JPS6190422A - Device for photochemical vapor deposition - Google Patents

Device for photochemical vapor deposition

Info

Publication number
JPS6190422A
JPS6190422A JP59211466A JP21146684A JPS6190422A JP S6190422 A JPS6190422 A JP S6190422A JP 59211466 A JP59211466 A JP 59211466A JP 21146684 A JP21146684 A JP 21146684A JP S6190422 A JPS6190422 A JP S6190422A
Authority
JP
Japan
Prior art keywords
substrate
material gas
reactor
raw material
vicinity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59211466A
Other languages
Japanese (ja)
Inventor
Masafumi Sano
政史 佐野
Hisanori Tsuda
津田 尚徳
Tomoji Komata
小俣 智司
Katsuji Takasu
高須 克二
Yoshiyuki Osada
芳幸 長田
Yutaka Hirai
裕 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59211466A priority Critical patent/JPS6190422A/en
Publication of JPS6190422A publication Critical patent/JPS6190422A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To contrive the improvement in a depositing velocity and yield of the deposited films by providing a means for making the density of a material gas in the vicinity of the position for supporting a substrate in a reactor higher than that in other positions. CONSTITUTION:A device for photochemical vapor deposition for depositing a film on a substrate supported in the reactor by utilizing a photochemical reaction which is provided with a reactor, a means for introducing a material gas into the reactor, and a means for irradiating the material gas with a high- energy beam wherein a gas is introduced into a reactor 11 from a small hole 23 of an introducing pipe 22 while cooling a material supporting means 25 by circulating a cooling medium, e.g., water in a cavity 26 and heating the reactor 11 by a heating means 21. Consequently, a temperature in the vicinity of the substrate (A) becomes lower than that in the vicinity of the container 11 so that a density of the material gas in the container 11 becomes higher than the vicinity of the substrate (A). Accordingly, a photochemical reaction is carried out mainly right above the substrate (A) by irradiation with a beam B and a deposition on the substrate (A) is made effectively, thereby improving a yield of the deposited films.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光CvD装置に関し、特に堆積速度を高めるた
めの手段を有する光CVD装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an optical CVD apparatus, and more particularly to an optical CVD apparatus having means for increasing the deposition rate.

〔従来の技術〕[Conventional technology]

近年、アモルファスシリコン膜が各種の用途において使
用される様になっており、たとえばアモルファスシリコ
ン膜な用いた光センサ−、太1lJI!電池または電子
写真感光体は良好な性能を有するものとして広く使用さ
れている。アモルファスシリコン膜は従来プラズマCv
D法や反応性ス・臂、クリング法等により形成されてい
た。ところで、これらの方法では放電エネルギーにより
原料ガスを反応させて膜形成を行なうのであるが、放電
エネルギーを的確圧制御するのは困難であるため、安定
した性能を有する膜を再現性よく形成することができな
いという問題があった。
In recent years, amorphous silicon films have come to be used in various applications, such as optical sensors using amorphous silicon films. Batteries or electrophotographic photoreceptors are widely used as they have good performance. Amorphous silicon film is conventionally plasma CV
It was formed by the D method, the reactive S-Archie method, the Kling method, etc. By the way, in these methods, a film is formed by reacting raw material gas with discharge energy, but since it is difficult to accurately control the discharge energy, it is difficult to form a film with stable performance with good reproducibility. The problem was that it was not possible.

そこで、反応エネルギーの制御が比較的容易な光CVD
法が提案されている。
Therefore, photo-CVD, which is relatively easy to control reaction energy,
A law is proposed.

第4図は光CVD法による膜形成を行なうための光CV
D装置として従来提案されているものの一例の概略断面
図である。第4図において、11は反応容器であシ、該
反応容器11内には膜を付与すべき基体を支持するため
の手段12が設けられておシ、該支持手段12の近傍に
は基体を加熱するための手段13が設けられている。反
応容器11には基体支持手段12と対向する位置に外部
から反応容器11の内部へと高エネルギー光照射を行な
うための窓14が形成されている。反応容器11にはま
た原料ガス導入管15及び排気管16が接続されている
。原料ガス導入管15にはノ9ルブ(図示せず)を介し
て原料ガス源(図示せず)が接続されておシ、一方排気
管16にはノ櫂ルブ(図示せず)を介して減圧源(図示
せず)たとえば真空ポンプが接続されている。
Figure 4 shows a photo-CVD process for film formation using the photo-CVD method.
It is a schematic sectional view of an example of what has been conventionally proposed as a D device. In FIG. 4, reference numeral 11 denotes a reaction vessel, and within the reaction vessel 11 there is provided means 12 for supporting a substrate to which a film is to be applied. Means 13 for heating are provided. A window 14 is formed in the reaction container 11 at a position facing the substrate support means 12 for irradiating high-energy light from the outside into the reaction container 11 . A raw material gas introduction pipe 15 and an exhaust pipe 16 are also connected to the reaction vessel 11 . A raw material gas source (not shown) is connected to the raw material gas inlet pipe 15 through a nozzle valve (not shown), while a raw material gas source (not shown) is connected to the exhaust pipe 16 through a nozzle valve (not shown). A reduced pressure source (not shown), such as a vacuum pump, is connected.

一方、反応容器11外には高エネルギー光の光源17が
配置されている。
On the other hand, a light source 17 of high energy light is arranged outside the reaction vessel 11.

膜形成に際しては、基体支持手段12上に基体A7’C
とえばガラスまたはセラミック等を固定支持し、減圧源
により反応容器11内を排気しながら、原料ガス導入管
15から容器11内へと原料ガスたとえばシラン(Si
n4)ガスまたはジシラン(St2H6)ガス等を導入
する。そして、加熱手段13により基体支持手段12及
び基体人を加熱しながら、光源17たとえばエキシマレ
ーデ−(Exclmer La8or)光源−?フルボ
ンレーザー光源、または水銀ランプやキセノンランプ等
の紫外領域の光源から高エネルギー光Bを照射せしめ、
該光Bを窓14(たとえば紫外線透過性材料である石英
ガラス板等からなる)から反応容器11内に導くことに
より、原料が光化学反応して基体直上にたとえば水素化
シリコン膜として成膜せしめられる。
When forming the film, the substrate A7'C is placed on the substrate support means 12.
For example, a material such as glass or ceramic is fixedly supported, and a material gas such as silane (Si
n4) Introducing gas or disilane (St2H6) gas or the like. Then, while heating the substrate support means 12 and the substrate body by the heating means 13, the light source 17, for example, an excimerade (Exclmer La8or) light source? High-energy light B is irradiated from a fulvon laser light source or a light source in the ultraviolet region such as a mercury lamp or a xenon lamp,
By guiding the light B into the reaction vessel 11 through the window 14 (for example, made of a quartz glass plate that is an ultraviolet-transparent material), the raw materials undergo a photochemical reaction and are formed as a silicon hydride film directly on the substrate. .

上記光化学反応に基づく基体直上での成膜は、たとえば
次の様な反応式で表わされる。
The film formation directly on the substrate based on the photochemical reaction described above is expressed, for example, by the following reaction formula.

(184mm) Sin4        SiH4Si+2 H2S1
−→(基体表面にアモルファスシリコンとして堆積) 〔発明の目的〕 しかして、上記の如き光CVD装置においては、原料ガ
ス導入管15は反応容器11の壁面にて開口しておシ、
また基体支持手段12は反応容器11内のほぼ中央に位
置している。このため、反応容器11内における原料ガ
ス流は、第4図において矢印で示される様に、容器11
内の全域にわたってほぼ平均したものとなる。上記反応
は基体Aの上方の光Bの照射領域において行なわれる−
<2、基板Aからかなフ離れた位置の原料ガスは未反応
の1までまたは反応した後にもガス流にのって排気管1
6から排気される傾向にある。従って、上記従来の光C
■装置においては十分な堆積速度を得ることができず、
また原料ガスに対する堆積膜の収率が低いという問題が
あった。
(184mm) Sin4 SiH4Si+2 H2S1
-→ (deposited as amorphous silicon on the surface of the substrate) [Object of the invention] However, in the photo-CVD apparatus as described above, the raw material gas introduction pipe 15 is opened at the wall surface of the reaction vessel 11.
Further, the substrate support means 12 is located approximately at the center within the reaction vessel 11. Therefore, the raw material gas flow inside the reaction vessel 11 is as shown by the arrow in FIG.
It is roughly averaged over the entire area. The above reaction takes place in the area irradiated with light B above substrate A.
<2. The raw material gas at a position far away from the substrate A is carried by the gas flow to the unreacted 1 or even after the reaction is carried out to the exhaust pipe 1.
It tends to be exhausted from 6. Therefore, the conventional light C
■It is not possible to obtain a sufficient deposition rate with the equipment,
Another problem was that the yield of the deposited film relative to the source gas was low.

本発明は以上の如き問題点を解決することを目的とする
@ 〔発明の概要〕 本発明によれば、以上の如き従来技術の問題点を解決す
るため、反応容器内における基体支持位置近傍の原料ガ
ス密度を他の位置の原料ガス密度よフ高めるための手段
を有することを特徴とする、光CVD装置が提供される
The present invention aims to solve the above-mentioned problems@ [Summary of the Invention] According to the present invention, in order to solve the above-mentioned problems of the prior art, An optical CVD apparatus is provided, which is characterized by having means for increasing the raw material gas density compared to the raw material gas density at other positions.

〔実施例〕〔Example〕

以下、図面を参照しながら、本発明の光CVD装置の具
体的実施例を説明する。
Hereinafter, specific embodiments of the optical CVD apparatus of the present invention will be described with reference to the drawings.

第1図は本発明による光CVD装置の第1の実施例を示
す概略断面図である。第1図において、11は反応容器
であシ、13は加熱手段であシ、14は窓でおり、17
は光源であシ、これらは、上記従来の光CVD装置にお
けるとほぼ同様である。
FIG. 1 is a schematic cross-sectional view showing a first embodiment of a photo-CVD apparatus according to the present invention. In FIG. 1, 11 is a reaction vessel, 13 is a heating means, 14 is a window, and 17
is a light source, and these are almost the same as those in the conventional optical CVD apparatus described above.

18は基体支持手段であシ、該支持手段18は反応容器
11内の原料ガスの流れる領域の底面を構成する。19
は原料ガス導入管であシ、該導入管19の先端は反応容
器11内にまで延びておシ、基体支持手段18の直上に
おいて該支持手段18の中心部へと向けて開口している
。また20は排気管であシ、該排気管20は基体支持手
段18の直上において反応容器11と接続されている。
Reference numeral 18 denotes a substrate support means, and the support means 18 constitutes the bottom surface of the region in the reaction vessel 11 through which the raw material gas flows. 19
is a raw material gas introduction pipe; the tip of the introduction pipe 19 extends into the reaction vessel 11 and opens toward the center of the support means 18 directly above the substrate support means 18; Further, 20 is an exhaust pipe, and the exhaust pipe 20 is connected to the reaction vessel 11 directly above the substrate support means 18.

排気管20は導入管19より太いのが好ましい。Preferably, the exhaust pipe 20 is thicker than the inlet pipe 19.

本実施例装置においては、反応容器11内における原料
ガス流は、第1図において矢印で示される様に、主とし
て気体支持手段18の面上におい・  て形成される。
In the apparatus of this embodiment, the raw material gas flow within the reaction vessel 11 is mainly formed on the surface of the gas support means 18, as indicated by the arrow in FIG.

かくして、光Bの熱射によ夛主として基体Aの直上にお
いて光化学反応が行なわれ、基体Aに効率よく堆積が行
なわれる。
In this way, a photochemical reaction is carried out directly above the substrate A due to the thermal radiation of the light B, and deposition is efficiently carried out on the substrate A.

第2図は本発明による光CV’D装置の第2の実施例を
示す概略断面図であり、第3図は七〇■−■断面図であ
る。図において第1図におけると同様の部材には同一符
号が付されている。
FIG. 2 is a schematic sectional view showing a second embodiment of the optical CV'D apparatus according to the present invention, and FIG. 3 is a sectional view taken along line 70. In the figures, similar members to those in FIG. 1 are given the same reference numerals.

本実施例においては、反応容器11の側壁に加熱手段2
またとえば発熱抵抗体が設けられている。
In this embodiment, the heating means 2 is attached to the side wall of the reaction vessel 11.
For example, a heating resistor is provided.

22は原料ガス導入管であシ、該導入管22は反応容器
ll内にまで延びており、反応容器11内の下部壁面に
沿ってほぼ1周している。導入管220反応反応容器l
l内分には上方へと向いた複数の小孔23がほぼ等間隔
にて障けられている。
Reference numeral 22 denotes a raw material gas introduction pipe, and the introduction pipe 22 extends into the reaction vessel 11 and goes around the lower wall surface of the reaction vessel 11 approximately once. Introductory tube 220 reaction vessel l
A plurality of small holes 23 facing upward are obstructed at approximately equal intervals in the inner portion.

24は排気管であシ、反応容器11の底部に接続されて
いる。25は基体支持手段であシ、該基体支持手段25
内には冷媒循環のための空洞26が形成されており、ま
た支持手段25は排気管24内において同心状に位置す
る延長部27により支持されており、該延長部27を通
して冷媒が供給される様になっている。
24 is an exhaust pipe, which is connected to the bottom of the reaction vessel 11. Reference numeral 25 denotes a base support means, and the base support means 25
A cavity 26 is formed therein for refrigerant circulation, and the support means 25 is supported by an extension 27 located concentrically within the exhaust pipe 24, through which the refrigerant is supplied. It looks like this.

本実施例装置においては、基体支持手段25を空洞26
内に冷媒たとえば水を循環させて冷却し、反応容器11
を加熱手段21により加熱しながら、原料ガスを導入管
22の小孔23から反応容器11内に導入する。これに
より、基体A近傍の温度が容器11の近傍よりも低温と
なるため、容器11内における原料ガスの密度は基体A
近傍においてより扁められる。かくして、光Bの照射に
ょ多電として基体Aの直上において光化学反応カニ行な
われ、基体Aに効率よく堆積が行なわれる。
In the device of this embodiment, the base support means 25 is connected to the cavity 26.
The reaction vessel 11 is cooled by circulating a refrigerant, such as water, inside the reaction vessel 11.
The raw material gas is introduced into the reaction vessel 11 through the small hole 23 of the introduction pipe 22 while being heated by the heating means 21 . As a result, the temperature near the substrate A becomes lower than that near the container 11, so that the density of the raw material gas in the container 11 decreases.
It is more flattened in the vicinity. In this way, the irradiation of light B causes a photochemical reaction to occur directly above the substrate A, resulting in efficient deposition on the substrate A.

〔発明の効果〕〔Effect of the invention〕

以上の如き本発明の光CVD装置によれば、原料ガスの
光化学反応及び堆積が効率よく行なわれ、堆積速度を向
上させ且つ堆積膜の収率な向上させることができる。
According to the photo-CVD apparatus of the present invention as described above, the photochemical reaction of the source gas and the deposition can be carried out efficiently, and the deposition rate and yield of the deposited film can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の光CVD装置の概略断面図
である。第3図は第2図のI−1断面図である。第4図
は従来の光CVD装置の概略断面図である。 11:反応容器、13.21:加熱手段、14:窓、1
8,25:基体支持手段、19.22:原料ガス導入管
、20.24:排気管。 第1図 第2図
1 and 2 are schematic cross-sectional views of a photo-CVD apparatus of the present invention. FIG. 3 is a sectional view taken along line I-1 in FIG. 2. FIG. 4 is a schematic cross-sectional view of a conventional optical CVD apparatus. 11: Reaction container, 13.21: Heating means, 14: Window, 1
8, 25: Substrate support means, 19.22: Raw material gas introduction pipe, 20.24: Exhaust pipe. Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)反応容器と該反応容器内に原料ガスを導入するた
めの手段と該原料ガスに高エネルギー光を照射するため
の手段とを備え、光化学反応を利用して該反応容器内に
支持されている基板上に膜を堆積する光CVD装置にお
いて、反応容器内における基体支持位置近傍の原料ガス
密度を他の位置の原料ガス密度より高めるための手段を
有することを特徴とする、光CVD装置。
(1) Comprising a reaction vessel, a means for introducing a raw material gas into the reaction vessel, and a means for irradiating the raw material gas with high-energy light; 1. A photo-CVD apparatus for depositing a film on a substrate that is attached to a substrate, the photo-CVD apparatus comprising means for increasing the density of a source gas near a substrate support position in a reaction vessel compared to the source gas density at other positions. .
(2)基体支持位置近傍における原料ガス密度を高める
ための手段が、原料ガス導入手段からのガス吐出を基体
支持手段近傍に向けて行なうことによるものである、特
許請求の範囲第1項の光CVD装置。
(2) The light according to claim 1, wherein the means for increasing the raw material gas density near the substrate supporting position is by discharging gas from the raw material gas introducing means toward the vicinity of the substrate supporting means. CVD equipment.
(3)基体支持位置近傍における原料ガス密度を高める
ための手段が、基体支持手段を冷却することによるもの
である、特許請求の範囲第1項の光CVD装置。
(3) The optical CVD apparatus according to claim 1, wherein the means for increasing the raw material gas density in the vicinity of the substrate support position is by cooling the substrate support means.
JP59211466A 1984-10-11 1984-10-11 Device for photochemical vapor deposition Pending JPS6190422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59211466A JPS6190422A (en) 1984-10-11 1984-10-11 Device for photochemical vapor deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59211466A JPS6190422A (en) 1984-10-11 1984-10-11 Device for photochemical vapor deposition

Publications (1)

Publication Number Publication Date
JPS6190422A true JPS6190422A (en) 1986-05-08

Family

ID=16606402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59211466A Pending JPS6190422A (en) 1984-10-11 1984-10-11 Device for photochemical vapor deposition

Country Status (1)

Country Link
JP (1) JPS6190422A (en)

Similar Documents

Publication Publication Date Title
EP0191855B1 (en) Barrel reactor and method for photochemical vapor deposition
US5527417A (en) Photo-assisted CVD apparatus
JP2003166059A (en) Film-forming apparatus and film-forming method
KR850001974B1 (en) Improved photochemical vapor deposition apparatus and method
US4500565A (en) Deposition process
JPS5943816B2 (en) Method for manufacturing silicon semiconductor devices
JPS6190422A (en) Device for photochemical vapor deposition
JPS6328868A (en) Cvd method
JPH08260154A (en) Induction coupling plasma cvd apparatus
JPS61289623A (en) Vapor-phase reaction device
JPS6063370A (en) Apparatus for manufacturing amorphous silicon hydride
KR100741645B1 (en) Single wafer type LPCVD apparatus having a direct heating type belljar heater
JP2551753B2 (en) Photo CVD equipment
JPH04254489A (en) Reduced pressure cvd device
JPH0626182B2 (en) Infrared heating device
JPS60131969A (en) Chemical vapor growth deposition device
JPS6079713A (en) Vapor growth equipment
JPS622525A (en) Vapor-phase reaction device
JPS6190420A (en) Device for photochemical vapor deposition
JPH04136178A (en) Microwave plasma cvd device
JPS63116735A (en) Vapor growth apparatus
JPS6118125A (en) Thin film forming apparatus
JPS61121324A (en) Vapor growth equipment
JPS61117824A (en) Vapor phase reaction container
JPS62179719A (en) Deposited film forming apparatus