JPS6190689A - Square polygonal body or rectangular parellelepiped characterized in making other same shape body freely dechable through same shape surface - Google Patents

Square polygonal body or rectangular parellelepiped characterized in making other same shape body freely dechable through same shape surface

Info

Publication number
JPS6190689A
JPS6190689A JP21142984A JP21142984A JPS6190689A JP S6190689 A JPS6190689 A JP S6190689A JP 21142984 A JP21142984 A JP 21142984A JP 21142984 A JP21142984 A JP 21142984A JP S6190689 A JPS6190689 A JP S6190689A
Authority
JP
Japan
Prior art keywords
polyhedron
regular
same shape
magnetic poles
pairs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21142984A
Other languages
Japanese (ja)
Inventor
有沢 健治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP21142984A priority Critical patent/JPS6190689A/en
Publication of JPS6190689A publication Critical patent/JPS6190689A/en
Pending legal-status Critical Current

Links

Landscapes

  • Toys (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (技術分野) 本発明は、同一形状の複数個の正多面体又は直方体を組
立る為に、同一形状体の相互を同一形状面を介して1着
脱自在とした正多面体、又は直方体に関するものである
Detailed Description of the Invention (Technical Field) The present invention relates to a regular polyhedron in which one of the same-shaped bodies can be attached and detached from each other via the same-shaped surface in order to assemble a plurality of regular polyhedra or rectangular parallelepipeds of the same shape. , or related to a rectangular parallelepiped.

(従来技術) 近年、同一形状の正多面体又は直方体の多面体多数用意
し、これらを様々な形状に組立るパズルが流行している
。しかし、取扱う多面体の個数が多くなり、組立形状が
大きくなるに従って、組立たものが崩れ易くなる危険性
がある。
(Prior Art) In recent years, puzzles have become popular in which a large number of regular polyhedrons or rectangular parallelepiped polyhedra of the same shape are prepared and these are assembled into various shapes. However, as the number of polyhedrons to be handled increases and the assembled shape becomes larger, there is a risk that the assembled object will easily collapse.

このような場合、相互に接する各多面体の面同士を、着
脱自在とするならば、諸々の形状に組立てている時には
、同一形状の面同士は接合し、各多面体毎に分解する時
には、夫々引離すことかOf能となり、極めて便利であ
る。
In such a case, if the surfaces of each polyhedron that touch each other are removable, the surfaces of the same shape will be joined when assembled into various shapes, and when each polyhedron is disassembled, it will be necessary to pull each polyhedron separately. It can be turned off by releasing it, which is extremely convenient.

ところで、一般に物を接合する場合としては、〈1)例
えば、糊を付着した物体の、相互の間のように、如何な
る場合にも接着し合い、反発することがない場合(これ
を無極性の接合という。)、  □(2)例えば、磁石
のN極又はS極、又は十の静電荷と−の静電荷のように
、11合せが合う場合(これらの例では極性が異なる場
合)によっては、接合し合うが、組合せが合わない場合
(これらの例では極性が同一の場合)には反発し合う場
合(このような接合を有極性接合という。)とが、考え
られる。
By the way, in general, when joining objects, there are cases where (1) objects adhere to each other in any case and do not repel each other, such as between objects with glue attached (this is called non-polar bonding). ), □(2) For example, when 11 matches, such as the N pole or S pole of a magnet, or the static charge of 10 and the static charge of - (in these examples, when the polarities are different), , but if the combinations do not match (in these examples, the polarities are the same), they repel each other (such a bond is called a polar bond).

有極性接合の他の例としては、一方の面に凸部を設け、
他方の面に凹部を設け、凸部を凹部に挿入することによ
ってなる結合方法等が占えられる(この場合、相互に凸
部の面の場合及び相互に凹部の面の場合には、挿入は不
可能であり、組み合わせ如何によって接合の可否が定ま
るので、接合が極性を有することになる。)。
Another example of polar bonding is to provide a convex portion on one side,
A coupling method that involves providing a concave part on the other side and inserting a convex part into the concave part (in this case, insertion is not required if the faces are mutually convex or if the faces are mutually concave). (This is possible, and whether or not they can be joined is determined by the combination, so the joining has polarity.)

ところで、正多面体又は直方体の各面に糊を付着する等
の無極性接合を用いた場合には、正多面体又は直方体の
面同士は、接合した後にこれを離すことは極めて困難で
ある。
By the way, when non-polar bonding such as applying glue to each surface of a regular polyhedron or rectangular parallelepiped is used, it is extremely difficult to separate the surfaces of the regular polyhedron or rectangular parallelepiped after they are bonded.

他方、例えば正多面体又は直方体を構成する面の表面に
、磁石のN極又はS極の一方を配置した場合のように、
有極性を用いた場合には相反する極性の場合には接合し
、ルつ離すことも自由に++(能であるが、特性が同一
の面とは反発することになるので、3個以上の面につい
ては、どの素子の面をも任意に接合させることは不可能
である(3個の面につき、合計3個の組み合わせの内、
1個の組み合わせについては、同一の極性の組み合わせ
となるので反発し合うことになるから。)。
On the other hand, for example, when one of the N pole or S pole of a magnet is placed on the surface of a surface constituting a regular polyhedron or a rectangular parallelepiped,
When using polarity, if the polarity is opposite, they can be joined and separated. Regarding surfaces, it is impossible to arbitrarily join the surfaces of any element (out of a total of 3 combinations for 3 surfaces,
For a single combination, since they have the same polarity, they will repel each other. ).

(目的) 本発明は、これ迄の無極性接合及び有極性接合を、単純
に用いるだけでは解決出来ない点に着目し、多面体の各
面に於て、局所的には有極性接合用いながら面全体の接
合は無極性とする接合方式を提供することを目的とする
ものである。
(Purpose) The present invention focuses on the problem that cannot be solved by simply using conventional non-polar junctions and polar junctions. The purpose of the overall bonding is to provide a non-polar bonding method.

(発明の背景) 組立用パズルの素子として、用いる多面体は正多面体及
び直方体が殆どである。正多面体としては、 4面体、
6面体、 8面体12面体、20面体に限られており、
且つ各正多面体を構成する多角形は正4面体については
正3角形、正6面体については正4角形、正8面体につ
いては正3角形、正12面体については5角形、正20
面体については正3角形である。他方、直方体を構成す
る面は正方形及び長方形である。
(Background of the Invention) Most polyhedra used as elements of assembly puzzles are regular polyhedra and rectangular parallelepipeds. Regular polyhedra include tetrahedron,
Limited to hexahedrons, octahedrons, dodecahedrons, and icosahedrons.
In addition, the polygons constituting each regular polyhedron are regular triangles for a regular tetrahedron, regular tetragons for a regular hexahedron, regular triangles for a regular octahedron, pentagons for a regular dodecahedron, and regular 20
The face piece is a regular triangle. On the other hand, the faces constituting the rectangular parallelepiped are squares and rectangles.

これらの正多面体又は直方体を構成する正3角形、正方
形、長方形及び正5角形は、何れも中心点につき、回転
対称性を有し、且つ鏡映対称性を有することに着目し、
各正多面体又は直方体を構成する各面に、有極性接合を
有する各対を配置することによって、各表面を相互に接
合した場合、同一形状の面の相互の表面に接合できる組
み合わせの極性が存在するように配置することが、本発
明の着想源である。
Focusing on the fact that the regular triangles, squares, rectangles, and regular pentagons that make up these regular polyhedrons or rectangular parallelepipeds all have rotational symmetry and reflection symmetry about their center points,
If each surface of each regular polyhedron or rectangular parallelepiped is joined to each other by arranging each pair of polar joints on each face, there are combinations of polarities that can be joined to the mutual surfaces of faces of the same shape. The idea behind the present invention is to arrange it in such a way.

(発明の構成) 最初に局所的に用いられる有極性接合として、磁極を用
いた場合の本発明の構成について説明する。
(Structure of the Invention) First, a structure of the present invention in which a magnetic pole is used as a locally used polar junction will be described.

この場合の構成の第1の特徴は、多面体を構成する各面
に於て、各面の回転対称の基準となる角度で、360度
を割った数又はその倍数の対の磁極を備えることである
The first feature of the configuration in this case is that each face of the polyhedron has a number of pairs of magnetic poles equal to the number divided by 360 degrees or a multiple thereof, which is the reference angle for the rotational symmetry of each face. be.

即ち正4面体、正8面体、正20面体をそれぞれ構成す
る正3角形の場合には、回転対称の基準となる角度は1
20度であるから、360度を120度で割った数値は
3であり、3個又はその倍数側の対の磁極を用意する。
In other words, in the case of regular triangles that constitute a regular tetrahedron, a regular octahedron, and a regular icosahedron, the angle that serves as the reference for rotational symmetry is 1.
Since the angle is 20 degrees, the value obtained by dividing 360 degrees by 120 degrees is 3, and three or multiple pairs of magnetic poles are prepared.

正6面体を構成する正方形の場合には回転対称の基準と
なる角度は80度であるから、4個又はその倍数側の対
の磁極を用意し、正12面体を構成する正5角形の面の
場合には、回転対称の基準となる角度は72度であるか
ら、少なくとも5個又はその倍数側の対の磁極を用意し
、直方体を構成する長方形の面の場合には、回転対称の
基準となる角度は180度であるから、2個又はその倍
数側の対の磁極を川、a;することになる。
In the case of a square that makes up a regular hexahedron, the reference angle for rotational symmetry is 80 degrees, so prepare four pairs of magnetic poles or a multiple thereof, and In this case, the reference angle for rotational symmetry is 72 degrees, so prepare at least 5 pairs of magnetic poles or a multiple thereof. Since the angle is 180 degrees, the pair of magnetic poles on the side of two or a multiple thereof is called a.

構成の第2の特徴は、このような複数個の対の磁極を各
面の回転対称性と回等の回転対称をなすように配置する
ことである。
The second feature of the configuration is that the plurality of pairs of magnetic poles are arranged so as to have rotational symmetry of each plane and circular symmetry.

即ち、配置された複数個の対の磁極は、面が正3角形の
場合には120度の回転対称をなし1面が正方形の場合
には90度の回転対称をなし、面が正5角形の場合には
72度の回転対称をなし、面が長方形の場合には180
度の回転対称をなすように配置される。
That is, the plurality of pairs of magnetic poles arranged have 120 degree rotational symmetry when one side is a regular triangle, 90 degree rotational symmetry when one side is a square, and when one side is a regular pentagon. If the surface is rectangular, it will have a rotational symmetry of 72 degrees, and if the surface is rectangular, it will have a rotational symmetry of 180 degrees.
They are arranged so as to have degree rotational symmetry.

これは同一形状の正多面体又は、直方体相互の間に於て
、相互の同一形状面を接合させる際、相互の面の頂点さ
え合致すれば、たとえ一方又は双方の面を回転させて、
合致する頂点の組み合わせを変えたとしても、常に対応
する磁極が存在する為に必要なことに由来する要件であ
る。
This means that when joining the faces of the same shape between regular polyhedra or rectangular parallelepipeds, as long as the vertices of the faces match, even if one or both faces are rotated,
This requirement stems from the fact that even if the combination of matching vertices is changed, corresponding magnetic poles always exist.

構成の第3の特徴は、各面の鏡映対称の中心線につき、
相互に反対の磁極が対称の位置に存在することである。
The third feature of the configuration is that for the center line of mirror symmetry of each surface,
The existence of mutually opposite magnetic poles in symmetrical positions.

即ち、正3角形の場合には、各頂点と対辺の中心線を結
ぶ線につき、夫々対称な位置にN極とS極とが位置し、
正方形の場合には、各辺の中心線を結ぶ線又は夫々対角
の位置にある頂点を結ぶ線につき、N極とS極とが対称
な位置に位置し、正5角形の場合には各頂点と中心点と
を結ぶ線につきN極とS極とが対称な位置にあり、長方
形の場合には対辺の中心線を結ぶ線につき、N極とS極
とが対称な位置に存在することである。
That is, in the case of a regular triangle, the north and south poles are located at symmetrical positions with respect to the line connecting each vertex and the center line of the opposite side,
In the case of a square, the N and S poles are located at symmetrical positions with respect to the line connecting the center lines of each side or the lines connecting the vertices at diagonal positions, and in the case of a regular pentagon, each The north and south poles are in symmetrical positions with respect to the line connecting the vertex and the center point, and in the case of a rectangle, the north and south poles are in symmetrical positions with respect to the line connecting the center lines of opposite sides. It is.

これは、第1図に示すように、相互に同一形状面が接合
する場合には(尚、第1図では、正三角形の例で示す、
)、一方の面の位置1 (×印で示す。)が他方の面B
と接合する位置2゛(O印で示す。)とすれば、面Bに
おける面Aの1に相当する位置1°(点線のx印で示す
、)と位置2°とは鏡映対称の関係にあり、同様に、面
Aの面Bの2°に相当する位置2 (点線のO印で示す
)とは鏡映対称の関係にあることから明らかなように、
一方の面が他方の面と接合し合う位置は、一方の面にお
いて自らの位置の鏡映対称点に相当する位置であること
に基く。
As shown in Fig. 1, when surfaces of the same shape are joined to each other (in Fig. 1, an example of an equilateral triangle is shown),
), position 1 (indicated by an x mark) on one side is B on the other side
If the position 2゛ (indicated by the O mark) is the joining position, then the position 1° (indicated by the dotted x mark) corresponding to 1 of the surface A on the surface B and the position 2° are in a mirror-symmetrical relationship. Similarly, as is clear from the fact that there is a mirror symmetry relationship with position 2 (indicated by the dotted O mark), which corresponds to 2° of surface A and surface B,
The position where one surface joins the other surface is based on the fact that the position on one surface corresponds to a point of mirror symmetry of its own position.

以上の3つの要件を満たす各面に於る磁極の配置を図面
で説明する。
The arrangement of magnetic poles on each surface that satisfies the above three requirements will be explained with reference to the drawings.

第2(a)、(b)図は正多面体を構成する正3角形に
於る磁極の配置である。
Figures 2(a) and 2(b) show the arrangement of magnetic poles in a regular triangle constituting a regular polyhedron.

第2(a)図は、3個の対の磁極を配置した実施例を示
し、第2(b)図は、6個の対の磁極を配置した実施例
を示す。
FIG. 2(a) shows an embodiment in which three pairs of magnetic poles are arranged, and FIG. 2(b) shows an embodiment in which six pairs of magnetic poles are arranged.

同様に、第3(a)、(b)図は正方形に於てそれぞれ
4個、8個の磁極を配置した各実施例を示し。
Similarly, FIGS. 3(a) and 3(b) show embodiments in which four and eight magnetic poles are arranged in a square, respectively.

第4図は正5角形に於る磁極の配置の実施例を示す(尚
、第4図に於て、磁極の対の数を更にふやす実施例も当
然考えられるが、これは第2(b)図、第3(b)図に
従って当然に想定することが可能であろう。)。
FIG. 4 shows an example of the arrangement of magnetic poles in a regular pentagon (note that an example in which the number of magnetic pole pairs is further increased in FIG. 4 is also conceivable, but this is ), it would be possible to naturally assume according to Figure 3(b)).

第5(a)、 (b)図は、長方形においてそれぞれ2
個、4個の磁極を配置した実施例を示す。
Figures 5(a) and 5(b) show 2 in each rectangle.
An example in which four magnetic poles are arranged is shown.

構成の第4の性徴は、各面の磁極の配列方向が同一方向
という点である。
The fourth characteristic of the structure is that the magnetic poles on each surface are arranged in the same direction.

これは第6(a)、(b)図に示すように、磁極の配列
が同一方向の場合には、正多面体又は直方体を構成する
同一形状の面同士を各頂点が合致するようにした場合、
配列が同一方向の場合には、常に相反する磁極同士が接
することになり、2つの面は接合することになるが、配
列方向が逆方向の場合には、同一形状の面の各頂点を合
致させても、各面の磁極は同一の磁極が接することとな
り、相互に反発しあって、面同士の接合は不可能となる
ことによっても明らかであろう。
As shown in Figures 6(a) and (b), when the magnetic poles are arranged in the same direction, the vertices of the faces of the same shape constituting a regular polyhedron or rectangular parallelepiped match each other. ,
If the arrays are in the same direction, the opposite magnetic poles will always touch each other, and the two surfaces will be joined, but if the arrays are in the opposite direction, the vertices of the same-shaped surfaces will be matched. It is also clear from the fact that even if the magnetic poles on each surface are the same, they will come into contact with each other, and they will repel each other, making it impossible to join the surfaces.

以上の構成のように、複数個の磁極の対を正多角面体l
は、直方体を構成する各面の表面に設けることによって
、相互の同一形状体は、任意の同一形状面を接合した場
合、常に対応する位置に異なる磁極が存在して吸引し合
うので、前記の目的を達成することが可能となる。
As in the above configuration, a plurality of pairs of magnetic poles are formed into a regular polyhedron l.
is provided on the surface of each surface constituting a rectangular parallelepiped, so that when objects of the same shape are joined, different magnetic poles always exist at corresponding positions and attract each other. It becomes possible to achieve the purpose.

以上の説明に於て、第2〜第8図には、各面に磁極の対
のみを示したが、これは、これらの図面に示すように、
各磁石を面に@直に埋め込み、磁極のみを表面に露出さ
せる形状であっても、又は第7図に示すように、棒磁石
を面に平行に配置して1対に磁極を得ることも可能であ
る(尚、第7図の場合には、特に正方形の面の場合のみ
を示すが、他の面の場合にも同様である。)。
In the above explanation, only pairs of magnetic poles are shown on each surface in FIGS. 2 to 8, but as shown in these drawings,
It is also possible to embed each magnet directly in the surface and expose only the magnetic poles on the surface, or as shown in Figure 7, it is also possible to arrange bar magnets parallel to the surface to obtain a pair of magnetic poles. (In the case of FIG. 7, only the case of a square surface is particularly shown, but the same applies to the case of other surfaces.)

以上、面の局所的な有極性接合として磁極を用いた構成
を示したが、これに代えて各面に着脱用の凸部及び凹部
を設けることによっても、本発明の目的を達成すること
が可能である。熱論凸部及び凹部は相互の挿入及び取外
しを可能とする大きさ及び形状であることが要求される
。1対の凸部及び凹部の配列に関する構成は、磁極に関
して述べた前記構成と全く同一である。
Although the configuration in which magnetic poles are used as local polarized junctions of the surfaces has been described above, the object of the present invention can also be achieved by providing protrusions and recesses for attachment and detachment on each surface instead of this. It is possible. The thermal convex portion and the concave portion are required to have a size and shape that allow mutual insertion and removal. The configuration regarding the arrangement of the pair of convex portions and concave portions is exactly the same as the configuration described above regarding the magnetic poles.

第8(a)、(b) 、 (c) 、 (d)図に、正
多面体又は直方体を構成する正3角形、正方形、正5角
形、長方形に於る、複数の対の凸部及び凹部の配列の実
施例を示す。
Figures 8 (a), (b), (c), and (d) show multiple pairs of convex portions and concave portions in regular triangles, squares, regular pentagons, and rectangles constituting a regular polyhedron or rectangular parallelepiped. An example of the arrangement is shown below.

(効果) 以上のような構成の本発明により、同一形状の正多面体
又は直方体は、夫々同一形状面を介して自由に接合し、
かつ取外すことが可能となる。
(Effects) According to the present invention configured as described above, regular polyhedrons or rectangular parallelepipeds of the same shape can be freely joined via the same shape surfaces,
And it becomes possible to remove it.

これによって、これらの正多面体又は直方体を多数組合
わせ、色々な形状を構成しても各多面体同士が強力に接
合し合うので、構成された形状が崩れることなく、又取
外しする場合にも自由に取外し、各素子をバラバラにす
ることも可能となる。
As a result, even if a large number of these regular polyhedra or rectangular parallelepipeds are combined to form various shapes, each polyhedron will be strongly bonded to each other, so the configured shape will not collapse, and it can be removed freely. It is also possible to remove and separate each element.

【図面の簡単な説明】 第1図 −一方の面が他方の面と接合し合う位置は、一
方の面において自らの位置の 鏡映対称点に相当する位置であること を説明する平面図 第2〜第5図 :本発明の正多面体又は直方体の素子を
構成する各面に於て、磁極の 配列を示す各実施例 第6(a)、(b)図 :磁極の配列の仕方が同一方向
の場合と反対方向の場合に於る接合 の可否を明らかにする見取図 第7図 :正方形の面に1対の磁極として棒磁石を用い
て配列した場合の実施例を示 す平面図 第8(a)、 (b) 、’ (c) 、 (d)図 
二本発明の正多面体又は直方体の素子を構成する面に 於て、複数個の対の凸部及び凹部を配 列した実施例を示す平面図 出願人代理人弁護士弁理士 赤 尾 直 人事2(α)
図     第2(b)図 第3(α)図       $ 3 (b)図第4図 第6(0)図     第6(b)図 層7(2I
[Brief explanation of the drawings] Figure 1 - A plan view explaining that the position where one surface joins the other surface corresponds to the mirror symmetry point of its own position on one surface. Figures 2 to 5: Examples showing the arrangement of magnetic poles on each surface constituting the regular polyhedron or rectangular parallelepiped element of the present invention Figures 6 (a) and (b): The arrangement of the magnetic poles is the same Fig. 7 is a sketch showing whether or not bonding is possible in the case of the direction and in the case of the opposite direction; a), (b),' (c), (d)Fig.
2. A plan view showing an embodiment in which a plurality of pairs of convex portions and concave portions are arranged on a surface constituting a regular polyhedron or rectangular parallelepiped element of the present invention.Applicant's attorney/patent attorney Nao Akao Personnel 2 (α) )
Figure 2(b) Figure 3(α) $ 3 (b) Figure 4 Figure 6(0) Figure 6(b) Layer 7 (2I

Claims (2)

【特許請求の範囲】[Claims] (1)多面体を構成する各面に於て、該面の回転対称を
なす角度で360度を割った数又はその倍数の対の磁極
を該面の表面に備え、各対の磁極が相互に該面と同一の
回転対称性をなし、該面の鏡映対称線については、磁極
が対称に位置するように配置し、当該多面体の各面の磁
極の列方向を同一方向としたことを特徴とする、他の同
一形状体間を相互の同一形状面間を介して着脱自在とし
たことを特徴とする正多面体又は直方体
(1) On each face constituting a polyhedron, the number of pairs of magnetic poles equal to or a multiple of 360 degrees divided by the rotationally symmetrical angle of the face is provided on the surface of the face, and each pair of magnetic poles is mutually The polyhedron has the same rotational symmetry as the surface, and the magnetic poles are arranged symmetrically with respect to the line of reflection symmetry of the surface, and the column direction of the magnetic poles on each surface of the polyhedron is in the same direction. A regular polyhedron or a rectangular parallelepiped, characterized in that it can be freely attached and detached between other identically shaped bodies through mutually identically shaped surfaces.
(2)多面体を構成する面に於て、該面の回転対称をな
す角度で360度を割った数又はその倍数の対の着脱用
の凸部及び凹部を該面の表面に備え、各対の凸部及び凹
部の対が相互に該面と同一の回転対称性をなし、該面の
鏡映対称線については、夫々凸部と凹部とが対称に位置
するように配置し、当該多面体の各面の凸部と凹部の配
列方向を同一としたことを特徴とする他の同一形状面間
を相互の同一形状面間を介して着脱自在としたことを特
徴とする正多面体又は直方体
(2) The surfaces of the polyhedron are provided with pairs of protrusions and recesses for attaching and detaching, the number of which is 360 degrees divided by an angle that is rotationally symmetrical to the polyhedron, or a multiple thereof. The pairs of convex portions and concave portions of the polyhedron have the same rotational symmetry with each other, and with respect to the line of reflection symmetry of the surface, the convex portions and the concave portions are arranged so that they are located symmetrically, and the polyhedron is A regular polyhedron or a rectangular parallelepiped, characterized in that the convex portions and concave portions of each surface are arranged in the same direction, and the surfaces of the same shape can be attached and detached from each other through the same shape surfaces.
JP21142984A 1984-10-11 1984-10-11 Square polygonal body or rectangular parellelepiped characterized in making other same shape body freely dechable through same shape surface Pending JPS6190689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21142984A JPS6190689A (en) 1984-10-11 1984-10-11 Square polygonal body or rectangular parellelepiped characterized in making other same shape body freely dechable through same shape surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21142984A JPS6190689A (en) 1984-10-11 1984-10-11 Square polygonal body or rectangular parellelepiped characterized in making other same shape body freely dechable through same shape surface

Publications (1)

Publication Number Publication Date
JPS6190689A true JPS6190689A (en) 1986-05-08

Family

ID=16605801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21142984A Pending JPS6190689A (en) 1984-10-11 1984-10-11 Square polygonal body or rectangular parellelepiped characterized in making other same shape body freely dechable through same shape surface

Country Status (1)

Country Link
JP (1) JPS6190689A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09500288A (en) * 1993-05-28 1997-01-14 トリフェルス、スピールバレンファブリーク、テオ、クライン、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング Magnetic building blocks

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09500288A (en) * 1993-05-28 1997-01-14 トリフェルス、スピールバレンファブリーク、テオ、クライン、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング Magnetic building blocks

Similar Documents

Publication Publication Date Title
US3659360A (en) Regular and semi-regular polyhedrons constructed from polyhedral components
US4238905A (en) Sculptural objects
US8475225B2 (en) Construction kit
EP0121433A1 (en) Interconnectible polygonal construction modules
US5183430A (en) Geometric toy construction system
JP3382883B2 (en) Symmetric assembly that can be assembled
US4836787A (en) Construction kit educational aid and toy
JP2003513724A (en) Block toys
US7247075B2 (en) Golden rhombic pyramid-shaped building blocks
TWM547419U (en) Building blocks and structures formed therefrom
JPS63119207A (en) N and s inversion method of body attached magnetic force surface
US5567194A (en) Multi-faceted nesting modules
JPS6190689A (en) Square polygonal body or rectangular parellelepiped characterized in making other same shape body freely dechable through same shape surface
US20080200090A1 (en) Magnetic construction toy
KR200494970Y1 (en) Magnet Buildable Toys
KR100546071B1 (en) Three-dimensional type magnetic toys
JPH081387U (en) Coupler with built-in reversing magnet
JPS6118935Y2 (en)
JPH09155072A (en) Toy for child
JPH0438869Y2 (en)
JP3078815U (en) Magnetically coupled cube toy
JPS62295684A (en) Assembly
JP3222470U (en) Block toys
JPS5828637Y2 (en) 3D puzzle
JP3130523U (en) Assembly tool