doping agent-containing silicon nitride product
JPS63156070A (en) * 1986-12-17 1988-06-29 京セラ株式会社 Silicon nitride base sintered body and manufacture
JP2518630B2 (en) * 1986-12-17 1996-07-24 京セラ株式会社 Silicon nitride sintered body and method for producing the same
JPH01305864A (en) * 1988-05-12 1989-12-11 Internatl Business Mach Corp <Ibm> Production of ceramic

Similar Documents

Publication Publication Date Title
US5011804A (en) Ceramic dielectric compositions and method for improving sinterability
TW567103B (en) Copper powder for use in conductive paste having excellent anti oxidization property and process
FR2568239A1 (en) PROCESS FOR THE PRODUCTION OF A COMPOSITION CONTAINING PEROVSKITE COMPOUNDS
GB2204030A (en) Stabilised metallic oxides
US5132043A (en) Method of preparing small particle size borate phosphor
JPS6291468A (en) Composition for manufacturing ceramic substance and manufacture
JPH02503790A (en) sinterable nitride
EP0030170B1 (en) Process for the production of polycrystalline garnet
CA1261117A (en) Alkaline earth titanate, its preparation and its use in ceramics compounds
JP5879078B2 (en) Method for producing barium titanyl oxalate and method for producing barium titanate
JPS6240292B2 (en)
JP3280688B2 (en) Production method of rare earth oxide
JPS6191066A (en) Manufacture of silicon nitride powder added with oxide of rare earth element on surface
EP0889005A1 (en) Yttrium oxide-aluminum oxide composite particles and method for the preparation thereof
US5695725A (en) Method of preparing monoclinic BaO.A12 O3.2SiO2
US4774068A (en) Method for production of mullite of high purity
KR102347578B1 (en) Manufacturing method of light absorbing single crystal alumina powders having hexagonal plate type structure
JPH0640763A (en) Preparation of highly crystalline article
US4524016A (en) Process for spheroidal BaFCl:Eu phosphor particles
JPH10114522A (en) Production of powdery zirconium dioxide
JPH03190972A (en) Coating composition having excellent masking power
JPH0635329B2 (en) Method for producing zirconium oxide powder
JPH0524810A (en) Production of aluminum nitride powder
JP2000281341A (en) Barium titanate powder containing rare earth element and its production
WO2022071021A1 (en) Boron-containing amorphous silica powder and method of producing same