JPS6191005A - Metal sulfide - Google Patents

Metal sulfide

Info

Publication number
JPS6191005A
JPS6191005A JP59209859A JP20985984A JPS6191005A JP S6191005 A JPS6191005 A JP S6191005A JP 59209859 A JP59209859 A JP 59209859A JP 20985984 A JP20985984 A JP 20985984A JP S6191005 A JPS6191005 A JP S6191005A
Authority
JP
Japan
Prior art keywords
compound
metal
solution
solution according
metal sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59209859A
Other languages
Japanese (ja)
Other versions
JPH058121B2 (en
Inventor
Ryuichi Yamamoto
隆一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP59209859A priority Critical patent/JPS6191005A/en
Publication of JPS6191005A publication Critical patent/JPS6191005A/en
Publication of JPH058121B2 publication Critical patent/JPH058121B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/20Methods for preparing sulfides or polysulfides, in general

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:A metal sulfide solution in a dissolved state, providing a metal sulfide in a thin film state, useful as a catalyst, semiconductor, element for electricity generation, sensor, etc., obtained by reacting a metallic compound with a sulfur (compound) in a specific polar nonaqueous solvent. CONSTITUTION:A metallic compound (e.g., CdI2) consisting of a metallic element belonging to transition elements of a wide sense including silver and zinc groups is reacted with S or an S compound (e.g., H2S) in a polar nonaqueous solvent having a molecular formula shown by the formula I or II (R and R' are H or alkyl) optionally dissolving a high polymer compound (e.g., polyacrylonitrile) not to insolubilize a metal sulfide to be prepared. Consequently, a metal sulfide solution containing 0.4-3.1mol S based on 1mol metallic element, having >=an amount estimated from solubility in equilibrium, in a supersaturated state, in a metastable state or in a dissolved state of molecular aggregate with <=3X10<-6>cm particle diameter, is prepared.

Description

【発明の詳細な説明】 従来はある溶媒に不溶であつた化合物を当該溶媒に溶存
(以下,この溶存という言葉は過飽和あるいは準安定状
態における溶存及び微粒子状の分子集団としての化合物
の溶存を含む)の状態で得ることができれば,その化合
物の利用法を大巾に拡大することができる。本発明は金
属硫化物を従来の方法では溶存させることのできなかつ
た溶媒中に溶存の状態で存在せしめる方法の発見に基づ
いて得られた溶液,その溶液から回収される金属硫化物
及びそれらの利用,応用等に関するものである。
[Detailed Description of the Invention] Dissolution of a compound that was conventionally insoluble in a certain solvent into that solvent (hereinafter, the term "dissolution" includes dissolution in a supersaturated or metastable state and dissolution of a compound as a fine particle-like molecular group) ), the uses of that compound can be greatly expanded. The present invention is based on the discovery of a method for making metal sulfides exist in a dissolved state in a solvent that could not be dissolved by conventional methods, a solution obtained from the solution, metal sulfides recovered from the solution, and their It concerns usage, application, etc.

金属硫化物は半導体あるいは触媒としての機能を有し,
種々の電気回路の素子,触媒(たとえば,共立出版「化
学大辞典」9巻677頁を参照)などに用いられている
。たとえばCdSは光電導を有し(前出「化学大辞典」
3巻585頁を参照),硫化銅と硫化カドミウムから成
る太陽電池の作製も可能である。また,いくつかの金属
硫化物は導電体,蛍光体あるいはリチウム電池等の電池
の正極活物質として用いられている(前出「化学大辞典
」の金属硫化物の各項目を参照,たとえば9巻645頁
の硫化亜鉛の項目)。しかし,金属硫化物のうちのかな
りの化合物は難溶性であるために,その利用,応用方法
に制限を有する。たとえば金属硫化物と高分子化合物か
ら成る組成物で膜をつくり,金属硫化物を膜中に均一に
分散させて種々の機能を有する膜を得ようとしても,適
当な溶媒がないために従来は不可能である場合があつた
。本発明は,金属硫化物を金属化合物とイオウ又はイオ
ウ化合物から合成する際にジメチルスルホキシド,N,
N−ジメチルホルムアミドなどの溶媒を用いると,反応
により生成した金属硫化物がその反応溶媒に平衡状態で
溶ける量以上の量で溶存し,このような溶存状態がある
期間以上安定に存在しうることを見出したことに基づい
ている。本発明により,従来は非水溶媒中に溶けること
が知られていなかつた金属硫化物を溶存状態で含む溶液
が得られたことになり,金属硫化物の利用,応用方法が
大きく拡大される。ジメチルスルホキシド,N,N−ジ
メチルホルムアミド等の官能基を有する極性非水溶媒は
化学反応によつて生成した生成初期の金属硫化物に 等の官能基又は結合を通して配位子し金属硫化物を準安
定状態において溶存させているものと考えられる。従つ
て,これらの溶媒においては溶媒分子中の官能基が金属
硫化物の溶存に大きな役割を果していると考えられ,又
金属硫化物を溶存させている溶媒に高分子化合物を溶か
し込む場合には当該高分子化合物が同様の性質を有する
官能基を有することが望しい。
Metal sulfides have functions as semiconductors or catalysts,
It is used in various electric circuit elements, catalysts (see, for example, Kyoritsu Shuppan Co., Ltd., "Chemistry Dictionary", Vol. 9, p. 677). For example, CdS has photoconductivity (see the above-mentioned "Chemistry Encyclopedia").
(see Vol. 3, p. 585), it is also possible to produce solar cells made of copper sulfide and cadmium sulfide. In addition, some metal sulfides are used as conductors, phosphors, or positive electrode active materials for batteries such as lithium batteries (see each entry on metal sulfides in the aforementioned "Encyclopedia of Chemistry", for example, Vol. 9). Zinc sulfide on page 645). However, since a considerable number of metal sulfide compounds are poorly soluble, there are limitations to their use and application methods. For example, if a film is made from a composition consisting of a metal sulfide and a polymer compound, and the metal sulfide is uniformly dispersed in the film to obtain a film with various functions, it has not been possible to obtain a film with various functions due to the lack of an appropriate solvent. There were times when it was impossible. The present invention uses dimethyl sulfoxide, N,
When a solvent such as N-dimethylformamide is used, the metal sulfide produced by the reaction dissolves in the reaction solvent in an amount greater than the amount dissolved in the equilibrium state, and such a dissolved state can exist stably for a certain period of time. It is based on what was discovered. According to the present invention, a solution containing a dissolved metal sulfide, which was not known to dissolve in a non-aqueous solvent, can be obtained, and the use and application methods of metal sulfides are greatly expanded. A polar non-aqueous solvent having a functional group such as dimethyl sulfoxide or N,N-dimethylformamide attaches a ligand to the metal sulfide in the initial stage formed by a chemical reaction through a functional group or a bond, and semi-forms the metal sulfide. It is thought that it is dissolved in a stable state. Therefore, in these solvents, it is thought that the functional groups in the solvent molecules play a major role in dissolving metal sulfides, and when dissolving a polymer compound in a solvent in which metal sulfides are dissolved, It is desirable that the polymer compound has a functional group having similar properties.

なお,従来コロイド状に金属硫化物を水中に分散させた
水溶液は知られていたが(前出「化学大辞典」の金属硫
化物の各項目を参照),極性非水溶媒中に平衡時に見積
られる量以上の金属硫化物を溶存状態で含有させた溶液
の例は知られていない。本発明で得られる溶液の中には
金属硫化物が微粒子として溶媒中に溶存している例があ
るが,この場合微粒子の粒子径は3×10−6(300
A=0.03μm)以下であり,この粒子径の金属硫化
物中においては表面エネルギーが無視できなく(化学増
刊104号「先端分野における材料技術」(1984)
23頁及び25頁参照)この表面エネルギーの存在が本
発明の溶液が得られる理由の一つであると考えられる。
Although aqueous solutions in which colloidal metal sulfides are dispersed in water have been known (refer to each item on metal sulfides in the above-mentioned "Encyclopedia of Chemistry"), the estimated value at equilibrium in a polar non-aqueous solvent is There is no known example of a solution containing dissolved metal sulfides in an amount greater than the above amount. In the solution obtained by the present invention, there are examples in which metal sulfides are dissolved in the solvent as fine particles, but in this case, the particle size of the fine particles is 3 × 10-6 (300
A = 0.03 μm) or less, and the surface energy cannot be ignored in metal sulfides with this particle size (Kagaku Special Edition No. 104, "Materials Technology in Advanced Fields" (1984))
(See pages 23 and 25) The presence of this surface energy is considered to be one of the reasons why the solution of the present invention can be obtained.

また,最近では微粒子状物質の作製が重要となつている
が(前出の化学増刊104号23頁参照),本発明によ
つて超微粒子状の金属硫化物の製造が可能となる。また
,本発明によつて得られる金属硫化物及び金属硫化物と
高分子化合物とから成る組成物の両者はいずれも一般的
に導電性を有し,特許請求の範囲第41項から第5項に
記載されている利用法を有する。これらの利用法一部は
すでに既存の金属硫化物について知られていたものであ
り当然本発明の金属硫化物についても予知されるもので
あるが,本発明によつて新しく得られた金属硫化物ある
いは組成物を用いることにより,利用形態を変化させる
ことができたり微粒子状である等の形態の変化等に基づ
いて機能,特性を変化させることができたりする利点を
有する。
In addition, the production of fine particulate materials has recently become important (see the above-mentioned Kagaku Special Issue No. 104, page 23), and the present invention makes it possible to produce ultrafine particulate metal sulfides. Further, both the metal sulfide and the composition comprising the metal sulfide and the polymer compound obtained by the present invention generally have electrical conductivity, and the scope of claims 41 to 5 is as follows. It has the usage described in . Some of these uses have already been known for existing metal sulfides and are naturally foreseen for the metal sulfide of the present invention, but some of these uses are already known for the metal sulfide of the present invention. Alternatively, by using a composition, there is an advantage that the usage form can be changed, and the function and characteristics can be changed based on changes in the form such as fine particles.

実施例1. ヨウ化カドミウム(CdI2)を無水のN,N−ジメチ
ルホルムアミドに溶解させる。この溶液に乾燥硫化水素
がス(CdI2に対して1.2ないし4倍モル)を導入
すると,反応前には無色であつた溶液の色が黄色ないし
黄橙色(いわゆるCdSに特徴的なカドミウムイエロー
の色)に変色する。この溶液の可視光吸収スペクトルは
450nmに肩吸収帯を示し,この吸収帯の位置は固体
硫化カドミウムについて報告されている(J.Opt.
Soc.Am.,46,1013(1956))位置と
一致した。これらの事実は,上記反応によつて硫化カド
ミウムが生成したことを示唆している。しかし,反応後
も溶液は均一状態を保つており,硫化カドミウムの生成
に際して通常見られる黄色沈殿はほとんど見られなかつ
た。反応の具合によつては,反応液が濁り少量の固体の
生成が見られる場合もあるが,この場合にも濾過によつ
て固体を除いた後に得られる均一溶液は硫化カドミウム
に特徴的な黄色ないし黄橙色を有する液体として約20
℃以下では10時間以上沈殿を生じることなく安定な見
かけ上均一な溶液として存在する。また,約−20℃の
低温下では2週間以上見かけ上均一な溶液として安定に
存在する。溶液調整後約−20℃で一夜さらに約0℃で
約2時間放置した溶液をアルゴンレーザーを用いる光散
乱法により分析した結果,溶液中には約4.5×10−
7cmの粒径を有する微粒子が多数存在した。この溶液
をアルゴンレーザー照射下約7時間放置すると粒径は約
7×10−7cm(70A)に増大したが,この状態に
おいても溶液は見かけ上均一であつた。この溶液をさら
に数時間放置すると液は濁り固体の生成が見られた。ま
た,CdI2とH2Sの反応によつて調製した上記と同
様のN,N−ジメチルホルムアミド溶液を調製後ただち
に−15℃ないし−20℃に冷やしこの状態で2週間保
つた後に,室温付近でアルゴンレーザーを用いる光散乱
法により分析した結果,溶液には約5×10−7(50
A)の粒径を有する微粒子が多数存在した。また,この
溶液を22時間放置すると粒子の粒径は約15×10−
7cm(150A)に増大したが,この状態においても
溶液は見かけ上均一であつた。上述の微粒子はいずれも
CdSであると考えられる。
Example 1. Cadmium iodide (CdI2) is dissolved in anhydrous N,N-dimethylformamide. When dry hydrogen sulfide gas (1.2 to 4 times the mole relative to CdI2) is introduced into this solution, the color of the solution, which was colorless before the reaction, changes from yellow to yellow-orange (the so-called cadmium yellow characteristic of CdS). color). The visible light absorption spectrum of this solution shows a shoulder absorption band at 450 nm, and the position of this absorption band has been reported for solid cadmium sulfide (J. Opt.
Soc. Am. , 46, 1013 (1956)). These facts suggest that cadmium sulfide was produced by the above reaction. However, the solution remained homogeneous even after the reaction, and almost no yellow precipitate, which is normally seen when cadmium sulfide is produced, was observed. Depending on the condition of the reaction, the reaction solution may become cloudy and a small amount of solid may be produced, but even in this case, the homogeneous solution obtained after removing the solid by filtration has the characteristic yellow color of cadmium sulfide. Approximately 20% as a liquid having a yellow-orange color
C. or lower, it exists as a stable and apparently homogeneous solution without precipitation for more than 10 hours. Furthermore, at a low temperature of about -20°C, it exists stably as an apparently uniform solution for more than two weeks. After preparing the solution, the solution was left at about -20°C overnight and then at about 0°C for about 2 hours. As a result of analyzing the solution using a light scattering method using an argon laser, it was found that about 4.5 x 10-
There were many fine particles with a particle size of 7 cm. When this solution was left under argon laser irradiation for about 7 hours, the particle size increased to about 7.times.10@-7 cm (70 A), but even in this state the solution appeared uniform. When this solution was allowed to stand for several more hours, it became cloudy and formation of solids was observed. In addition, an N,N-dimethylformamide solution similar to the above prepared by the reaction of CdI2 and H2S was prepared and immediately cooled to -15°C to -20°C, kept in this state for two weeks, and then heated with argon laser at around room temperature. As a result of analysis using a light scattering method using
There were many fine particles having the particle size of A). Also, if this solution is left for 22 hours, the particle size will be approximately 15 x 10-
Although the diameter increased to 7 cm (150 A), the solution appeared to be homogeneous even in this state. All of the above-mentioned fine particles are considered to be CdS.

そして,これらの溶液中にCdSが存在することを確認
するために,溶液にメチルアルコールやヘキサン等を加
えるとただちに黄色ないし黄橙色の沈殿が生成し,溶液
の色はほゞ無色となつた。この沈殿を濾過法によつて集
め,十分に洗浄した後に真空乾燥した。この乾燥物の元
素分析(Cdは試料を硫酸一硝酸混液で分解後ICP発
光分析法で定量,Sは試料を高周波で焼いて生じるSO
2を赤外分析法で定量)より,この乾燥物がCdSであ
ることが分つた(微量のCdI2を含む)。
In order to confirm the presence of CdS in these solutions, methyl alcohol, hexane, etc. were added to the solutions, and immediately yellow to yellow-orange precipitates were formed, and the solutions became almost colorless. This precipitate was collected by filtration, thoroughly washed, and then vacuum dried. Elemental analysis of this dried material (Cd is determined by ICP emission spectrometry after decomposing the sample with a mixture of sulfuric acid and nitric acid, S is SO produced by burning the sample with high frequency
2 by infrared analysis), it was found that this dried material was CdS (containing a trace amount of CdI2).

また,乾燥物の粉末X線回折図も市販のCdSの粉末X
線回折図と合致(回折線はある程度ブロードになつてお
り,本実施例で得たCdSはある程度非晶質であること
を示唆している)した。また,粉末状沈殿として回収さ
れるCdSの量はCdI2+H2S→CdS+2HIの
反応式を基にして計算される量の60%以上であり,相
当量のCdSがN,N−ジメチルホルムアミドに溶存し
ている溶液が得られたことが分つた。しかし,市販の硫
化カドミウム及び上記の操作によつて一旦沈殿となつた
硫化カドミウムは全くN,N−ジメチルホルムアミドに
溶解しなかつた。このことは上記のN,N−ジメチルホ
ルムアミド中に溶存しているCdSは準安定状態で溶存
しており,一旦より安定な固体状態になるともはやN,
N−ジメチルホルムアミドに対する溶解性を平衡論的に
有しないことを示している。本実施例で得られる溶液中
から回収されるCdSは微粒子状の物質であると考えら
れる。本実施例においてH2Sの代りに(NH4)2S
を用いても同様のCdSを溶存させたN,N−ジメチル
ホルムアミドの均一溶液を得ることができ,この溶液か
ら同様にしてCdSを回收した。CdI2とNa2Sの
反応によつても同様の溶液を得た。また,CdI2の代
りにCdCl2等のカドミウム化合物を原料として用い
ることができ,さらにN,N−ジメチルホルムアミドの
代りにジメチルスルホキシドを用いても同様のCdSを
溶存させている溶液を得ることができた。また,本実施
例で得た溶液をガラス板上に展開した後に真空装置を用
いて溶媒を蒸発除去することにより薄膜状CdSを得た
In addition, the powder X-ray diffraction diagram of the dried product is also the same as that of commercially available CdS powder
It matched with the line diffraction pattern (the diffraction lines were somewhat broad, suggesting that the CdS obtained in this example was amorphous to some extent). In addition, the amount of CdS recovered as a powdery precipitate is more than 60% of the amount calculated based on the reaction formula of CdI2+H2S→CdS+2HI, indicating that a considerable amount of CdS is dissolved in N,N-dimethylformamide. It was found that a solution was obtained. However, commercially available cadmium sulfide and cadmium sulfide once precipitated by the above procedure were not dissolved in N,N-dimethylformamide at all. This means that the CdS dissolved in the above N,N-dimethylformamide is dissolved in a metastable state, and once it becomes a more stable solid state, it is no longer N,N-dimethylformamide.
This shows that it has no equilibrium theory of solubility in N-dimethylformamide. The CdS recovered from the solution obtained in this example is considered to be a particulate substance. In this example, instead of H2S, (NH4)2S
A similar homogeneous solution of N,N-dimethylformamide in which CdS was dissolved could be obtained using the same method, and CdS was recovered from this solution in the same manner. A similar solution was obtained by reaction of CdI2 and Na2S. Furthermore, a cadmium compound such as CdCl2 can be used as a raw material instead of CdI2, and a similar solution containing dissolved CdS can be obtained by using dimethyl sulfoxide instead of N,N-dimethylformamide. . In addition, a thin film of CdS was obtained by spreading the solution obtained in this example on a glass plate and then evaporating the solvent using a vacuum device.

実施例2. 実施例1.において溶媒として用いたN,N−ジメチル
ホルムアミドの代りにポリアクリロニトリルを溶かし込
んだN,N−ジメチルホルムアミドを用いて反応を行な
い,実施例1.と同様にしてCdSを溶存状態で含有す
る黄色ないし黄橙色の溶液を得た。この黄色ないし黄橙
色の見かけ上均一の溶液を一部分取し,この溶液をガラ
ス板上にひろげ,N,N−ジメチルホルムアミドを真空
下における蒸発法により除去することによりCdSとポ
リアクリロニトリルから成る組成物を得た。この組成物
は膜状であり約1×10−7Scm−1の電気伝導度を
有する半導性物質であることが分つた。この物質の電気
伝導度は圧力をかけることによつて著しく増大した。加
圧によつて粒子間の接触がよくなつたと考えられる。
Example 2. Example 1. In place of the N,N-dimethylformamide used as a solvent in Example 1, the reaction was carried out using N,N-dimethylformamide in which polyacrylonitrile was dissolved. In the same manner as above, a yellow to yellow-orange solution containing CdS in a dissolved state was obtained. A composition consisting of CdS and polyacrylonitrile is prepared by taking a portion of this yellow or yellow-orange apparently uniform solution, spreading this solution on a glass plate, and removing N,N-dimethylformamide by evaporation under vacuum. I got it. This composition was found to be a semiconducting material in the form of a film and having an electrical conductivity of about 1.times.10@-7 Scm@-1. The electrical conductivity of this material increased significantly by applying pressure. It is thought that contact between particles was improved by pressurization.

実施例3. CuI3mmolを30mlのジメチルスルホキシドに
溶解させ,この溶液を入れた容器から気体を真空ポンプ
により除く。ついで,この溶液を入れた容器に約110
cm3(一気圧,室温)の乾燥H2Sを加えて撹拌する
。この際,反応前はほゞ無色であつた溶液は暗黄褐色と
なつた。反応終了後,反応液を遠心分離機にかけ,生成
する少量の沈殿を円筒濾紙を用いる濾過により除いた。
Example 3. 3 mmol of CuI are dissolved in 30 ml of dimethyl sulfoxide and the gas is removed from the container containing this solution using a vacuum pump. Next, add about 110 ml to the container containing this solution.
Add cm3 (1 atm, room temperature) of dry H2S and stir. At this time, the solution, which was almost colorless before the reaction, turned dark yellowish brown. After the reaction was completed, the reaction solution was centrifuged, and a small amount of precipitate formed was removed by filtration using a thimble.

このようにして得た見かけ上均一な溶液をアルゴンレー
ザーを用いる光散乱法により分析した結果,この溶液は
均一な溶液であることが確認された。この溶液に約15
mlのアセトンをN2ガス下に加えると硫化銅に特徴的
な灰黒色を有し,反応の経緯から硫化銅であると考えら
れる沈殿が生じた。この一旦沈殿した黒色沈殿はもはや
ジメチルスルホキシドに溶解しなかつた。市販の黒色の
Cu2S及びCuSも共にジメチルスルホキシドに不溶
であつた。
As a result of analyzing the apparently uniform solution thus obtained by a light scattering method using an argon laser, it was confirmed that this solution was a uniform solution. Approximately 15
When ml of acetone was added under N2 gas, a precipitate was formed that had a gray-black color characteristic of copper sulfide and was thought to be copper sulfide based on the reaction history. This black precipitate, once precipitated, was no longer soluble in dimethyl sulfoxide. Both commercially available black Cu2S and CuS were also insoluble in dimethyl sulfoxide.

なお,本実施例で得られた均一溶液を長時間室温に放置
すると黒色の沈殿が生成し,沈殿生成の速度は溶液を空
気中に置いた時の方が溶液をN2ガス下に置いた時より
速かつた。本実施例で得た均一溶液には硫化銅の他に未
反応のヨウ化銅が一部溶けていると考えられるが,未反
応のヨウ化銅の割合は反応系に加えるH2Sを増加させ
ることにより無視しうるくらい小さくすることができる
と考えられる。本実施例で得られた硫化銅は電気伝導性
を有した。
Note that if the homogeneous solution obtained in this example is left at room temperature for a long time, a black precipitate will form, and the rate of precipitate formation is higher when the solution is placed in air than when it is placed under N2 gas. It was faster. It is thought that in addition to copper sulfide, some unreacted copper iodide is dissolved in the homogeneous solution obtained in this example, but the proportion of unreacted copper iodide can be increased by increasing the amount of H2S added to the reaction system. It is thought that this can be made so small that it can be ignored. The copper sulfide obtained in this example had electrical conductivity.

実施例4. 実施例1.で得られたCdSを溶存させたN,N−ジメ
チルホルムアミド溶液にポリアクリロニトリルを溶かし
込み見かけ上均一な溶液を得た。この溶液の一部を分取
しガラス板上にひろげ,N,N−ジメチルホルムアミド
を真空下における蒸発法により除去することによりCd
Sとポリアクリロニトリルから成る組成物を得た。この
組成物は膜状であり約1×10−7Scm−1の電気伝
導度を有する半導性物質であることが分つた。この物質
の電気伝導度は圧力をかけることにより増大し,この物
質を圧力に感ずるセンサーとして用いることができるこ
とを示している。また,本実施例においてポリアクリロ
ニトリルの代りにポリビニルホルマールを用いる他は同
様にしてCdSとポリビニルホルマールから成る組成物
を得た。この組成物も約1×10−7S・cm−1の電
気伝導度を有する半導性物質であつた。
Example 4. Example 1. Polyacrylonitrile was dissolved in the N,N-dimethylformamide solution in which CdS was dissolved to obtain an apparently uniform solution. A portion of this solution was taken out and spread on a glass plate, and N,N-dimethylformamide was removed by evaporation under vacuum.
A composition consisting of S and polyacrylonitrile was obtained. This composition was found to be a semiconducting material in the form of a film and having an electrical conductivity of about 1.times.10@-7 Scm@-1. The electrical conductivity of this material increases with the application of pressure, indicating that this material can be used as a pressure-sensitive sensor. Further, a composition consisting of CdS and polyvinyl formal was obtained in the same manner as in this example except that polyvinyl formal was used instead of polyacrylonitrile. This composition was also a semiconducting material with an electrical conductivity of about 1.times.10@-7 S.cm@-1.

実施例5. 実施例3.において得られた均一溶液(再度調製したも
の)のうち5mlを分取し,この溶液に窒素ガス下で1
00mgのポリアクリロニトリルを加えて溶解させる。
Example 5. Example 3. Take 5 ml of the homogeneous solution (prepared again) obtained in , and add 1 mL to this solution under nitrogen gas.
Add and dissolve 00 mg of polyacrylonitrile.

ポリアクリロニトリルを加えても沈殿が生成してくるこ
とはなかつた。このようにして得た溶液を約4.5cm
×7cmのガラス板上に均一に展開した後に真空下でジ
メチルスルホキシドを除くと黄色ないし黄褐色の膜が得
られ,この膜は見かけ上透明であつた。この膜の表面電
気伝導度は,ポリアクリロニトリル膜の表面を銅化合物
及びイオウ化合物で処理して得られる既知の硫化銅処理
ポリアクリロニトリル膜(工業製品,番号B22,膜厚
60μm)の表面電気伝導度とほぼ同じであつた。しか
し,本実施例で作製した膜の厚さ方向の電気伝導度は室
温で4×10−4Scm−1であり,上記の既知の工業
製品である硫化銅処理ポリアクリロニトリル膜(番号B
22,膜厚60μm)の室温における膜の厚さ方向の電
気伝導度(4×10−10Scm−1)よりも著しく大
きな値を示した。すなわち,通常は絶縁性を有するポリ
アクリロニトリル膜を銅化合物及びイオウ化合物で処理
して得られる上記の硫化銅処理ポリアクリロニトリル膜
(番号B22は本実施例で得た膜とほぼ同じ黄色ないし
黄褐色を有する)は硫化銅の混入によるものであること
が分つているが(たとえば,Polymon Prep
rints,JapanVol.31,No3,1H1
1),この既知の上記硫化銅処理ポリアクリロニトリル
膜においては導電性を有する硫化銅は膜の表面層にのみ
存在し,従つてこの膜の表面電気伝導度は大きいものの
膜の厚さ方向の電気伝導度は小さいという結果を与えて
いる。これに対して,本実施例で得られた膜の場合には
硫化銅が膜全体に均一に分散していると考えられ,その
ために膜の表面電気伝導度ばかりでなく膜の厚さ方向の
電気伝導度も大きくなつており実用上の利点を有する。
Even when polyacrylonitrile was added, no precipitate was formed. About 4.5 cm of the solution obtained in this way
After spreading the mixture uniformly on a 7 cm x 7 cm glass plate, the dimethyl sulfoxide was removed under vacuum to obtain a yellow to tan film, which was apparently transparent. The surface electrical conductivity of this film is the surface electrical conductivity of a known copper sulfide-treated polyacrylonitrile film (industrial product, number B22, film thickness 60 μm) obtained by treating the surface of a polyacrylonitrile film with a copper compound and a sulfur compound. It was almost the same. However, the electrical conductivity in the thickness direction of the film prepared in this example was 4 × 10-4 Scm-1 at room temperature, and the above-mentioned known industrial product copper sulfide-treated polyacrylonitrile film (No. B
22, film thickness 60 μm) at room temperature in the thickness direction of the film (4×10 −10 Scm −1 ). That is, the above-mentioned copper sulfide-treated polyacrylonitrile film (number B22 has a yellow to tan color almost the same as the film obtained in this example) is obtained by treating a polyacrylonitrile film, which normally has insulating properties, with a copper compound and a sulfur compound. Although it is known that this is due to the contamination of copper sulfide (for example, Polymon Prep
rints, Japan Vol. 31, No3, 1H1
1) In this known copper sulfide-treated polyacrylonitrile film, the conductive copper sulfide exists only in the surface layer of the film, and therefore, although the surface electrical conductivity of this film is high, the electrical conductivity in the thickness direction of the film is The results show that the conductivity is low. On the other hand, in the case of the film obtained in this example, it is thought that copper sulfide is uniformly dispersed throughout the film, and therefore, not only the surface electrical conductivity of the film but also the thickness direction of the film It also has high electrical conductivity and has practical advantages.

実施例6. 酢酸銅(Cu(OCOCH3)2・H2O)10mmo
lを100mlのジメチルスルホキシドに溶解させ,こ
の溶液を入れた容器の気体を真空ポンプにより除く。つ
いで,この容器に十分な量の乾燥H2Sを加えてから溶
液を室温で撹拌する。反応終了後,生成した少量の沈殿
をN2ガス下での濾過により除き均一溶液を得た。この
溶液を室温において長時間保存しても沈殿を生ずること
なく溶液は安定に存在した(N2ガス下)。一方,この
溶液の一部をとり,ここへ多量のアセトンを加えると硫
化銅に特徴的な黒色ないし灰色がかつた黒色の沈殿が生
成し,一旦生成した沈殿はもはやジメチルスルホキシド
に溶解しなかつた。反応の経緯から,この黒色ないし灰
色がかつた黒色の沈殿は硫化銅であると考えられ,実際
この沈殿を集め乾燥して得られた物質の粉末X線回折パ
ターンはCuSの粉末X線回折パターンと一致した。本
実施例において得られた溶液は黒色ないし暗黒緑色を呈
していた。また,本実施例において反応によつて副生す
る酢酸は(Cu(OCOCH3)2+H2S→CuS+
2CH3COOH)真空下で容易に除去される。本実施
例においてジメチルスルホキシドの代りにN,N−ジメ
チルホルムアミドを用いても同様に硫化銅を溶存状態で
含有すると考えられる溶液を得た。この場合にも,この
溶液にアセトンを加えて得られる硫化銅と考えられる黒
色ないし灰色がかつた黒色の沈殿は一旦沈殿となつた後
はもはやN,N−ジメチルホルムアミドに溶解しなかつ
た,本実施例で得られた硫化銅は電気伝導性を有した。
Example 6. Copper acetate (Cu(OCOCH3)2・H2O) 10mmo
1 is dissolved in 100 ml of dimethyl sulfoxide, and the gas in the container containing this solution is removed using a vacuum pump. A sufficient amount of dry H2S is then added to the vessel and the solution is stirred at room temperature. After the reaction was completed, a small amount of precipitate formed was removed by filtration under N2 gas to obtain a homogeneous solution. Even when this solution was stored at room temperature for a long time, the solution remained stable without precipitation (under N2 gas). On the other hand, when a large amount of acetone was added to a portion of this solution, a black or grayish black precipitate, characteristic of copper sulfide, was formed, and once formed, the precipitate was no longer soluble in dimethyl sulfoxide. . Based on the history of the reaction, this black or grayish black precipitate is thought to be copper sulfide, and in fact, the powder X-ray diffraction pattern of the material obtained by collecting and drying this precipitate is the powder X-ray diffraction pattern of CuS. matched. The solution obtained in this example had a black to dark green color. In addition, in this example, the acetic acid produced by the reaction was (Cu(OCOCH3)2+H2S→CuS+
2CH3COOH) is easily removed under vacuum. In this example, even when N,N-dimethylformamide was used in place of dimethyl sulfoxide, a solution thought to contain copper sulfide in a dissolved state was similarly obtained. In this case as well, the black or grayish black precipitate, which is thought to be copper sulfide, obtained by adding acetone to this solution was no longer soluble in N,N-dimethylformamide once it became a precipitate. The copper sulfide obtained in the example had electrical conductivity.

実施例7. 酢酸ニッケルとH2S反応をジメチルスルホキシド中で
行なうことにより均一溶液を得た。この溶液にアセトン
を加えると硫化ニッケルと考えられる黒色沈殿が生成し
た。この黒色沈殿の一部はジメチルスルホキシドに可溶
であるがその溶解度は小さく,合成条件下で得た上記溶
液は明らかに硫化ニッケルと考えられる黒色化合物を過
飽和あるいは準安定状態において多量に溶存させている
ことが分つた。市販の硫化ニッケルもジメチルスルホキ
シド中にごく少量ではあるが溶解した。また,ZnI2
とH2Sの反応により同様にZnSを溶存させた溶液を
得た。また,この溶液にポリアクリロニトリル等の高分
子化合物を溶かし込んだ溶液を調製し,この溶液の一部
を分取し真空下で揮発成分を除くことによりZnSと高
分子化合物から成る組成物を得た。ZnI2とH2Sの
反応はジメチルスルホキシド中で行なつた。
Example 7. A homogeneous solution was obtained by carrying out the H2S reaction with nickel acetate in dimethyl sulfoxide. When acetone was added to this solution, a black precipitate, believed to be nickel sulfide, was formed. A part of this black precipitate is soluble in dimethyl sulfoxide, but its solubility is low, and the solution obtained under the synthesis conditions clearly contains a large amount of the black compound, which is thought to be nickel sulfide, dissolved in a supersaturated or metastable state. I found out that there was. Commercially available nickel sulfide also dissolved in dimethyl sulfoxide, albeit in a very small amount. Also, ZnI2
A solution in which ZnS was similarly dissolved was obtained by the reaction of H2S and H2S. In addition, a composition consisting of ZnS and a polymer compound can be obtained by preparing a solution by dissolving a polymer compound such as polyacrylonitrile in this solution, separating a portion of this solution, and removing volatile components under vacuum. Ta. The reaction between ZnI2 and H2S was carried out in dimethyl sulfoxide.

実施例8. 実施例2.及び実施例5.で得られる膜(各々,硫化カ
ドミウムとポリアクリロニトリルから成る組成物ででき
た膜及び硫化銅とポリアクリロニトリルから成る組成物
でできた膜)と同様の膜を透明ガラス電極板(松崎真空
(株)製ネサガラス板)上に形成させる(各々別の透明
ガラス電極板上に形成させる)。それぞれの膜面を接触
させ外部より光を照射すると両膜間に起電力が生ずるこ
とが分つた。また,実施例5.で得られる膜は導電性を
有するので電磁波のシールド材としての機能を有すると
考えられる。
Example 8. Example 2. and Example 5. (respectively, a film made of a composition made of cadmium sulfide and polyacrylonitrile, and a film made of a composition made of copper sulfide and polyacrylonitrile) and a similar film were coated on a transparent glass electrode plate (Matsuzaki Vacuum Co., Ltd.). (each formed on a separate transparent glass electrode plate). It was found that when the respective membrane surfaces were brought into contact and irradiated with light from the outside, an electromotive force was generated between the two membranes. Also, Example 5. Since the film obtained is electrically conductive, it is thought to function as a shielding material for electromagnetic waves.

実施例9. 実施例6.で調製した硫化銅を溶存させたジメチルスル
ホキミドの溶液にポリアクロニトリルを溶かし込む。こ
の時硫化銅が沈殿することはなかつた。このようにして
得た溶液の一部をガラス板上に展開し真空下で揮発成分
を除くことにより硫化銅とポリアクリロニトリルを含有
する組成物を得た。この組成物は膜状であり,膜の厚さ
方向の電気伝導度(室温における値)は組成物中におけ
る硫化銅のポリアクリロニトリルに対する重量比が0.
25,0.47,0.79の時に各々約10−11Sc
m−1,10−5Scm−1,10−3Scm−1であ
り後者の2サンプルは半導性を示した。
Example 9. Example 6. Polyaclonitrile is dissolved in the dimethylsulfokimide solution in which copper sulfide is dissolved. At this time, copper sulfide did not precipitate. A portion of the solution thus obtained was spread on a glass plate and volatile components were removed under vacuum to obtain a composition containing copper sulfide and polyacrylonitrile. This composition is in the form of a film, and the electrical conductivity (value at room temperature) in the thickness direction of the film is determined when the weight ratio of copper sulfide to polyacrylonitrile in the composition is 0.
Approximately 10-11Sc at 25, 0.47, and 0.79, respectively.
m-1, 10-5 Scm-1, and 10-3 Scm-1, and the latter two samples showed semiconductivity.

Claims (1)

【特許請求の範囲】 (1)金属化合物とイオウ又はイオウ化合物とを極性非
水溶媒中で反応させて金属硫化物を生成せしめた後に得
られる溶液であって、かつ当該金属硫化物を溶存状態(
過飽和状態での溶存状態、準安定状態での溶存状態及び
当該金属硫化物の3×10^−^6(300Å)以下の
粒子径を有する分子集合体としての溶存状態を含む)で
含有することを特徴とする溶液。 (2)極性非水溶媒として、分子式 ▲数式、化学式、表等があります▼又は▲数式、化学式
、表等があります▼ (R、R′はH又はアルキル基等の置換基を表わす)の
いずれかで表わされる化合物を用いるか、あるいは上記
分子式のいずれかで表わされる化合物を極性非水溶媒の
主成分として用いるかして得られる特許請求の範囲第1
項記載の溶液。 (3)当該金属硫化物を、当該溶液中への当該金属硫化
物の平衡時における溶解度から見積もられる量以上に溶
存状態(過飽和状態での溶存状態、準安定状態での溶存
状態及び当該金属硫化物の3×10^−^6cm(30
0Å)以下の粒子径を有する分子集合体としての溶存状
態を含む)で含有することを特徴とする特許請求の範囲
第1項又は第2項記載の溶液。 (4)当該金属硫化物を過飽和状態、準安定状態あるい
は当該金属硫化物の3×10^−^6cm(300Å)
以下の粒子径を有する分子集合体としての溶存状態にお
いて溶存せしめていることを特徴とする特許請求の範囲
第1項から第3項までのいずれかに記載の溶液。 (5)金属化合物中の金属元素の酸化数が+1又は+2
である場合にこの金属化合物を反応に用いて得られる特
許請求の範囲第1項から第4項までのいずれかに記載の
溶液。 (6)金属化合物中の金属元素が正の一価元素あるいは
正の二価元素である場合にこの金属化合物を反応に用い
て得られる特許請求の範囲第1項から第5項までのいず
れかに記載の溶液。 (7)金属化合物の金属元素が亜鉛族元素及び銅族元素
を含む広義の変遷元素に属するときにこの金属化合物を
反応に用いて得られる特許請求の範囲第1項から第6項
までのいずれかに記載の溶液。 (8)金属化合物中の金属元素が亜鉛族元素である場合
にこの金属化合物を反応に用いて得られる特許請求の範
囲第1項から第7項までのいずれかに記載の溶液。 (9)金属化合物中の金属元素が銅族元素である場合に
この金属化合物を反応に用いて得られる特許請求の範囲
第1項から第7項までのいずれかに記載の溶液。 (10)金属化合物中の金属元素がVIII族元素である場
合にこの金属化合物を反応に用いて得られる特許請求の
範囲第1項から第7項までのいずれかに記載の溶液。 (11)金属化合物として一価又は二価の陰イオン又は
陰イオン性配位子を含む化合物を用いて得られる特許請
求の範囲第1項から第10項までのいずれかに記載の溶
液。 (12)金属化合物として金属元素のハロゲン化合物又
はカルボン酸塩を用いて得られる特許請求の範囲第1項
から第11項までのいずれかに記載の溶液。 (13)金属化合物として金属元素に有機基又は有機配
位子が結合した化合物を用いて得られる特許請求の範囲
第1項から第12項までのいずれかに記載の溶液。 (14)金属化合物としてカドミウム化合物を用いて得
られる特許請求の範囲第1項から第8項まで及び第11
項から第13項までのいずれかに記載の溶液。 (15)金属化合物として亜鉛化合物を用いて得られる
特許請求の範囲第1項から第8項まで及び第11項から
第13項までのいずれかに記載の溶液。 (16)金属化合物として銅化合物を用いて得られる特
許請求の範囲第1項から第7項まで及び第9項及び第1
1項から第13項までのいずれかに記載の溶液。 (17)金属化合物としてニッケル化合物を用いて得ら
れる特許請求の範囲第1項から第7項まで及び第10項
及び第11項から第13項までのいずれかに記載の溶液
。 (18)特許請求の範囲第1項から第17項に記載の溶
液を得るための反応においてイオウ化合物を用いる場合
にイオウ化合物として当該極性非水溶媒に可溶性のイオ
ウ化合物を用いて得られることを特徴とする特許請求の
範囲第1項から第17項までのいずれかに記載の溶液。 (19)特許請求の範囲第1項から第17項に記載の溶
液を得るための反応においてイオウ化合物を用いる場合
にイオウ化合物として硫化水素を用いて得られることを
特徴とする特許請求の範囲第1項から第17項までのい
ずれかに記載の溶液。 (20)特許請求の範囲第1項から第17項に記載の溶
液を得るための反応においてイオウ化合物を用いて得ら
れることを特徴とする特許請求の範囲第1項から第17
項までのいずれかに記載の溶液。 (21)金属化合物とイオウ又はイオウ化合物の反応に
よって金属硫化物を生成させるに際して、反応前に金属
化合物中の金属元素に結合していた元素又は基あるいは
配位子に由来した化合物が生成する場合において、その
化合物が真空装置を用いて除去しうる揮発性を有する場
合に得られる特許請求の範囲第1項から第20項までの
いずれかに記載の溶液。 (22)反応によって生成した金属硫化物中の金属元素
1モルに対するイオウのモル数が0.4ないし3.1の
範囲にあることを特徴とする特許請求の範囲第1項から
第21項までのいずれかに記載の溶液。 (23)特許請求の範囲第1項から第22項までに記載
のいずれかの溶液を得るに際して、高分子化合物を溶か
し込んだ極性非水溶媒を用いて得られる特許請求の範囲
第1項から第22項のいずれかに記載の溶液。 (24)特許請求の範囲第1項から第23項までのいず
れかに記載の溶液にさらに高分子化合物を溶かし込んで
得られる溶液。 (25)高分子化合物を溶かし込む際に金属硫化物を不
溶化せしめない高分子化合物を用いて得られる特許請求
の範囲第24項に記載の溶液。 (26)高分子化合物として側鎖又は主鎖に窒素原子を
含有する化合物を用いて得られる特許請求の範囲第25
又は第24項又は第23項のいずれかに記載の溶液。 (27)シアノ基又は▲数式、化学式、表等があります
▼で表される結合単位を有する高分子化合物を用いて得
られる特許請求の範囲第23項から第26項までのいず
れかに記載の溶液。 (28)高分子化合物として側鎖又は主鎖に酸素原子を
含有する化合物を用いて得られる特許請求の範囲第23
項から第25項までのいずれかに記載の溶液。 (29)−O−又は▲数式、化学式、表等があります▼
で表わされる結合単位を有する高分子化合物を用いて得
られる特許請求の範囲第23項から第25項までのいず
れか又は第28項に記載の溶液。 (30)側鎖又は主鎖にイオウを含有する高分子化合物
を用いて得られる特許請求の範囲第23項から第25項
までのいずれかに記載の溶液。 (31)▲数式、化学式、表等があります▼で表わされ
る結合単位を有する高分子化合物を用いて得られる特許
請求の範囲第23項から第25項までのいずれか又は第
30項に記載の溶液。 (32)ハロゲンを含有する高分子化合物を用いて得ら
れる特許請求の範囲第23項から第25項までのいずれ
かに記載の溶液。 (33)特許請求の範囲第1項から第22項までのいず
れかに記載の溶液から回収される金属硫化物。 (34)特許請求の範囲第1項から第22項までのいず
れかに記載の溶液から溶媒を除去することにより金属硫
化物を回収する方法。 (36)回収された金属硫化物の粒子径が10^−^5
cm(1000Å)以下の微粒子状であることを特徴と
する特許請求の範囲第33項に記載の金属硫 化物。 (37)特許請求の範囲第1項から第22項までのいず
れかに記載の溶液を層状に展開し溶媒を除去することに
よって得られる薄膜状金属硫化物。 (38)特許請求の範囲第23項から第32項までのい
ずれかに記載の溶液から回収される、金属硫化物と高分
子化合物から成る組成物。 (39)高分子化合物中に金属硫化物を高度に分散させ
ていることを特徴とする特許請求の範囲第38項に記載
の組成物。 (40)特許請求の範囲第1項から第32項までのいず
れかに記載の溶液の中に触媒の担体となる物質を浸して
金属硫化物を当該担体に担持させて得られる組成物。 (41)特許請求の範囲第33項又は第36項から第4
0項までのいずれかに記載の金属硫化物又は組成物を水
素添加用触媒として用いる利用法。 (42)特許請求の範囲第33項又は第36項から第4
0項までのいずれかに記載の金属硫化物又は組成物を脱
硫触媒として用いる利用法。 (43)特許請求の範囲第33項又は第36項から第3
9項までのいずれかに記載の金属硫化物または組成物を
半導体として用いる利用法。 (44)特許請求の範囲第33項又は第36項から第3
9項までのいずれかに記載の金属硫化物又は組成物を太
陽電池の発電用素子として用いる利用法。 (45)特許請求の範囲第37項から第39項までのい
ずれかに記載の金属硫化物又は組成物を電磁波のシール
ド材に用いる利用法。 (46)特許請求の範囲第38項又は第39項までのい
ずれかに吉舎員金属硫化物又は組成物を電池の政局活物
質として用いる利用法。 (48)電池の負極活物質がリチウムである場合の特許
請求の範囲第47項に記載の利用法。 (49)特許請求の範囲第33項又は第36項から第3
9項までのいずれかに記載の金属硫化物又は組成物を光
電導セルの素子として用いる利用法。 (50)特許請求の範囲第33項又は第36項から第3
9項までのいずれかに記載の金属硫化物又は組成物を感
光性物質として用いる利用法。 (51)特許請求の範囲第33項又は第36項から第3
9項までのいずれかに記載の金属硫化物又は組成物をガ
ス類検出のためのガスセンサーとして用いる利用法。
[Scope of Claims] (1) A solution obtained by reacting a metal compound and sulfur or a sulfur compound in a polar non-aqueous solvent to produce a metal sulfide, the solution containing the metal sulfide in a dissolved state. (
(including the dissolved state in a supersaturated state, the dissolved state in a metastable state, and the dissolved state as a molecular aggregate having a particle size of 3 x 10^-^6 (300 Å) or less of the metal sulfide) A solution characterized by: (2) As a polar non-aqueous solvent, either the molecular formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ or ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (R and R' represent H or a substituent such as an alkyl group) Claim 1 obtained by using a compound represented by the following or by using a compound represented by any of the above molecular formulas as the main component of a polar nonaqueous solvent.
Solution as described in section. (3) The metal sulfide is dissolved in an amount exceeding the amount estimated from the solubility of the metal sulfide in the solution at equilibrium (dissolved state in a supersaturated state, dissolved state in a metastable state, and the dissolved state in which the metal sulfide 3 x 10^-^6cm (30
3. The solution according to claim 1 or 2, characterized in that the solution contains the compound in a dissolved state as a molecular aggregate having a particle size of 0 Å or less. (4) The metal sulfide is in a supersaturated state, metastable state, or 3 x 10^-^6cm (300 Å) of the metal sulfide.
The solution according to any one of claims 1 to 3, wherein the solution is dissolved in a dissolved state as a molecular aggregate having the following particle diameter. (5) The oxidation number of the metal element in the metal compound is +1 or +2
The solution according to any one of claims 1 to 4, which is obtained by using this metal compound in the reaction. (6) Any of claims 1 to 5 obtained by using this metal compound in a reaction when the metal element in the metal compound is a positive monovalent element or a positive divalent element. The solution described in. (7) Any of claims 1 to 6 obtained by using a metal compound in a reaction when the metal element of the metal compound belongs to a transition element in a broad sense including zinc group elements and copper group elements. Solution described in Crab. (8) The solution according to any one of claims 1 to 7, which is obtained by using a metal compound in a reaction when the metal element in the metal compound is a zinc group element. (9) The solution according to any one of claims 1 to 7, which is obtained by using a metal compound in a reaction when the metal element in the metal compound is a copper group element. (10) The solution according to any one of claims 1 to 7, which is obtained by using a metal compound in a reaction when the metal element in the metal compound is a Group VIII element. (11) The solution according to any one of claims 1 to 10, which is obtained using a compound containing a monovalent or divalent anion or an anionic ligand as the metal compound. (12) The solution according to any one of claims 1 to 11, which is obtained using a halogen compound or carboxylate of a metal element as the metal compound. (13) The solution according to any one of claims 1 to 12, which is obtained using a compound in which an organic group or an organic ligand is bonded to a metal element as the metal compound. (14) Claims 1 to 8 and 11 obtained by using a cadmium compound as a metal compound.
The solution according to any one of Items 1 to 13. (15) The solution according to any one of claims 1 to 8 and 11 to 13, which is obtained using a zinc compound as the metal compound. (16) Claims 1 to 7 and 9 and 1 obtained by using a copper compound as a metal compound.
The solution according to any one of Items 1 to 13. (17) The solution according to any one of claims 1 to 7, 10, and 11 to 13, which is obtained using a nickel compound as the metal compound. (18) When a sulfur compound is used in the reaction for obtaining a solution according to claims 1 to 17, it is understood that the sulfur compound can be obtained by using a sulfur compound soluble in the polar non-aqueous solvent as the sulfur compound. 18. A solution according to any one of claims 1 to 17. (19) When a sulfur compound is used in the reaction for obtaining the solution according to claims 1 to 17, the solution is obtained by using hydrogen sulfide as the sulfur compound. The solution according to any one of Items 1 to 17. (20) Claims 1 to 17 characterized in that the solution is obtained using a sulfur compound in the reaction for obtaining the solution described in Claims 1 to 17.
The solution described in any of the preceding paragraphs. (21) When a metal sulfide is produced by a reaction between a metal compound and sulfur or a sulfur compound, a compound derived from an element, group, or ligand bonded to a metal element in the metal compound before the reaction is produced. 21. A solution according to any one of claims 1 to 20 obtained when the compound has a volatility that can be removed using a vacuum device. (22) Claims 1 to 21, characterized in that the number of moles of sulfur per mole of metal element in the metal sulfide produced by the reaction is in the range of 0.4 to 3.1. A solution according to any of the above. (23) Claims 1 to 22 obtained by using a polar non-aqueous solvent in which a polymer compound is dissolved when obtaining any of the solutions described in claims 1 to 22. Solution according to any of paragraph 22. (24) A solution obtained by further dissolving a polymer compound in the solution according to any one of claims 1 to 23. (25) The solution according to claim 24, which is obtained using a polymer compound that does not insolubilize metal sulfides when the polymer compound is dissolved. (26) Claim 25 obtained by using a compound containing a nitrogen atom in the side chain or main chain as the polymer compound
or the solution according to any one of paragraphs 24 and 23. (27) The claim described in any one of claims 23 to 26 obtained using a polymer compound having a cyano group or a bonding unit represented by ▲a mathematical formula, a chemical formula, a table, etc. solution. (28) Claim 23 obtained by using a compound containing an oxygen atom in the side chain or main chain as the polymer compound
The solution according to any one of Items 1 to 25. (29) -O- or ▲There are mathematical formulas, chemical formulas, tables, etc.▼
The solution according to any one of claims 23 to 25 or claim 28, which is obtained using a polymer compound having a bonding unit represented by: (30) The solution according to any one of claims 23 to 25, which is obtained using a polymer compound containing sulfur in its side chain or main chain. (31) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ Any of claims 23 to 25 or claim 30 obtained using a polymer compound having a bonding unit represented by ▼ solution. (32) The solution according to any one of claims 23 to 25, which is obtained using a halogen-containing polymer compound. (33) A metal sulfide recovered from the solution according to any one of claims 1 to 22. (34) A method for recovering metal sulfides by removing a solvent from a solution according to any one of claims 1 to 22. (36) The particle size of the recovered metal sulfide is 10^-^5
34. The metal sulfide according to claim 33, which is in the form of fine particles of 1000 Å or less. (37) A thin film-like metal sulfide obtained by developing the solution according to any one of claims 1 to 22 in a layered manner and removing the solvent. (38) A composition comprising a metal sulfide and a polymer compound recovered from the solution according to any one of claims 23 to 32. (39) The composition according to claim 38, wherein the metal sulfide is highly dispersed in the polymer compound. (40) A composition obtained by immersing a substance serving as a catalyst carrier in the solution according to any one of claims 1 to 32 to support metal sulfide on the carrier. (41) Claims 33 or 36 to 4
A method of using the metal sulfide or composition according to any one of items 0 to 0 as a hydrogenation catalyst. (42) Claims 33 or 36 to 4
A method of using the metal sulfide or composition according to any of items up to item 0 as a desulfurization catalyst. (43) Claims 33 or 36 to 3
A method of using the metal sulfide or composition according to any one of items 9 to 9 as a semiconductor. (44) Claims 33 or 36 to 3
A method of using the metal sulfide or composition according to any one of items 9 to 9 as a power generation element of a solar cell. (45) A method of using the metal sulfide or composition according to any one of claims 37 to 39 as an electromagnetic wave shielding material. (46) A method of using a kisaan metal sulfide or a composition as a political active material in a battery according to any one of claims 38 and 39. (48) The method of use according to claim 47, when the negative electrode active material of the battery is lithium. (49) Claims 33 or 36 to 3
A method of using the metal sulfide or composition according to any one of items 9 to 9 as an element of a photoconductive cell. (50) Claims 33 or 36 to 3
A method of using the metal sulfide or composition according to any of items 9 through 9 as a photosensitive substance. (51) Claims 33 or 36 to 3
A method of using the metal sulfide or composition according to any one of items 9 to 9 as a gas sensor for detecting gases.
JP59209859A 1984-10-08 1984-10-08 Metal sulfide Granted JPS6191005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59209859A JPS6191005A (en) 1984-10-08 1984-10-08 Metal sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59209859A JPS6191005A (en) 1984-10-08 1984-10-08 Metal sulfide

Publications (2)

Publication Number Publication Date
JPS6191005A true JPS6191005A (en) 1986-05-09
JPH058121B2 JPH058121B2 (en) 1993-02-01

Family

ID=16579805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59209859A Granted JPS6191005A (en) 1984-10-08 1984-10-08 Metal sulfide

Country Status (1)

Country Link
JP (1) JPS6191005A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006080318A1 (en) * 2005-01-25 2006-08-03 Kaneka Corporation Resin composition containing metal sulfide nano particles and method for producing said composition
JP2011513181A (en) * 2008-03-06 2011-04-28 バイエル・テクノロジー・サービシーズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Copper indium sulfide semiconductor nanoparticles and method for preparing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110008A (en) * 1984-06-22 1986-01-17 Ryuichi Yamamoto Metal sulfide
JPS6172603A (en) * 1984-09-18 1986-04-14 Ryuichi Yamamoto Metal sulfide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6110008A (en) * 1984-06-22 1986-01-17 Ryuichi Yamamoto Metal sulfide
JPS6172603A (en) * 1984-09-18 1986-04-14 Ryuichi Yamamoto Metal sulfide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006080318A1 (en) * 2005-01-25 2006-08-03 Kaneka Corporation Resin composition containing metal sulfide nano particles and method for producing said composition
JP2011513181A (en) * 2008-03-06 2011-04-28 バイエル・テクノロジー・サービシーズ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Copper indium sulfide semiconductor nanoparticles and method for preparing the same

Also Published As

Publication number Publication date
JPH058121B2 (en) 1993-02-01

Similar Documents

Publication Publication Date Title
Syed et al. Polyaniline—A novel polymeric material
Connell et al. Low cost triazatruxene hole transporting material for> 20% efficiency perovskite solar cells
Montoro et al. Gelatin/DMSO: a new approach to enhancing the performance of a pyrite electrode in a lithium battery
Lu et al. In situ growth of CuS thin films on functionalized self-assembled monolayers using chemical bath deposition
Ahmad et al. Graphene oxide based planar heterojunction perovskite solar cell under ambient condition
US5292792A (en) Conductive polymers
Godovsky et al. Preparation of nanocomposites of polyaniline and inorganic semiconductors
Auborn et al. Amorphous molybdenum sulfide electrodes for nonaqueous electrochemical cells
JP3309131B2 (en) Organic dye-sensitized niobium oxide semiconductor electrode and solar cell including the same
Jeyabanu et al. Effect of electrical conductivity studies for CuS nanofillers mixed magnesium ion based PVA-PVP blend polymer solid electrolyte
US4834911A (en) Intrinsically conductive and semiconductive polymers, products formed with such polymers and methods of forming same
JPH09153362A (en) Electrode material and secondary battery
Acharya et al. Characterization of cdse/polythiophene nanocomposite by tga/dta, xrd, uv-vis spectroscopy, sem-edxa and ftir
Ahmad et al. Improved photovoltaic performance and stability of perovskite solar cells with device structure of (ITO/SnO2/CH3NH3PbI3/rGO+ spiro-MeOTAD/Au)
CA2012638A1 (en) Ferrocene derivatives, surfactants containing same and process for producing organic thin films
Khanna et al. In situ SeO 2 promoted synthesis of CdSe/PPy and Se/PPy nanocomposites and their utility in optical sensing for detection of Hg 2+ ions
CN116325203A (en) Air stable solid sulfide electrolyte
JPS6191005A (en) Metal sulfide
Biryan et al. Molecular design of ferrocene-based novel polymer using click chemistry via chemoselective polymerization and investigation of electrical properties as organic Schottky diode
Yi et al. Ecofriendly Mn3O4 as a novel hole transport material for efficient and ultrastable flexible and rigid perovskite solar cells
Majidzade et al. THE LATEST PROGRESS ON SYNTHESIS AND INVESTIGATION OF SB2S3-BASED THIN FILMS
Petrella et al. Photoelectrochemical properties of ZnO nanocrystals/MEH-PPV composite: the effects of nanocrystals synthetic route, film deposition and electrolyte composition
JPS6172603A (en) Metal sulfide
JPS61215661A (en) Metal sulfide
JP2002100420A (en) Semiconductor for photoelectric transfer material of superior photoelectric transfer efficiency and durability, photoelectric transfer element, and solar battery