JPS6190215A - Automatic steering working wagon - Google Patents

Automatic steering working wagon

Info

Publication number
JPS6190215A
JPS6190215A JP59211637A JP21163784A JPS6190215A JP S6190215 A JPS6190215 A JP S6190215A JP 59211637 A JP59211637 A JP 59211637A JP 21163784 A JP21163784 A JP 21163784A JP S6190215 A JPS6190215 A JP S6190215A
Authority
JP
Japan
Prior art keywords
boundary
vehicle
rear wheels
vehicle body
borderline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59211637A
Other languages
Japanese (ja)
Inventor
Masahiko Hayashi
正彦 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP59211637A priority Critical patent/JPS6190215A/en
Publication of JPS6190215A publication Critical patent/JPS6190215A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PURPOSE:To eliminate the delay in response to the steering control by controlling both front and rear wheels according to the detection parameters of divergence volume and divergence angle against the objective fields. CONSTITUTION:A picture signal S0 picked up by a monitor camera 5 is stored at a frame memory 7. A control device 8 takes an average of the signal S0 and obtains average picture S1. Next the part where the difference of brightness is large into binary, and obtain a binary picture of which only the borderline L between an unharvested area B and harvested area A is bright and others are dark. Further after processing the borderline L so that it makes continuous line, and then calculates the volume and angle of divergence of detected border line L against a objective border line L0 to which the vehicle 1 should follow. After steering operation is made to front and rear wheels 2, 3 and parallelly moving the vehicle 1 without changing its direction, the steering operation is given to wheels 2, 3 according to the divergence angle theta so that the wheels may direct relatively opposite each other to correct the direction of the vehicle 1 towards the borderline L so that borderline L and L0 may coincide each other, in other words so that the vehicle follows the borderline L0.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、前・後輪のいずれをもステアリング操作可能
に構成され、未処理作業地と処理済作業地との境界を検
出する手段を備え、前記境界検出手段による境界に対す
る車体のずれ検出結果に基づいて、車体が前記境界に沿
って移動すべ(ステアリング制御する手段を備えた自動
走行作業車に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is configured such that both front and rear wheels can be steered, and includes means for detecting the boundary between an untreated work area and a treated work area. The present invention relates to an automatic traveling work vehicle, comprising means for controlling the steering of a vehicle body along the boundary based on a result of detecting a shift of the vehicle body with respect to the boundary by the boundary detection means.

〔従来の技術〕[Conventional technology]

上記この種の自動走行作業車においては、上記境界検出
手段を構成するに、フォトインクラブタ式あるいは光反
射式の倣いセンサまたは接触式のセンサなどを用いて、
進行方向直前あるいは現在の車体位置等、特定の一地点
における作業地状態が未処理作業地であるか処理済作業
地であるかを感知することによって車体が沿うべき境界
位置を検出するように構成してあった。
In the above-mentioned type of automatic traveling work vehicle, the above-mentioned boundary detection means is configured using a photo-ink brush type or light reflection type scanning sensor, a contact type sensor, etc.
Configured to detect the boundary position along which the vehicle body should follow by sensing whether the state of the work area at a specific point, such as immediately before the direction of travel or the current vehicle body position, is an untreated work area or a treated work area. It was done.

しかしながら、上記従来の境界検出手段にあっては、作
業地のある一地点の境界に対するずれを検出するもので
あり、その検出結果を直ちにステアリングの制御パラメ
ータとしていたために、以下に示すような不都合があっ
た。
However, the conventional boundary detection means described above detects the deviation of a certain point of the work area from the boundary, and the detection result is immediately used as a steering control parameter, which causes the following disadvantages. was there.

即ち、作業地状態が悪く、境界が非連続な場合などには
、沿うべき境界を見失いやすく、境界の検出信号を例え
ば所定走行区間に亘って平均化するなどの処理を行って
誤動作を防止する必要があり、その結果、制御応答が遅
くなるという不都合がある。
In other words, when the working area is in poor condition and the boundaries are discontinuous, it is easy to lose sight of the boundaries to be followed, so processing such as averaging the boundary detection signals over a predetermined travel section is performed to prevent malfunctions. As a result, there is an inconvenience that the control response becomes slow.

又、実際に走行している地点あるいはその直前の一地点
における境界に対するずれのみしか検出できないため、
上記検出境界が非連続であっても実際の境界方向は直線
的であり単に直進するだけでよいような場合にも、この
不連続な境界に追従しようとして不要なステアリング制
御を行い、その結果、大きく蛇行したり制御がハンチン
グを起こしたりして直進走行性が悪くなるという不都合
もあった。
In addition, since it is possible to detect only the deviation from the boundary at the point where the vehicle is actually traveling or one point immediately before it,
Even if the detected boundary is discontinuous, the actual boundary direction is straight and it is sufficient to simply go straight, but unnecessary steering control is performed in an attempt to follow this discontinuous boundary, resulting in There were also inconveniences such as large meandering and control hunting, which worsened straight-line driving performance.

更に、実際に走行した後でなければ、境界の方向等その
状態を検出できないという構造上の欠点もあった。
Furthermore, there was also a structural drawback in that the state, such as the direction of the boundary, could not be detected until after the vehicle had actually traveled.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、上記実情に鑑みてなされたものであって、そ
の目的は、車体が沿うべき境界を実際に走行すること無
くその形状をも検出可能な手段を備え、ステアリング制
御の制御応答遅れの無い自動走行作業車を提供すること
にある。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide means for detecting the shape of the boundary that the vehicle body should follow without actually running the boundary, and to reduce the delay in control response of steering control. Our goal is to provide autonomous work vehicles that are not available today.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成すべく、本発明による自動走行作業車は
、前記境界検出手段を構成するに、車体の進行方向前方
にある所定範囲の作業地状態を撮像する手段、この撮像
手段による撮像画像の平均明度差に基づいて画像を2値
化することによって前記境界を連続した線として検出す
る手段、この境界位置検出手段による検出境界の車体が
沿うべき目標境界に対するずれ量とずれ角を演算する手
段を設け、前記目標境界に対するずれ量とずれ角との検
出パラメータに基づいて前記前・後輪のステアリング制
御を行う点に特徴を有し、その作用ならびに効果は以下
の通りである。
In order to achieve the above object, the automatic traveling work vehicle according to the present invention comprises means for imaging the state of the work area in a predetermined range in front of the vehicle body in the direction of movement, and a means for imaging the state of the work area in a predetermined range in front of the vehicle body in the direction of movement; Means for detecting the boundary as a continuous line by binarizing the image based on the average brightness difference, and means for calculating the deviation amount and deviation angle of the boundary detected by the boundary position detection means from the target boundary that the vehicle body should follow. The present invention is characterized in that the steering control of the front and rear wheels is performed based on detection parameters of the deviation amount and deviation angle with respect to the target boundary, and its operation and effects are as follows.

〔作 用〕[For production]

即ち、車体進行方向前方の作業地状態を、一点ではない
ある範囲を撮像し、その撮像画像の明度差に基づいて2
値化することによって、未処理作業地と処理済作業地と
の境界を連続した線、例えば近似直線として検出し、そ
の検出境界と車体が沿うべき目標境界に対するずれ量と
ずれ角とを求め、この検出ずれ量とずれ角とに基づいて
前・後輪をステアリング制御することによって、制御応
答遅れの無い状態で、かつ、境界に対する追従応答性お
よび収束性がよくなるのである。
In other words, images are taken of a certain range of the work area in front of the vehicle in the direction of travel, and two images are taken based on the brightness difference between the images.
By converting it into a value, the boundary between the untreated work area and the treated work area is detected as a continuous line, for example, an approximate straight line, and the amount and angle of deviation between the detected boundary and the target boundary that the vehicle body should follow are determined. By controlling the front and rear wheels based on the detected deviation amount and deviation angle, there is no delay in control response, and the follow-up response and convergence to the boundary are improved.

〔発明の効果〕〔Effect of the invention〕

上記構成故に、下記の如き優れた効果が発揮されるに至
った。
Due to the above structure, the following excellent effects have been achieved.

つまり、車体が沿うべき境界を、その位置まで走行する
前に点では無く連続した線として、言いかえると、境界
の方向およびその境界に対するずれの程度を定量的に検
出するので、走行方向を修正するためのステアリング方
向やその量を予め予測することが可能となり、従って、
制御応答遅れの無い状態で境界に対する追従性を大幅に
改善できたのである。
In other words, the boundary that the vehicle should follow is determined not as a point but as a continuous line before traveling to that position.In other words, the direction of the boundary and the degree of deviation from that boundary are quantitatively detected, so the direction of travel is corrected. It is now possible to predict in advance the steering direction and amount to
The ability to track boundaries was significantly improved without any delay in control response.

また、車体に対する境界位置を予測してステアリング制
御するものであるから、境界状態が悪く不連続な場合で
あっても、その方向および位置を補正して制御可能であ
る。 従って、直進走行性も大幅に良くなったのである
Further, since the steering control is performed by predicting the boundary position with respect to the vehicle body, even if the boundary condition is bad and discontinuous, the direction and position can be corrected and the steering control can be performed. Therefore, straight-line running performance has also been significantly improved.

〔実施例〕〔Example〕

以下、本発明の実施例を図面に基づいて説明する。 Embodiments of the present invention will be described below based on the drawings.

第5図および第6図に示すように、前輪(2)。As shown in Figures 5 and 6, the front wheel (2).

(2)および後輪(3) 、 (3)のいずれをもステ
アリング操作可能に構成された車体(1)の中間部にデ
ィスク型刈刃を内装した芝刈装置(4)を上下動自在に
懸架するとともに、各工程の走行コースを示す芝地の未
刈地(B)と既刈地(C)との境界(L)を検出する後
記構成になる境界検出手段としての倣いセンサ(^)を
設け、もって、前記境界(L)に沿って自動走行可能な
自動走行作業車としての芝刈作業車を構成しである。
(2) and the rear wheels (3), a lawn mower (4) equipped with an internal disc-shaped cutting blade is suspended vertically in the middle of the vehicle body (1), which is configured so that both of the rear wheels (3) and (3) can be operated by steering. At the same time, a tracing sensor (^) is used as a boundary detection means configured as described later to detect the boundary (L) between the unmown area (B) and the mowed area (C) of the lawn indicating the running course of each process. This constitutes a lawn mowing vehicle as an automatically traveling vehicle capable of automatically traveling along the boundary (L).

前記倣いセンサ(A)を構成するに、撮像手段としての
モニタカメラ(5)を、その撮像視野が、車体(1)の
進行方向前方の沿って走行すべき目標境界(L0)を中
心とする所定範囲の芝地(D)となるように、車体(1
)前方上方に向かって延設されたセンサ指示フレーム(
6)の先端部に設け、このモニタカメラ(5)による撮
像画像をその平均明度差に基づいて2値化することによ
って、目標境界(L0)に対する検出境界(L)のずれ
量(a)とずれ角(θ)を求めて、前記検出境界(L)
と目標境界(L0)とが一致するように、つまり、検出
境界(L)が前記モニタカメラ(5)の車体(1)に対
して前後方向の視野中心に位置するように、走行方向を
修正すべくステアリング操作を制御するのである。
The following sensor (A) is configured by using a monitor camera (5) as an imaging means, whose imaging field of view is centered on the target boundary (L0) along which the vehicle body (1) is to travel forward in the traveling direction. Car body (1
) The sensor indicator frame extends forward and upward (
6), and binarizes the image captured by this monitor camera (5) based on the average brightness difference, thereby determining the amount of deviation (a) of the detection boundary (L) with respect to the target boundary (L0). Find the deviation angle (θ) and set the detection boundary (L)
and the target boundary (L0), that is, the driving direction is corrected so that the detection boundary (L) is located at the center of the field of view in the longitudinal direction with respect to the vehicle body (1) of the monitor camera (5). It controls the steering operation.

以下、前記モニタカメラ(5)による撮像画像を2値化
して境界(L)を検出する手段を、第1図に示すブロッ
ク図、第2図に示す画像信号の説明図、および、第3図
に示すフローチャートに基づいて説明する。
Hereinafter, the means for detecting the boundary (L) by binarizing the image captured by the monitor camera (5) will be explained using the block diagram shown in FIG. 1, the explanatory diagram of the image signal shown in FIG. The explanation will be based on the flowchart shown in .

まず、前記モニタカメラ(5)によって撮像された画像
信号(S0)をフレームメモリ(7)に一旦記憶し、マ
イクロコンピュータによって構成された制御装置(8)
によって前記フレームメモリ(7)に記憶された画像信
号(SO) (第2図(イ)に示す)を、例えば画像中
心画素の明度をその周囲の所定ドツト数で区画された領
域の平均値に順。 次置き換えるというような処理を行
うことによって、平均化して、第2図(Ij)に示すよ
うにぼかした平均化画像(S、)を得る。
First, an image signal (S0) captured by the monitor camera (5) is temporarily stored in a frame memory (7), and a control device (8) configured by a microcomputer
The image signal (SO) (shown in FIG. 2 (a)) stored in the frame memory (7) is converted into, for example, the brightness of the center pixel of the image by the average value of the area partitioned by a predetermined number of dots around it. order. By performing processing such as subsequent replacement, the images are averaged to obtain a blurred averaged image (S,) as shown in FIG. 2 (Ij).

次に、前記平均化画像(Sl)の明度変化が大きい部分
、すなわち、明度変化が大きい画素部分を2値化するこ
とによって、第2図09に示すように、未刈地(B)と
既刈地(C)との境界(L)部分のみが明るく、他の部
分が暗い2値化画像(S2)を得る。
Next, by binarizing the portions of the averaged image (Sl) where the brightness changes are large, that is, the pixel portions where the brightness changes are large, as shown in FIG. A binarized image (S2) is obtained in which only the boundary (L) portion with the mowed field (C) is bright and the other portions are dark.

更に、前記2値化画像(S2)によって検出された境界
(L)を連続した綿、例えば、近似直線、となるように
処理した後、前記第1図に示すように車体(1)が沿う
べき目標境界(L0)に対する検出境界(L)のずれ量
(a)とずれ角(θ)を演算する。
Furthermore, after processing the boundary (L) detected by the binarized image (S2) so that it becomes a continuous line, for example, an approximate straight line, the vehicle body (1) is aligned as shown in FIG. The deviation amount (a) and deviation angle (θ) of the detection boundary (L) with respect to the power target boundary (L0) are calculated.

そして、前記演算によって算出されたずれ量(a)に基
づいて、前記前・後輪(2) 、 (3)を同一方向に
ステアリング操作して、車体(1)をその向きを変える
こと無く平行移動させた後、前記ずれ角(θ)に基づい
て、前記前・後輪(2) 、 (3)が相対的に逆方向
となるようにステアリング操作して車体(1)の目標境
界(し。)に対する向きを修正して、前記検出境界(L
)と目標境界(L、)とが前記モニタカメラ(5)の視
野内において一致するように、つまり、車体(1)が目
標境界(L0)に沿うように制御するのである。
Then, based on the deviation amount (a) calculated by the calculation, the front and rear wheels (2) and (3) are steered in the same direction, so that the vehicle body (1) is parallel without changing its direction. After moving, based on the deviation angle (θ), the front and rear wheels (2) and (3) are steered in relatively opposite directions to find the target boundary (position) of the vehicle body (1). ) and correct the orientation with respect to the detection boundary (L
) and the target boundary (L, ) coincide within the field of view of the monitor camera (5), that is, the vehicle body (1) is controlled to follow the target boundary (L0).

従って、例えば第4図に示すように、不連続な境界(同
図(イ)に示す)、局所的に曲がった境界(同図幻)に
示す)、芝地にムラがあって不明確な境界(同図Q9に
示す)、などが検出されたとしても、連続した境界(L
)として補正可能であり、従来のように不要なステアリ
ング操作をしたり、本来の境界外へ走行方向がずれたり
することの無い、ステアリング制御が可能となったので
ある。
Therefore, as shown in Figure 4, for example, there are discontinuous boundaries (as shown in Figure (A)), locally curved boundaries (as shown in Figure 4), and uneven and unclear lawns. Even if a boundary (shown in Q9 in the same figure) is detected, a continuous boundary (L
), making it possible to perform steering control without unnecessary steering operations or deviation of the driving direction from the original boundaries as in the past.

尚、第1図中、(9) 、 (10)は夫々前輪(2)
 、 (2)および後輪(3) 、 (3)を実際にス
テアリング操作する油圧シリンダ、(11) 、 (1
2)は夫々前記油圧シリンダ(9) 、 (10)を駆
動する電磁バルブ、(13)は無段変速装置(14)の
変速位置を操作するモータである。 また、(R,) 
、 (RZ)は夫々前記前輪(2) 、 (2)および
後輪(3) 、 (3)のステアリング量を検出して前
記制御装置(8)にフィードバックするためのポテンシ
ョメータ、(R3)は同様に前記変速装置(14)の変
速位置を検出して制御装置(8)にフィードバンクする
ためのポテンショメータである。
In Figure 1, (9) and (10) are the front wheels (2), respectively.
, (2) and the hydraulic cylinders that actually steer the rear wheels (3), (3), (11), (1
2) are electromagnetic valves that drive the hydraulic cylinders (9) and (10), respectively, and (13) is a motor that operates the shift position of the continuously variable transmission (14). Also, (R,)
, (RZ) is a potentiometer for detecting the steering amount of the front wheels (2), (2) and the rear wheels (3), (3) and feeding it back to the control device (8), and (R3) is a similar potentiometer. This is a potentiometer for detecting the shift position of the transmission device (14) and feeding it to the control device (8).

ところで、前記原画像信号(S0)を平均化するのは、
刈り取った芝の葉などの反射光の影響による大きな明度
変化や未刈地(B)内にある既刈地(C)と区別しにく
い芝が小さくハゲた部分やムラのある部分などを検出し
に<クシで、境界(L)の検出誤差を予め少なくするた
めである。
By the way, averaging the original image signal (S0) is as follows:
It detects large brightness changes due to the influence of reflected light from mown grass leaves, small bald areas of grass that are difficult to distinguish from mown areas (C) in uncut areas (B), and uneven areas. This is to reduce the detection error of the boundary (L) in advance.

そして、この平均化処理を行うに、前記演算処理に変え
て、ボカシ用の光学的なフィルタを用いたり、あるいは
単にカメラ(5)をいわゆるピンボケ状態で使用するこ
とによって行ってもよい。
The averaging process may be performed by using an optical filter for blurring instead of the arithmetic processing, or by simply using the camera (5) in a so-called out-of-focus state.

また、前記境界(L)を求めるに、前記2値画像(S2
)の隣接した各画素(ドツト)から最小自乗法などによ
って処理できるが、2値化するのではなく明度変化の微
分値を重み係数として処理してもよい。
In addition, in order to find the boundary (L), the binary image (S2
) can be processed using the least squares method or the like from each adjacent pixel (dot), but instead of binarizing, the differential value of the brightness change may be processed as a weighting coefficient.

さらにまた、前記境界(L)を連続した線として求める
に、前記最小自乗法やHaugh変換により境界線部分
の画像の座標を用いて計算してもよい。
Furthermore, in order to obtain the boundary (L) as a continuous line, calculation may be performed using the coordinates of the image of the boundary line portion by the least squares method or Hough transformation.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る自動走行作業車の実施例を示し、第
1図は制御システムの構成を示すブロック図、第2図(
イ)+ (0)、 G1%)は画像信号の説明図、第3
図は制御装置の動作を示すフローチャート、第4図(イ
)、(ロ)、 Q9は不明確な境界の説明図、第5図は
芝刈作業車の全体構成を示す平面図、そして、第6図は
その側面図である。 (1)・・・・・・車体、(2)・・・・・・前輪、(
3)・・・・・・後輪、(5)・・・・・・撮像手段、
(A)・・・・・・境界検出手段、(B)・・・・・・
未処理作業地、(C)・・・・・・処理済作業地、(L
)・・・・・・検出境界、(L0)・・・・・・目標境
界、(a)・・・・・・ずれ量、(θ)・・・・・・ず
れ角。
The drawings show an embodiment of the automatic traveling work vehicle according to the present invention, and FIG. 1 is a block diagram showing the configuration of the control system, and FIG. 2 (
A) + (0), G1%) is an explanatory diagram of the image signal, 3rd
The figure is a flowchart showing the operation of the control device, Figures 4 (a) and (b), Q9 are explanatory diagrams of unclear boundaries, Figure 5 is a plan view showing the overall configuration of the lawn mowing vehicle, and Figure 6 is a plan view showing the overall configuration of the lawn mowing vehicle. The figure is a side view thereof. (1)...Vehicle body, (2)...Front wheels, (
3)... Rear wheel, (5)... Imaging means,
(A)... Boundary detection means, (B)...
Untreated working area, (C)... Treated working area, (L
)...Detection boundary, (L0)...Target boundary, (a)...Difference amount, (θ)...Difference angle.

Claims (1)

【特許請求の範囲】 [1]前・後輪(2)、(3)のいずれをもステアリン
グ操作可能に構成され、未処理作業地(B)と処理済作
業地(C)との境界(L)を検出する手段(A)を備え
、前記境界検出手段(A)による境界(L)に対する車
体(1)のずれ検出結果に基づいて、車体(1)が前記
境界(L)に沿って移動すべくステアリング制御する手
段を備えた自動走行作業車であって、前記境界検出手段
(A)を構成するに、車体(1)の進行方向前方にある
所定範囲の作業地状態を撮像する手段(5)、この撮像
手段(5)による撮像画像の平均明度差に基づいて画像
を2値化することによって前記境界を連続した線として
検出する手段、この境界位置検出手段による検出境界(
L)の車体(1)が沿うべき目標境界(L_0)に対す
るずれ量(a)とずれ角(θ)を演算する手段を設け、
前記目標境界(L_0)に対するずれ量(a)とずれ角
(θ)との検出パラメータに基づいて前記前・後輪(2
)、(3)のステアリング制御を行うことを特徴とする
自動走行作業車。 [2]前記目標境界(L_0)に対する検出ずれ量(a
)とずれ角(θ)とに基づいてステアリング制御するに
、ずれ量(a)に対するステアリング制御は前・後輪(
2)、(3)を同一方向にステアリング操作する平行移
動ステアリングであって、ずれ角(θ)に対するステア
リング制御は前・後輪(2)、(3)を相対的に逆方向
にステアリング操作する旋回ステアリングであることを
特徴とする特許請求の範囲第[1]項に記載の自動走行
作業車。
[Claims] [1] Both the front and rear wheels (2) and (3) can be steered, and the boundary between the untreated work area (B) and the treated work area (C) ( L), and the vehicle body (1) moves along the boundary (L) based on the detection result of the displacement of the vehicle body (1) with respect to the boundary (L) by the boundary detection means (A). The automatic traveling work vehicle is equipped with means for steering control in order to move, and the boundary detection means (A) comprises means for capturing an image of the state of the work site in a predetermined range in front of the vehicle body (1) in the direction of movement. (5) means for detecting the boundary as a continuous line by binarizing the image based on the average brightness difference of the image captured by this imaging means (5);
A means is provided for calculating a deviation amount (a) and a deviation angle (θ) with respect to a target boundary (L_0) that the vehicle body (1) of L) should follow,
The front and rear wheels (2
), (3) An automatic driving work vehicle characterized by performing steering control. [2] Detected deviation amount (a) with respect to the target boundary (L_0)
) and the deviation angle (θ), the steering control for the deviation amount (a) is based on the front and rear wheels (
2) and (3) are steered in the same direction, and the steering control for the deviation angle (θ) is performed by steering the front and rear wheels (2) and (3) in relatively opposite directions. The self-driving work vehicle according to claim 1, characterized in that it has turning steering.
JP59211637A 1984-10-09 1984-10-09 Automatic steering working wagon Pending JPS6190215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59211637A JPS6190215A (en) 1984-10-09 1984-10-09 Automatic steering working wagon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59211637A JPS6190215A (en) 1984-10-09 1984-10-09 Automatic steering working wagon

Publications (1)

Publication Number Publication Date
JPS6190215A true JPS6190215A (en) 1986-05-08

Family

ID=16609073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59211637A Pending JPS6190215A (en) 1984-10-09 1984-10-09 Automatic steering working wagon

Country Status (1)

Country Link
JP (1) JPS6190215A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63560U (en) * 1986-06-20 1988-01-05

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52153532A (en) * 1976-06-15 1977-12-20 Iseki & Co Ltd Control sensor for movable agricultural implement
JPS5922106A (en) * 1982-07-27 1984-02-04 Kubota Ltd Automatic running vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52153532A (en) * 1976-06-15 1977-12-20 Iseki & Co Ltd Control sensor for movable agricultural implement
JPS5922106A (en) * 1982-07-27 1984-02-04 Kubota Ltd Automatic running vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63560U (en) * 1986-06-20 1988-01-05

Similar Documents

Publication Publication Date Title
JPS6190215A (en) Automatic steering working wagon
JPH022B2 (en)
JPS61139304A (en) Steering controller of self-propelling working machine
JPS62122507A (en) Steering control apparatus of self-running working machine
JPH04126004A (en) Boundary detecting device for automatic traveling working vehicle
JPH05316807A (en) Method for steering and controlling agricultural traction type working machine
JPH0365922B2 (en)
JPH01161403A (en) Image pickup type steering control device for automatic traveling working vehicle
JPH0241282B2 (en)
JPS6043305A (en) Self-propelling working vehicle
JPH01231809A (en) Photographing type travel control device for automatic travel working car
JPH01231810A (en) Photographing type steering control device for automatic travel working car
JPH012503A (en) Self-driving work vehicle
JPH023B2 (en)
JPH0324684B2 (en)
JPS63298103A (en) Image sensing type boundary detector
JPS6196906A (en) Automatic propelling working machine
JPH0365122B2 (en)
JPS63277908A (en) Image pickup type border detection device
JPH01161402A (en) Image pickup type steering control device for automatic traveling working vehicle
JPS61115408A (en) Turn controller of automatic running working machine
JPH01187015A (en) Mowing, working vehicle of automatic steering type
JPH0155842B2 (en)
JPH045205B2 (en)
JPH0517808B2 (en)