JPS61215661A - Metal sulfide - Google Patents

Metal sulfide

Info

Publication number
JPS61215661A
JPS61215661A JP5900685A JP5900685A JPS61215661A JP S61215661 A JPS61215661 A JP S61215661A JP 5900685 A JP5900685 A JP 5900685A JP 5900685 A JP5900685 A JP 5900685A JP S61215661 A JPS61215661 A JP S61215661A
Authority
JP
Japan
Prior art keywords
sulfide
composition
composition according
solvent
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5900685A
Other languages
Japanese (ja)
Other versions
JPH0482026B2 (en
Inventor
Ryuichi Yamamoto
隆一 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP5900685A priority Critical patent/JPS61215661A/en
Publication of JPS61215661A publication Critical patent/JPS61215661A/en
Publication of JPH0482026B2 publication Critical patent/JPH0482026B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

PURPOSE:To provide a compsn. mainly composed of a metal sulfide and a high-molecular compd., which can be used as a semiconductor, a power element for a solar cell, a commutating element, etc., by removing a solvent from a liquid material obtd. by dissolving a high-molecular material in a dispersion of a metal sulfide in a solvent in a state of a sol. CONSTITUTION:A sulfur compd. [e.g. H2S or (NH4)2S] is added to a soln. of a metal compd. [e.g. CdI2 or Cd(OCOCH3)2] in a solvent to prepare a liquid material contg. the metal sulfide in a state of a sol. A high-molecular material is dissolved in the liquid material to obtain a liquid material (apparently uniform soln.). The solvent is then removed from said liquid material by precipitation or evaporation to form the above compsn. Preferred solvents are compds. of the formula (wherein R, R' is H, alkyl). Preferred examples of the high- molecular compds. are those contg. a cyano, carbonyl or arom. group.

Description

【発明の詳細な説明】 金属硫化物は半導体あるいは触媒としての機能を有し,
種々の電気回路の素子などに用いられている。たとえば
CdSは光電導性を有し(共立出版「化学大辞典」3巻
585頁),硫化銅と硫化カドミウムから成る太陽電池
の作製も可能である。また,いくつかの金属硫化物は導
電体,蛍光体あるいはリチウム電池等の電池の正極活物
質として用いられている(たとえば,前出「化学大辞典
」9巻645頁,Electrochernical 
Society(米国)刊「Lithium Batt
eries」p.349,p.381,p.421(1
981)等)。しかし,金属硫化物は一般的に機械的強
度に劣り成型が困難であり膜状物質等を得るのが難しい
化合物である。一方,高分子化合物は成型性にすぐれて
おり,膜状物質等を容易に得ることができる化合物であ
る。本発明は両者の特長を生かし,両者から成る組成物
を得るものである。すなわち,電気的に有用な特性を有
する金属硫化物と成型性には優れているが金属硫化物の
ような電気的,触媒的特性を有しない高分子化合物から
成る組成物に関する本発明によつて種々の機能を有する
有用な物質が得られる。
[Detailed description of the invention] Metal sulfides have functions as semiconductors or catalysts,
It is used in various electric circuit elements. For example, CdS has photoconductivity (Kyoritsu Shuppan Kagaku Daijiten, Vol. 3, p. 585), and it is also possible to produce solar cells made of copper sulfide and cadmium sulfide. In addition, some metal sulfides are used as conductors, phosphors, or positive electrode active materials for batteries such as lithium batteries (for example, the above-mentioned ``Chemistry Encyclopedia'' Vol. 9, p. 645, Electrochemical
“Lithium Bat” published by Society (USA)
eries” p. 349, p. 381, p. 421 (1
981) etc.). However, metal sulfides generally have poor mechanical strength and are difficult to mold, making them difficult to form into film-like materials. On the other hand, polymer compounds have excellent moldability and are compounds from which film-like materials can be easily obtained. The present invention takes advantage of the features of both to obtain a composition comprising both. That is, the present invention relates to a composition comprising a metal sulfide that has electrically useful properties and a polymer compound that has excellent moldability but does not have the electrical and catalytic properties of metal sulfides. Useful substances with various functions can be obtained.

本発明の組成物を得る過程においては,金属硫化物は当
初半径約3×10−5cm以下の微粒子としてゾル(コ
ロイド溶液)中に存在し高度に分散している状態にある
。したがつて,この高度に分散した金属硫化物を含有す
る液状物質にさらに高分子化合物を溶解状態で存在せし
め,しかる後に沈殿法,乾固法等によつて溶媒を除けば
高分子化合物中に金属硫化物が高度に分散した本発明の
組成物が得られる。従つて,本発明の組成物は単に金属
硫化物と高分子化合物が混合されて生成したものではな
く,組成物中において金属硫化物が微粒子として高度に
分散している物質であり,超簿膜状の機能性膜を得たり
する上で利点を有し,又すぐれた機能,特性を有する。
In the process of obtaining the composition of the present invention, the metal sulfide initially exists in the sol (colloidal solution) as fine particles with a radius of about 3 x 10 -5 cm or less and is in a highly dispersed state. Therefore, by making a polymer compound exist in a dissolved state in the liquid material containing highly dispersed metal sulfides, and then removing the solvent by a precipitation method, drying method, etc., the polymer compound is dissolved. A composition according to the invention is obtained in which the metal sulfide is highly dispersed. Therefore, the composition of the present invention is not simply a mixture of a metal sulfide and a polymer compound, but is a substance in which the metal sulfide is highly dispersed as fine particles, and the composition has a super thin film. It has an advantage in obtaining a functional film with a similar shape, and also has excellent functions and properties.

すなわち,本発明の組成物はこのような高度な分散状態
にあることにより優れた物性を有し,半導体,整流用素
子等としての広範な用途を有する。特に本発明では今ま
で知られていなかつた金属硫化物の新しいゾル(特許請
求の範囲第4項中に記載の分子式で表わされるスルホキ
シド類,ホルムアミド類中における硫化銅,硫化カドミ
ウム等の新しいゾル)を得,これも本発明の組成物の作
製に利用しており,この金属硫化物の新しいゾルの調整
という点にも本発明の特長の一つがある(すなわち,ス
ルホキシド類,ホルムアミド類は種々高分子化合物を溶
解させることができ,従つて本発明によつて種々の金属
硫化物と高分子化合物から成る組成物を得ることができ
る)。本発明の組成物は,一般に金属硫化物を含有する
溶液(この溶液には当初より高分子化合物が溶かし込ま
れていてもよい)中にH2S,(NH4)2S等のイオ
ウ化合物を加えることにより金属硫化物のゾルを調整し
,ここにさらにポリマー(ヒドロゾルの場合には水溶性
高分子化合物,オルガノゾルの場合には当該有機溶媒に
可溶なポリマー)を加えて溶かし,このようにして得ら
れた液状物質から溶媒を再沈法,蒸発法等によつて除去
することによつて得られる。必要に応じて,金属硫化物
のゾルを調整する前の溶液にポリマーを溶解させておき
,あるいはさらにこのポリマー含有溶液を用いて調整さ
れた金属硫化物のゾルにさらにポリマーを溶解させるこ
とにより金属硫化物をゾルの状態で含有しかつ高分子化
合物を含有する液状物質を得て,これらの液状物質から
本発明の組成物を得ることもできる。つぎに本発明の実
施例を示す。
That is, the composition of the present invention has excellent physical properties due to being in such a highly dispersed state, and has a wide range of uses as semiconductors, rectifying elements, etc. In particular, in the present invention, a new sol of metal sulfides that has not been known until now (a new sol of copper sulfide, cadmium sulfide, etc. in sulfoxides and formamides represented by the molecular formula described in claim 4) This is also utilized in the production of the composition of the present invention, and one of the features of the present invention is the preparation of a new sol of this metal sulfide (i.e., sulfoxides and formamides are molecular compounds can be dissolved and thus compositions of various metal sulfides and polymeric compounds can be obtained by the present invention). The composition of the present invention is generally produced by adding a sulfur compound such as H2S or (NH4)2S to a solution containing a metal sulfide (a polymer compound may be dissolved in this solution from the beginning). A sol of metal sulfide is prepared, and a polymer (a water-soluble polymer compound in the case of a hydrosol, a polymer soluble in the organic solvent in the case of an organosol) is added and dissolved in this way. It can be obtained by removing the solvent from a liquid substance by reprecipitation, evaporation, etc. If necessary, the metal can be dissolved by dissolving the polymer in the solution before preparing the metal sulfide sol, or by further dissolving the polymer in the metal sulfide sol prepared using this polymer-containing solution. It is also possible to obtain a liquid substance containing a sulfide in the form of a sol and a polymer compound, and to obtain the composition of the present invention from these liquid substances. Next, examples of the present invention will be shown.

実施例1. ヨウ化カドミウム(CdI2)をN,N−ジメチルホル
ムアミド(1gのCdI2に当し20〜40ml)に溶
解する。溶液を脱気後この溶液に乾燥硫化水素ガス(C
dI2に対し1.2ないし3.3倍モル)を室温下に導
入すると,反応前には無色であつた溶液の色が黄色ない
し黄橙色(CdSに特徴的なカドミウムイエローの色)
に変色する。この溶液の可視光吸収スペクトルは450
nmに肩吸収帯を示し,この吸収帯の位置は固体硫化カ
ドミウムについて報告されている(J.Opt.Soc
.Am.,46,1013(1965))位置と一致し
た。又,この溶液にアセトン,水あるいはメチルアルコ
ール等を加えると瞬時にして硫化カドミウム(粉末X線
図が市販のCdSの粉末X線図と一致すること及び元素
分析によつて確認)の黄色沈殿が得られた(CdI2に
対して3.3倍モルのH2Sを加えた場合のCdSの収
率は97ないし99%)。従つて,上記の反応によつて
硫化カドミウムが生成したことは明らかであるが,一旦
沈殿となつた硫化カドミウム(CdS)はもはやN,N
−ジメチルホルムアミドに溶解することはなかつた。従
つて,上記反応では,生成したCdSはゾルとして(あ
るいは準安定状態として)N,N−ジメチルホルムアミ
ド中に存在するものと考えられる。事実,上記反応で得
た液状物質は見かけ上均一であるが,反応終了後約−2
0℃で一夜さらに約0℃で約2時間放置後にアルゴンレ
ーザーを用いて光散乱法により分析した結果,CdI2
とH2SのN,N−ジメチルホルムアミド中での反応に
よつて得られた上記液状物質中には約4.5×10−7
cmの半径を有する微粒子が多数存在することが分つた
。この液状物質をアルゴンレーザー照射下約7時間放置
すると微粒子の半径は7.0×10−7cmに増大した
が,この状態においても液状物質は見かけ上均一であつ
た。以上のことから,この液状物質はCdSをゾルの状
態で含むことが分つた。このゾルは約20℃以下では1
0時間以上沈殿を生じることなく安定に存在し,又約−
20℃の低温下では2週間以上安定に存在した。ゾル中
のCdSの粒子の半径は調製条件により変り4×10−
7cmないし1.5×10−6cmの範囲にあり,粒子
の半径がこれ以上(1.5×10−6cm以上)大きく
なると沈殿を生じる傾向が見られた。
Example 1. Cadmium iodide (CdI2) is dissolved in N,N-dimethylformamide (20-40 ml per 1 g of CdI2). After degassing the solution, dry hydrogen sulfide gas (C
When 1.2 to 3.3 times the mole of dI2) is introduced at room temperature, the color of the solution, which was colorless before the reaction, turns yellow to yellow-orange (the characteristic cadmium yellow color of CdS).
The color changes. The visible light absorption spectrum of this solution is 450
shows a shoulder absorption band at nm, and the position of this absorption band has been reported for solid cadmium sulfide (J. Opt. Soc.
.. Am. , 46, 1013 (1965)). Also, when acetone, water, methyl alcohol, etc. are added to this solution, a yellow precipitate of cadmium sulfide (confirmed by the fact that the powder X-ray diagram matches that of commercially available CdS and by elemental analysis) is instantly formed. (The yield of CdS was 97 to 99% when 3.3 times the molar amount of H2S was added to CdI2). Therefore, it is clear that cadmium sulfide was produced by the above reaction, but once cadmium sulfide (CdS) has become a precipitate, it can no longer be used as N or N.
- It did not dissolve in dimethylformamide. Therefore, in the above reaction, the produced CdS is considered to exist in N,N-dimethylformamide as a sol (or in a metastable state). In fact, although the liquid substance obtained in the above reaction appears to be homogeneous, after the reaction is completed, the liquid substance is about -2
After standing at 0°C overnight and for about 2 hours at about 0°C, analysis by light scattering method using an argon laser revealed that CdI2
and H2S in N,N-dimethylformamide.
It was found that there were many fine particles having a radius of cm. When this liquid material was left under argon laser irradiation for about 7 hours, the radius of the fine particles increased to 7.0 x 10 -7 cm, but even in this state, the liquid material appeared uniform. From the above, it was found that this liquid substance contained CdS in a sol state. This sol is 1 below about 20℃.
It exists stably without precipitation for more than 0 hours, and about -
It existed stably for more than two weeks at a low temperature of 20°C. The radius of CdS particles in the sol varies depending on the preparation conditions and is 4 × 10-
The radius of the particles was in the range of 7 cm to 1.5 x 10-6 cm, and if the radius of the particles was larger than this (1.5 x 10-6 cm or more), precipitation tended to occur.

上記のようにして調製したCdSゾルの一部をとり,こ
こにポリアクリロニトリルを加えて溶かす。この際Cd
Sが沈殿してくることはなかつた。このようにして得た
見かけ上均一な溶液の一部をガラス板上に展開し,真空
系を用いて溶媒等の揮発性物質を除くと橙色フイルム(
条件によつては橙色透明フイルム)が得られた。このフ
イルムの室温における電気伝導度(σ)はフイルム中の
CdSの重量割合(以下,金属硫化物と高分子化合物か
ら成る組成物中の金属硫化物の重量割合をR値とする)
によつて変化し,R値が0.59,0.64,0.74
の時に各々3.7×10−6Scm−1,8.0×10
−6Scm−1,2.1×10−5Scm−1であつた
。なお,ポリアクリロニトリルのσは室温で5.1×1
0−11Scm−1であり,上記オルガノゾルにアセト
ンを加えて得たCdSを400kg/cm2の圧力で成
型して得た物質のσは5.9×10−8Scm−1であ
つた。CdCl2,Cd(OCOCH3)2をCdI2
の代りの原料として用いることもできた。又,ポリアク
リロニトリルの代りにポリビニルホルマールを用いる他
は上記の例と同様にしてCdSとポリビニルホルマール
から成る組成物を得た。この組成物(フイルム状)も約
1×10−7Scm−1の電気伝導度を有する半導性物
質であつた。これらのCdSと高分子化合物から成る組
成物のσは圧力をかけることにより増大し,これらの組
成物が圧力を感ずるセンサーとして用いることができる
ことを示している。本法で調製したCdSとポリアクリ
ロニトリルから成る組成物の物性は熱処理によつて変化
する。たとえば,R値が0.74の組成物の電気伝導の
活性化エネルギーは0.65eVであるが,この組成物
を80℃で3時間加熱処理して得られる物質の電気伝導
の活性化エネルギーは0.91eVである。N,N−ジ
メチルホルムアミドの代りにジメチルスルホキシドを用
いて同様のゾル及び組成物を得た。
A portion of the CdS sol prepared as described above is taken, and polyacrylonitrile is added thereto and dissolved. At this time, Cd
S did not precipitate. A part of the apparently uniform solution obtained in this way is spread on a glass plate, and volatile substances such as solvents are removed using a vacuum system, resulting in an orange film (
Depending on the conditions, an orange transparent film was obtained. The electrical conductivity (σ) of this film at room temperature is the weight ratio of CdS in the film (hereinafter, the weight ratio of metal sulfide in a composition consisting of metal sulfide and polymer compound is referred to as R value).
The R value is 0.59, 0.64, 0.74.
3.7×10-6Scm-1, 8.0×10 respectively at the time of
-6Scm-1, 2.1 x 10-5Scm-1. In addition, σ of polyacrylonitrile is 5.1×1 at room temperature.
The σ of the material obtained by molding CdS obtained by adding acetone to the above organosol at a pressure of 400 kg/cm2 was 5.9 x 10-8 Scm-1. CdCl2, Cd(OCOCH3)2 to CdI2
It could also be used as an alternative raw material. Further, a composition consisting of CdS and polyvinyl formal was obtained in the same manner as in the above example except that polyvinyl formal was used instead of polyacrylonitrile. This composition (in film form) was also a semiconducting material having an electrical conductivity of about 1 x 10-7 Scm-1. The σ of these compositions consisting of CdS and a polymer compound increases by applying pressure, indicating that these compositions can be used as pressure-sensitive sensors. The physical properties of the composition composed of CdS and polyacrylonitrile prepared by this method change depending on heat treatment. For example, the activation energy for electrical conduction of a composition with an R value of 0.74 is 0.65 eV, but the activation energy for electrical conduction of a substance obtained by heat-treating this composition at 80°C for 3 hours is It is 0.91 eV. Similar sols and compositions were obtained using dimethyl sulfoxide in place of N,N-dimethylformamide.

実施例2. 無水酢酸銅(Cu(OCOCH3)2)1.82g(1
0mmol)を100mlのジメチルスルホキシドに溶
解後,この溶液を入れた容器の気体を真空ポンプにより
除いた。ついで,この容器に18mmolのH2Sを加
えて30℃で反応させた。この反応により溶液の色が青
緑色から青緑黒色に変化し同時に沈殿が生成した。この
沈殿をAr気流下で瀘過法により除き,外見上は均一な
液状物質を得た。この液体状物質は,アルゴンレーザー
を用いる光散乱法によりその中に約6.7×10−6c
m(670A)の半径を有する微粒子を多く含むことが
明らかになつたこと及びこの液体状物質にアセトンを加
えて得られる緑黒色粉末状沈殿(470mg)が粉末X
線分析及び元素分析により硫化銅(CuS)であると同
定される事により,硫化銅をゾル状態で含む溶液である
ことが分つた。
Example 2. Anhydrous copper acetate (Cu(OCOCH3)2) 1.82g (1
After dissolving 0 mmol) in 100 ml of dimethyl sulfoxide, the gas in the container containing this solution was removed using a vacuum pump. Then, 18 mmol of H2S was added to this container and reacted at 30°C. As a result of this reaction, the color of the solution changed from blue-green to blue-green-black, and at the same time, a precipitate was formed. This precipitate was removed by filtration under an Ar flow to obtain a liquid substance that was uniform in appearance. Approximately 6.7 x 10-6 c
Powder X was found to contain many fine particles with a radius of
The solution was identified as copper sulfide (CuS) by line analysis and elemental analysis, and was found to be a solution containing copper sulfide in a sol state.

上記のように調製した硫化銅のゾルの一部をとり,ここ
にポリアクリロニトリルを溶かし込んだ後に得られる液
体状物質をガラス板上に展開し真空系を用いて溶媒等の
揮発性物質(反応によつて生成した酢酸を含む)を除去
することにより硫化銅とポリアクリロニトリルからなる
組成物を得た。赤外分光法による分析の結果組成物中に
は未反応の酢酸銅は実質的に存在していないことが分つ
た。このようにして調整した組成物はR値が0.32の
時に1×10−4Scm−1の電気伝導度(σ)を,又
R値が0.44の時に1×10−2Scm−1の電気伝
導度を示す半導体であつた。σの値は組成物調製の際の
微妙な条件によつて変化し,上記の値より1桁大きい組
成物が得られる場合もあつた。本実施例において調製し
た硫化銅のゾルは比較的安定であり,室温における安定
保存に耐え,又硫化銅粒子の大きさも放置によりあまり
変化しないことが分つた。
Take a portion of the copper sulfide sol prepared above, dissolve polyacrylonitrile therein, spread the resulting liquid substance on a glass plate, and use a vacuum system to remove volatile substances such as solvents (reactants). A composition consisting of copper sulfide and polyacrylonitrile was obtained by removing the acetic acid (containing acetic acid produced by the process). As a result of analysis by infrared spectroscopy, it was found that there was substantially no unreacted copper acetate in the composition. The composition thus prepared has an electrical conductivity (σ) of 1 x 10-4 Scm-1 when the R-value is 0.32, and an electrical conductivity (σ) of 1 x 10-2 Scm-1 when the R-value is 0.44. It was a semiconductor that exhibited electrical conductivity. The value of σ varies depending on delicate conditions during composition preparation, and in some cases, compositions having an order of magnitude larger than the above values were obtained. It was found that the copper sulfide sol prepared in this example is relatively stable and can withstand stable storage at room temperature, and the size of the copper sulfide particles does not change much when left standing.

同様の硫化銅のゾルはCu(OCOCH3)2の代りに
他の銅化合物を用いても得ることができ,又本実質例に
おいてH2Sの代りに硫化アンモニウム((NH4)2
S)を用いても同様の硫化銅のゾルを得ることができた
。本実施例の硫化銅−ポリアクリロニトリル組成物をジ
メチルスルホキシドに溶解させると外見上均一な溶液を
与えた。
A similar sol of copper sulfide can be obtained by using other copper compounds instead of Cu(OCOCH3)2, and in this practical example, ammonium sulfide ((NH4)2) is used instead of H2S.
A similar copper sulfide sol could be obtained using S). The copper sulfide-polyacrylonitrile composition of this example was dissolved in dimethyl sulfoxide to give an apparently homogeneous solution.

実施例3. 10mmolのヨウ化亜鉛(ZnI2)を50mlのN
,N−ジメチルホルムアミドに溶解し,容器中の気体を
真空ポンプにより除いた後に22mmolのH2Sを加
える。このようにして得た溶液は当初透明であるが,時
間の経過と共に白沈を生じ,この白沈は粉末X線分析の
結果から非晶質部を含む硫化亜鉛(ZnS)であること
が分つた。この白沈生成前の状態をArレーザーを用い
る光散乱法により解析した結果,反応溶液を25℃で約
30分放置した後の見かけ上均一な液体状物質中には半
径が約1.5×10−6cm(150A)の粒子が多く
含まれていることが分つた。約50分後には粒子の半径
は約4×10−6cmに増大し約60分後,70分後に
は粒子の半径が各々約1×15−5cm,2.4×10
−5cmに増大し,これ以上放置すると前記のZnSの
白沈が生成することが分つた。この白沈の生成する状態
になる以前の液体状物質にポリアクリロニトリルを溶か
し込んだ後に真空下で揮発性成分を除いて得られたフイ
ルム状組成物の電気伝導度はR値が0.2の時に約2×
10−8Scm−1の半導体領域の値であることが分つ
た。又,ポリアクリロニトリルの代りにポリ(2−ビニ
ルピリジン)を用いた場合にも半導性組成物が得られる
ことが分つた。又,ヨウ化亜鉛の代りにZnCl2,Z
n(OCOCH3)2等の亜鉛化合物を用いても本実施
例と同様の硫化亜鉛のゾルが得られることが分つた。
Example 3. 10 mmol of zinc iodide (ZnI2) was added to 50 ml of N
, N-dimethylformamide, and after removing the gas in the container using a vacuum pump, 22 mmol of H2S is added. The solution obtained in this way was initially transparent, but a white precipitate formed over time, and this white precipitate was found to be zinc sulfide (ZnS) containing an amorphous part from the results of powder X-ray analysis. Ivy. As a result of analyzing the state before the formation of this white precipitate using a light scattering method using an Ar laser, it was found that after the reaction solution was left at 25°C for about 30 minutes, the apparently uniform liquid substance had a radius of about 1.5× It was found that many particles of 10-6 cm (150A) were contained. After about 50 minutes, the radius of the particles increases to about 4 x 10-6 cm, and after about 60 minutes and 70 minutes, the radius of the particles increases to about 1 x 15-5 cm and 2.4 x 10 cm, respectively.
It was found that the ZnS white precipitate described above would be formed if the thickness was left longer than -5 cm. The electrical conductivity of the film-like composition obtained by dissolving polyacrylonitrile in a liquid substance before the white precipitate is formed and removing volatile components under vacuum has an R value of 0.2. Sometimes about 2x
It was found that the value in the semiconductor region was 10<-8>Scm<-1>. It has also been found that a semiconducting composition can be obtained when poly(2-vinylpyridine) is used instead of polyacrylonitrile. Also, ZnCl2, Z instead of zinc iodide
It was found that a zinc sulfide sol similar to that of this example can be obtained even when a zinc compound such as n(OCOCH3)2 is used.

実施例4. 10mmolの酢酸ニツケル(Ni(OCOCH3)2
・4H2O)を100mlのジメチルスルホキシドに溶
解後,脱気してから22mmolのH2Sを加え20℃
で反応させると,溶液の色は緑色から黒色へと変化する
。一晩放置後,アルゴン気流中で黒色沈殿を濾過法によ
り除去して黒色の外見状均一な液体状物質を得た。この
液体状物質にアセトンを加えると黒色沈殿が生成し,こ
の黒色沈殿は元素分析の結果硫化ニツケル(NiS)で
あることが分つた。
Example 4. 10 mmol of nickel acetate (Ni(OCOCH3)2)
・4H2O) was dissolved in 100ml of dimethyl sulfoxide, degassed, and 22mmol of H2S was added at 20°C.
When reacted with , the color of the solution changes from green to black. After standing overnight, the black precipitate was removed by filtration in an argon stream to obtain a black liquid substance with uniform appearance. When acetone was added to this liquid substance, a black precipitate was formed, and elemental analysis revealed that this black precipitate was nickel sulfide (NiS).

一旦沈殿したNiSはもなやジメチルスルホキシドに溶
解することがなく,一方前述の黒色液体状物質をArレ
ーザーを用いる光散乱法により解析した結果この液体状
物質には半径が2×10−7cm(20■,本光散乱法
の検出限界)以上の大きさの微粒子が存在しないことが
明らかとなつたことから,前述の溶液中にはNiSが2
0■以下の微粒子としてゾルの状態で含有されているも
のと考えられる。前述の溶液(液体状物質)の一部をと
り,ここにポリアクリロニトリルを加えて溶解させた後
にガラス板上に展開し真空下で揮発性物質を除去してN
iSとポリアクリロニトリルから成る組成物を得た。こ
の組成物の電気伝導度(σ)はR値が0.14,0.1
9,0.32の時各々3.5×10−6Scm−1,1
.2×10−5Scm−1,1.3×10−4Scm−
1(室温での値)であり,この組成物が半導体であるこ
とが分つた。本実施例において,アセトンを加えること
によつて回収された前述のNiSを400kg/cm2
の加圧下に成型して得られた物質のσは7.5×10−
8Scm−1であつた。
Once precipitated, NiS does not dissolve in dimethyl sulfoxide, and on the other hand, analysis of the aforementioned black liquid substance by a light scattering method using an Ar laser revealed that this liquid substance has a radius of 2 × 10 cm ( 20■, the detection limit of this light scattering method), it became clear that there were no particles with a size larger than
It is thought that the particles are contained in a sol state as fine particles of 0 cm or less. Take a portion of the above solution (liquid substance), add polyacrylonitrile to it, dissolve it, spread it on a glass plate, remove volatile substances under vacuum, and add N.
A composition consisting of iS and polyacrylonitrile was obtained. The electrical conductivity (σ) of this composition has an R value of 0.14, 0.1
9,0.32, respectively 3.5×10-6Scm-1,1
.. 2×10-5Scm-1, 1.3×10-4Scm-
1 (value at room temperature), indicating that this composition is a semiconductor. In this example, the NiS recovered by adding acetone was collected at 400 kg/cm2.
The σ of the material obtained by molding under the pressure of is 7.5 × 10-
It was 8 Scm-1.

実施例5. 実施例2.で示したジメチルスルホキシド中でのCu(
OCOCH3)2とH2Sの反応によつて得られたCu
Sのゾルにビニリデンクロリドとアクリロニトリルの8
0:20の共重合体(Polyaciences社販売
)を溶かし込み,実施例2.と同様にしてCuSと本共
重合体とから成る組成物を得た。この組成物は室温にお
いて,R値が0.48,0.33,0.24,0.19
の時に各々4.3×10−3Scm−1,3.0×10
−4Scm−1,2.4×10−6Scm−1,8.6
×10−7Scm−1の電気伝導度を示す半導体である
ことが分つた。また,ポリ(エチルメタクリレート)を
用いて同様にCuSと当該高分子化合物から成る組成物
を得た。この組成物は室温において,R値が0.47,
0.24,0.19の時に各々4.0×10−2Scm
−1,1.8×10−2Scm−1,6.6×10−4
Scm−1の電気伝導度を有する半導体であることが分
つた。
Example 5. Example 2. Cu (
Cu obtained by the reaction of OCOCH3)2 and H2S
8 of vinylidene chloride and acrylonitrile in the S sol
A 0:20 copolymer (sold by Polysciences) was dissolved in Example 2. A composition consisting of CuS and this copolymer was obtained in the same manner as above. This composition has an R value of 0.48, 0.33, 0.24, 0.19 at room temperature.
4.3×10-3Scm-1, 3.0×10 respectively when
-4Scm-1, 2.4×10-6Scm-1, 8.6
It was found that it was a semiconductor exhibiting an electrical conductivity of x10<-7>Scm<-1>. Furthermore, a composition consisting of CuS and the polymer compound was similarly obtained using poly(ethyl methacrylate). This composition has an R value of 0.47 at room temperature.
4.0×10-2Scm at 0.24 and 0.19 respectively
-1,1.8×10-2Scm-1,6.6×10-4
It was found that it was a semiconductor having an electrical conductivity of Scm-1.

実施例6. N,N−ジメチルホルムアミド又はジメチルスルホキシ
ド中でHgCl2,Pd(OCOCH3)2,Mn(O
COCH3)2・4H2OとH2Sを反応させることに
より各々HgS,PdS,MnSを含有するゾルを得た
。これらのゾルにポリアクリロニトリルを溶かし込み,
揮発性物質を真空下で除去することにより相当する金属
硫化物とポリアクロニトリルを含む組成物を得た。これ
らの組成物は半導性を示した。又,CuIを反応原料に
用いて同様にして半導性物質を得た。
Example 6. HgCl2, Pd(OCOCH3)2, Mn(O
By reacting COCH3)2.4H2O with H2S, a sol containing HgS, PdS, and MnS, respectively, was obtained. Polyacrylonitrile is dissolved in these sol,
The corresponding composition containing metal sulfide and polyacronitrile was obtained by removing volatile substances under vacuum. These compositions exhibited semiconducting properties. Further, a semiconducting material was obtained in the same manner using CuI as a reaction raw material.

実施例7. 実施例2.で調製したCuSとポリアクリロニトリルか
ら成る組成物(R値=0.44)を,松崎真空(株)製
ネサガラス(2.5cm×5.0cm,20〜30Ω/
cm2)上に塗布法の後真空下で揮発成分を除去する方
法によつて得た(膜厚=0.07mm)。この膜上に白
金板を当ててネサガラスとの間の電流−電圧特性を接触
法により測定したところ上記組成物とネサガラス間の接
触はオーミツクであつた。一方,実施例1.で調製した
ようなCdSとポリアクリロニトリルから成る組成物(
R値=0.74)を前記のネサガラス上に塗布の後真空
下で揮発成分を除去する方法によつて得た(膜厚=0.
05mm)。この場合にも組成物とネサガラス間の接触
はオーミツクであた。このようにして,別個のネサガラ
ス上にCdS−ポリアクリロニトリル組成物のフイルム
,CuS−ポリアクリロニトリル組成物のフイルムを各
々形成させ,両フイルムを圧着して電流−電圧(i−V
)特性を調べた。その結果,CuSを含むフイルムの方
を十側にしCdSを含むフイルムの方を一側にし5Vの
電圧を印加した時には5μA/cm2の電流が流れるの
に対して,電圧をかける方向を逆にして5Vの電圧を印
加した時には0.6μA/cm2の電流しか流れないと
いう整流作用があることが分つた。このようにCuSと
ポリアクリロニトリルの組成物及びCdSとポリアクリ
ロニトリルの組成物を用いて整流機能を有する装置をつ
くることができる。
Example 7. Example 2. The composition (R value = 0.44) made of CuS and polyacrylonitrile prepared in 1.
cm2) by coating and then removing volatile components under vacuum (film thickness = 0.07 mm). When a platinum plate was placed on this film and the current-voltage characteristics between it and Nesa Glass were measured by a contact method, it was found that the contact between the composition and Nesa Glass was ohmic. On the other hand, Example 1. A composition consisting of CdS and polyacrylonitrile as prepared in
R value = 0.74) was obtained by the method of coating on the Nesa glass and removing volatile components under vacuum (film thickness = 0.74).
05mm). In this case as well, the contact between the composition and Nesa glass was ohmic. In this way, a film of CdS-polyacrylonitrile composition and a film of CuS-polyacrylonitrile composition are respectively formed on separate Nesa glass, and both films are crimped to form a current-voltage (i-V
) characteristics were investigated. As a result, when a voltage of 5V was applied with the film containing CuS on the opposite side and the film containing CdS on one side, a current of 5μA/cm2 flowed, but when the direction of voltage application was reversed, a current of 5μA/cm2 flowed. It was found that there is a rectifying effect in that when a voltage of 5V is applied, only a current of 0.6 μA/cm2 flows. In this way, a device having a rectifying function can be manufactured using a composition of CuS and polyacrylonitrile and a composition of CdS and polyacrylonitrile.

実施例8. 実施例7.の方法によつて得たCuSとポリアクリロニ
トリルの組成物及びCdSとポリアクリロニトリルの組
成物(共に実施例7.で示したフイルム)を圧着し,C
dSとポリアクリロニトリルの組成物の側からネサガラ
ス(透明ガラス)を通して蛍火燈の光を照射すると約1
mA/cm2の出力電流が得られた。
Example 8. Example 7. A composition of CuS and polyacrylonitrile obtained by the method described above and a composition of CdS and polyacrylonitrile (both films shown in Example 7) were bonded together,
When fluorescent light is irradiated from the side of the dS and polyacrylonitrile composition through Nesa glass (transparent glass), approximately 1
An output current of mA/cm2 was obtained.

実施例9. 実施例2.で調製したと同様のCuSとポリアクリロニ
トリルとから成る組成物(R値=0.44)をn−型シ
リコン板(日本シリコン(株)製304458−00−
412,2.5×5.0cm,R=1.05〜1.6Ω
,n=5×1015cm−3,厚さ=0.625cm)
上に塗布の後ゾルから揮発成分を除去する方法によつて
得た。このCuSとポリアクリロニトリル組成物(フイ
ルム状)とn−型シリコン板の間のi−V特性を調べた
ところ,組成物側を十側にn−型シリコン板側を一側に
して2.5Vの電圧(直流電圧)を印加した時には5m
A/cm2の電流が流れるのに対して,電圧をかける方
向を逆にして2.5Vの電圧を印加した時には0.8m
A/cm2の電流しか流れないという整流特性があるこ
とが分つた。
Example 9. Example 2. A composition (R value = 0.44) consisting of CuS and polyacrylonitrile similar to that prepared in
412, 2.5 x 5.0cm, R=1.05~1.6Ω
, n=5×1015cm-3, thickness=0.625cm)
It was obtained by a method in which volatile components were removed from the sol after it was coated on top of the sol. When we investigated the i-V characteristics between this CuS and polyacrylonitrile composition (film form) and an n-type silicon plate, we found that a voltage of 2.5V was obtained with the composition side as the positive side and the n-type silicon plate side as one side. 5m when applying (DC voltage)
Whereas a current of A/cm2 flows, when the direction of voltage is reversed and a voltage of 2.5V is applied, the current flows by 0.8m.
It was found that it has a rectifying property that only a current of A/cm2 flows.

実施例10. LiBF4を支持塩にして定電流(2mA/cm2)で
チオフエンを電解重合させることにより(Makrom
ol,Chem.,185,1295(1984))ネ
サガラス上にチオフエン重合物を形成させた。この膜状
チオフエン重合物(電解重合時にドープされてp−型電
気伝導体となつている)と実施例7.で調製したネサガ
ラス上に形成されたCdSとポリアクリロニトリルのフ
イルム状組成物の面を合わせ圧着する。
Example 10. By electrolytically polymerizing thiophene at a constant current (2 mA/cm2) using LiBF4 as a supporting salt (Makrom
ol, Chem. , 185, 1295 (1984)) formed a thiophene polymer on Nesa glass. This membranous thiophene polymer (doped during electrolytic polymerization to become a p-type electrical conductor) and Example 7. The surfaces of the film composition of CdS and polyacrylonitrile formed on the Nesa glass prepared in step 1 were brought together and pressed together.

このようにして得た膜状チオフエン重合物とフイルム状
組成物の間のi−V特性を調べた。その結果,フイルム
状組成物を十側に膜状チオフエン重合物を一側にして2
Vの電圧を印加した時には0.6mA/cm2の電流が
流れるのに対して,電圧をかける方向を逆にして2Vの
電圧を印加した時には0.03mA/cm2の電流しか
流れないことが分つた。膜状チオフエン重合物はp−型
電気伝導体であると考えられ,又CuSとポリアクリロ
ニトリルの組成物もホール効果の測定によりp−型電気
伝導体であることが分つたので本実施例の接合はアイソ
ヘテロタイプの接合であると考えられる。また,東芝(
株)製H−1001水銀ランプ(400W)を用い,本
接合のCuSとポリアクリロニトリルから成る組成物側
からネサガラスを通して光を照射した。その結果,順方
向(組成物側が+)の時は印加電圧が2Vの時電流値は
1.4mA/cm2と増加するのに対し逆方向では印加
電圧が2Vの時電流値は0.02mA/cm2と減少す
るという光照射の効果が見られた。実施例7.,9.及
び10.においてi−V特性を示すカーブはいずれも整
流特性を示す接合に特有のカーブを示した。
The IV characteristics between the thus obtained membranous thiophene polymer and the film composition were investigated. As a result, the film-like composition was placed on one side and the membranous thiophene polymer was placed on one side.
It was found that when a voltage of V is applied, a current of 0.6 mA/cm2 flows, but when the direction of voltage is reversed and a voltage of 2 V is applied, only a current of 0.03 mA/cm2 flows. . The film-like thiophene polymer is considered to be a p-type electrical conductor, and the composition of CuS and polyacrylonitrile was also found to be a p-type electrical conductor by Hall effect measurement. is considered to be an isoheterotype junction. Also, Toshiba (
Using a H-1001 mercury lamp (400 W) manufactured by Co., Ltd., light was irradiated through the Nesa glass from the side of the composition made of CuS and polyacrylonitrile of the main bond. As a result, in the forward direction (composition side is +), the current value increases to 1.4 mA/cm2 when the applied voltage is 2 V, whereas in the reverse direction, when the applied voltage is 2 V, the current value increases to 0.02 mA/cm2. The effect of light irradiation was seen, which decreased the amount by cm2. Example 7. ,9. and 10. All of the curves showing the i-V characteristics showed curves peculiar to junctions showing rectifying characteristics.

実施例11. 文献(日本化学会編「新実験化学講座18界面とコロイ
ド」及び東京化学会誌37,671(1916))記載
の方法に準ずる手法によりFeSをゾルの状態で含有す
るヒドロゾル(分散媒は水)を得た。このヒドロゾル中
にポリ(ビニルアルコール)(加水分解率98.5%,
Polysciences社販売)を溶かした水溶液を
加え混合する。この際沈殿の生成は認められなかつた。
Example 11. A hydrosol containing FeS in a sol state (water is the dispersion medium) was prepared using a method similar to the method described in the literature (edited by the Chemical Society of Japan, "New Experimental Chemistry Course 18 Interfaces and Colloids" and Tokyo Chemical Society Journal 37, 671 (1916)). Obtained. In this hydrosol, poly(vinyl alcohol) (hydrolysis rate 98.5%,
Add and mix an aqueous solution containing Polysciences, Inc.). At this time, no formation of precipitate was observed.

このようにして得られた液体状物質の一部をとり,ガラ
ス板上に展開した後に約100℃の乾燥器中に入れて水
を蒸発させてFeSとポリ(ビニルアルコール)から成
る半導性組成物(フイルム状)を得た。
A portion of the liquid substance obtained in this way was taken, spread on a glass plate, and then placed in a dryer at about 100°C to evaporate the water, producing a semiconducting material made of FeS and poly(vinyl alcohol). A composition (film-like) was obtained.

Claims (10)

【特許請求の範囲】[Claims] (1)金属硫化物をゾルの状態で含有しかつ高分子化合
物を含有する液体状物質から溶媒を除いて得られること
を特徴とし、金属硫化物と高分子化合物を主成分とする
組成物。
(1) A composition containing a metal sulfide in the form of a sol and obtained by removing the solvent from a liquid substance containing a polymer compound, the composition having a metal sulfide and a polymer compound as main components.
(2)金属硫化物が1価又は2価の金属化合物をイオウ
化合物の反応によって得られたものであることを特徴と
する特許請求の範囲第1項に記載の組成物。
(2) The composition according to claim 1, wherein the metal sulfide is obtained by reacting a monovalent or divalent metal compound with a sulfur compound.
(3)金属硫化物が硫化銅、硫化カドミウム、硫化ニッ
ケル、硫化水銀、硫化亜鉛、硫化パ ラジウムのいずれかであることを特徴とする特許請求の
範囲第1項又は第2項に記載の組 成物。
(3) The composition according to claim 1 or 2, wherein the metal sulfide is any one of copper sulfide, cadmium sulfide, nickel sulfide, mercury sulfide, zinc sulfide, and palladium sulfide. .
(4)液体状物質を構成する溶媒として、分子式▲数式
、化学式、表等があります▼又は▲数式、化学式、表等
があります▼ (R、R′はH又はアルキル基等の置換基を表わす)の
いずれかで表わされる化合物を用いるか、あるいは上記
分子式のいずれかで表わされる化合物を溶媒の主成分と
して用いて得られる特許請求の範囲第1項から第3項ま
でのいずれかに記載の組成物。
(4) As a solvent constituting a liquid substance, there are molecular formulas ▲ mathematical formulas, chemical formulas, tables, etc. ▼ or ▲ mathematical formulas, chemical formulas, tables, etc. ▼ (R and R' represent H or a substituent such as an alkyl group) ) or a compound represented by any of the above molecular formulas as the main component of the solvent. Composition.
(5)高分子化合物としてシアノ基、カルボニル基又は
芳香族基を有する化合物を用いて得られる特許請求の範
囲第1項から第4項までのいずれかに記載の組成物。
(5) The composition according to any one of claims 1 to 4, which is obtained using a compound having a cyano group, a carbonyl group, or an aromatic group as a polymer compound.
(6)特許請求の範囲第1項から第5項までのいずれか
に記載の組成物を半導体として用いる利用法。
(6) A method of using the composition according to any one of claims 1 to 5 as a semiconductor.
(7)特許請求の範囲第1項から第5項までのいずれか
に記載の組成物を太陽電池の発電用素子として用いる利
用法。
(7) A method of using the composition according to any one of claims 1 to 5 as a power generation element of a solar cell.
(8)特許請求の範囲第1項から第5項までのいずれか
に記載の組成物を整流用素子として用いる利用法。
(8) A method of using the composition according to any one of claims 1 to 5 as a rectifying element.
(9)特許請求の範囲第1項から第5項までのいずれか
に記載の組成物を圧力又は光のセンサーとして用いる利
用法。
(9) A method of using the composition according to any one of claims 1 to 5 as a pressure or light sensor.
(10)分子式 ▲数式、化学式、表等があります▼又は▲数式、化学式
、表等があります▼ (R、R′はアルキル基等の置換基を表わす)のいずれ
かで表わされる化合物を溶媒の主 成分として用い、溶媒中に金属化合物を溶解して得られ
る溶液にイオウ化合物を加えることによって金属硫化物
をゾルの状態で含有する液体状物質を調整し、この液体
状物質を 用いて特許請求の範囲第1項から第5項までのいずれか
に記載の組成物を得る方法。
(10) A compound represented by either the molecular formula ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ or ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (R and R' represent substituents such as alkyl groups). A sulfur compound is added to a solution obtained by dissolving a metal compound in a solvent to prepare a liquid substance containing a metal sulfide in a sol state, and this liquid substance is used to claim a patent. A method for obtaining a composition according to any one of items 1 to 5.
JP5900685A 1985-03-22 1985-03-22 Metal sulfide Granted JPS61215661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5900685A JPS61215661A (en) 1985-03-22 1985-03-22 Metal sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5900685A JPS61215661A (en) 1985-03-22 1985-03-22 Metal sulfide

Publications (2)

Publication Number Publication Date
JPS61215661A true JPS61215661A (en) 1986-09-25
JPH0482026B2 JPH0482026B2 (en) 1992-12-25

Family

ID=13100764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5900685A Granted JPS61215661A (en) 1985-03-22 1985-03-22 Metal sulfide

Country Status (1)

Country Link
JP (1) JPS61215661A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5208468A (en) * 1989-02-03 1993-05-04 Sharp Kabushiki Kaisha Semiconductor laser device with a sulfur-containing film provided between the facet and the protective film
JP2005008889A (en) * 2003-06-20 2005-01-13 Crf Soc Consortile Per Azioni Method for manufacturing polymeric composite of metal or semiconductor
WO2006080318A1 (en) * 2005-01-25 2006-08-03 Kaneka Corporation Resin composition containing metal sulfide nano particles and method for producing said composition
US8563092B2 (en) 2010-09-14 2013-10-22 Jawaharial Nehru Centre For Advanced Scientific Research Formation of palladium sulfide
GB2585349A (en) * 2019-05-03 2021-01-13 Hilsum Cyril Force or pressure sensing composite material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009028393A1 (en) * 2007-08-27 2009-03-05 Kuraray Co., Ltd. Fluorescent polyvinyl alcohol resin moldings and process for production thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5208468A (en) * 1989-02-03 1993-05-04 Sharp Kabushiki Kaisha Semiconductor laser device with a sulfur-containing film provided between the facet and the protective film
JP2005008889A (en) * 2003-06-20 2005-01-13 Crf Soc Consortile Per Azioni Method for manufacturing polymeric composite of metal or semiconductor
US7329700B2 (en) * 2003-06-20 2008-02-12 Crf Societa Consortile Per Azioni Method of production of polymer/metal or metal sulphide composites, which uses metal mercaptides
JP4663260B2 (en) * 2003-06-20 2011-04-06 チ・エレ・エッフェ・ソシエタ・コンソルティーレ・ペル・アチオニ Method for producing polymer composite of metal or metal sulfide
WO2006080318A1 (en) * 2005-01-25 2006-08-03 Kaneka Corporation Resin composition containing metal sulfide nano particles and method for producing said composition
US8563092B2 (en) 2010-09-14 2013-10-22 Jawaharial Nehru Centre For Advanced Scientific Research Formation of palladium sulfide
GB2585349A (en) * 2019-05-03 2021-01-13 Hilsum Cyril Force or pressure sensing composite material

Also Published As

Publication number Publication date
JPH0482026B2 (en) 1992-12-25

Similar Documents

Publication Publication Date Title
Syed et al. Polyaniline—A novel polymeric material
US4508639A (en) Polymers containing heterocycles and aromatic nuclei, and conductive organic materials made from such polymers
Shit et al. Interface engineering of hybrid perovskite solar cells with poly (3-thiophene acetic acid) under ambient conditions
KR101166018B1 (en) Method for modifying surface of a counter electrode and surface-modified counter electrode
US20080023677A1 (en) Functionalized Electroactive Polymers
JPH09259864A (en) Electrode containing organic disulfide compound, and manufacture thereof
JPS61215661A (en) Metal sulfide
US4548738A (en) Electrically conducting complexes of poly (3,6-N-alkylcarbazolyl alkenes) and method of making
Yamamoto et al. π-Conjugated polymers bearing electronic and optical functionalities. Preparation, properties and their applications
Li et al. Dual conductivity of ionic polyacetylene by the metathesis cyclopolymerization of dendronized triazolium-functionalized 1, 6-heptadiyne
JPS61159424A (en) Electrically active polymer easy to process
JPS63215722A (en) Production of electroconductive polyaniline compound
JPH0687949A (en) Electrically conductive composite product
US4624999A (en) Electrically conducting complexes of polymers of N-substituted carbazoles and substituted benzaldehydes
US4631323A (en) Method of making conducting polymer complexes of N-substituted carbazoles and substituted benzaldehydes
JPH0794538B2 (en) Novel polymer and method for producing the same
JPS61266435A (en) Production of thin film of electrically conductive organic polymer
JPH0236254A (en) High polymer composition
Song et al. Synthesis and characterization of polymer electrolytes containing phenothiazine-based click polymers for dye-sensitized solar cell applications
Jen et al. Low band-gap conjugated polymers: poly (thienylene vinylene) and poly (substituted thienylene vinylenes)
JPS60229917A (en) Novel thiophene copolymer and its preparation
JPH04359865A (en) Solid electrode composition
JPS6191005A (en) Metal sulfide
JPH0555533B2 (en)
Moosvi et al. Brief Discussion on the Properties and Applications of Polypyrrole and Polythiophene Conducting Polymer