JPH022B2 - - Google Patents

Info

Publication number
JPH022B2
JPH022B2 JP58130428A JP13042883A JPH022B2 JP H022 B2 JPH022 B2 JP H022B2 JP 58130428 A JP58130428 A JP 58130428A JP 13042883 A JP13042883 A JP 13042883A JP H022 B2 JPH022 B2 JP H022B2
Authority
JP
Japan
Prior art keywords
steering
sensor
boundary
correction
vehicle body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58130428A
Other languages
Japanese (ja)
Other versions
JPS6024109A (en
Inventor
Katsumi Ito
Shigeru Tanaka
Shingo Yoshimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP58130428A priority Critical patent/JPS6024109A/en
Priority to AU22322/83A priority patent/AU548704B2/en
Priority to US06/560,834 priority patent/US4573547A/en
Priority to GB08333642A priority patent/GB2143654B/en
Priority to FR8320499A priority patent/FR2548401B1/en
Priority to CA000444995A priority patent/CA1226055A/en
Publication of JPS6024109A publication Critical patent/JPS6024109A/en
Publication of JPH022B2 publication Critical patent/JPH022B2/ja
Granted legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01BSOIL WORKING IN AGRICULTURE OR FORESTRY; PARTS, DETAILS, OR ACCESSORIES OF AGRICULTURAL MACHINES OR IMPLEMENTS, IN GENERAL
    • A01B69/00Steering of agricultural machines or implements; Guiding agricultural machines or implements on a desired track
    • A01B69/007Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow
    • A01B69/008Steering or guiding of agricultural vehicles, e.g. steering of the tractor to keep the plough in the furrow automatic
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0259Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means
    • G05D1/0265Control of position or course in two dimensions specially adapted to land vehicles using magnetic or electromagnetic means using buried wires

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Soil Sciences (AREA)
  • Environmental Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Guiding Agricultural Machines (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

【発明の詳細な説明】 本発明は、未処理作業地と処理済作業地との境
界を検出するセンサーと、車体の走行方位を検出
する方位センサーとが設けられ、前記境界に沿つ
て自動的に走行すべく、前記車体の前輪及び後輪
の両方をステアリング操作する制御手段が設けら
れ、その制御手段は、前記方位センサーによる検
出方位と基準方位との差が許容より大きい時に
は、前記前輪と前記後輪とを異なる角度に操作す
る方位修正ステアリングにて方位修正を行い且
つ、前記境界を検出するセンサーが前記車体と前
記境界との横ズレを検出した時には、前記前輪と
前記後輪とを同じ方向に所定角操作する平行移動
ステアリングにて横ズレ修正を行うように構成さ
れている自動走行作業車に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is provided with a sensor that detects the boundary between an untreated work area and a treated work area, and an azimuth sensor that detects the running direction of the vehicle body. A control means is provided for steering both the front wheels and the rear wheels of the vehicle body in order to drive the vehicle, and the control means is configured to steer both the front wheels and the rear wheels when the difference between the orientation detected by the orientation sensor and the reference orientation is larger than a permissible value. When the direction is corrected using the direction correction steering which operates the rear wheels at a different angle, and the sensor detecting the boundary detects a lateral shift between the vehicle body and the boundary, the front wheels and the rear wheels are adjusted. The present invention relates to an automatic traveling work vehicle configured to correct lateral displacement using a parallel steering wheel operated by a predetermined angle in the same direction.

かかる自動走行作業車は、横ズレの修正を、車
体の走行方向が変化しない平行移動ステアリング
で行わせることによつて、横ズレ修正時にも車体
の走行方向が変化するステアリングを行わせるに
較べて、境界に沿つて的確に追従走行させること
ができると共に、ステアリング操作の頻度の減少
を図り、耐久面において有利となるものである。
Such automatic driving work vehicles correct lateral deviations by using parallel steering that does not change the running direction of the vehicle body, compared to steering that changes the running direction of the vehicle body even when correcting lateral deviations. , it is possible to accurately track the vehicle along the boundary, and the frequency of steering operations can be reduced, which is advantageous in terms of durability.

ところで、制御手段によつて、方位修正と横ズ
レ修正とを行わせるに、境界を検出するセンサー
が車体と境界との横ズレを検出しない時にのみ、
前記方位修正ステアリングにて方位修正を行わせ
るようにすべく、平行移動ステアリングにより横
ズレ修正を方位修正ステアリングによる方位修正
よりも優先して行わせるようにすることが考えら
れる。
By the way, when the control means corrects the direction and the lateral deviation, only when the sensor that detects the boundary does not detect a lateral deviation between the vehicle body and the boundary.
In order to correct the azimuth using the azimuth correction steering, it is conceivable that the lateral shift correction is performed using the parallel displacement steering with priority over the azimuth correction using the azimuth correction steering.

しかしながら、横ズレ修正を方位修正より優先
させると、車体が境界の長手方向に対して大きく
傾いていると、平行移動ステアリングによる横ズ
レ修正を迅速に行えない、あるいは、場合によつ
ては、横ズレ修正を行えないものとなる虞れがあ
る。
However, if lateral deviation correction is given priority over azimuth correction, if the vehicle body is tilted significantly with respect to the longitudinal direction of the boundary, lateral deviation correction by parallel steering cannot be performed quickly, or in some cases, lateral deviation correction may not be possible quickly. There is a possibility that the deviation cannot be corrected.

説明を加えると、平行移動ステアリングは、前
輪及び後輪を同じ方向に所定角操作するものであ
るから、例えば、境界の長手方向に対する車体の
傾きと平行移動ステアリングの所定角とが、同じ
である場合には、車体は境界に対する横ズレ量を
一定にする状態で、単に境界に沿つて走行するも
のとなる。従つて、このことから推考できるよう
に、境界の長手方向に対する車体の傾きが大きい
場合においては、横ズレを迅速に修正できないト
ラブルや、横ズレを修正できないトラブルを招く
ものとなる。
To explain, since parallel steering operates the front wheels and rear wheels in the same direction by a predetermined angle, for example, the inclination of the vehicle body with respect to the longitudinal direction of the boundary and the predetermined angle of parallel steering are the same. In this case, the vehicle body simply travels along the boundary while keeping the amount of lateral deviation relative to the boundary constant. Therefore, as can be inferred from this, when the inclination of the vehicle body with respect to the longitudinal direction of the boundary is large, troubles arise in which the lateral deviation cannot be corrected quickly or the lateral deviation cannot be corrected.

本発明は、上記実状に鑑みて為されたものであ
つて、横ズレ修正を適切に行えるようにする点に
ある。
The present invention has been made in view of the above-mentioned circumstances, and has the object of making it possible to appropriately correct lateral displacement.

本発明による自動走行作業車の特徴構成は、前
記方位センサーによる検出方位と基準方位との差
が許容差内にある時にのみ、前記平行移動ステア
リングによる横ズレ修正を行わせるようにすべ
く、前記制御手段は、前記方位修正ステアリング
による方位修正を前記平行移動ステアリングによ
る横ズレ修正よりも優先して行うように構成され
ている点にあり、その作用及び効果は次の通りで
ある。
The characteristic configuration of the automatic traveling work vehicle according to the present invention is such that the lateral shift correction by the parallel steering is performed only when the difference between the orientation detected by the orientation sensor and the reference orientation is within a tolerance. The control means is configured to perform azimuth correction by the azimuth correction steering with priority over lateral deviation correction by the parallel displacement steering, and its functions and effects are as follows.

すなわち、方位修正ステアリングによる方位修
正を、平行移動ステアリングによる横ズレ修正よ
りも優先して行わせて、方位センサーによる検出
方位と基準方位との差が許容差内にある時、つま
り、境界の長手方向に対する車体の傾きが小さい
時にのみ、平行移動ステアリングによる横ズレ修
正を行わせるようにしてある。
In other words, when the direction correction by the direction correction steering is given priority over the lateral deviation correction by the parallel movement steering, and the difference between the direction detected by the direction sensor and the reference direction is within the tolerance, that is, the longitudinal direction of the boundary is Only when the inclination of the vehicle body with respect to the direction is small is the lateral shift correction performed using parallel steering.

従つて、方位修正と横ズレ修正との優先順序を
合理的に決めることによつて、車体が境界の長手
方向に対して大きく傾くことがあつても、横ズレ
修正を適切に行わせることができるのであり、も
つて、上記トラブルの発生を回避して、一層適確
に、境界に沿つて追従走行させることが可能とな
つた。
Therefore, by rationally determining the priority order of azimuth correction and lateral deviation correction, it is possible to appropriately correct lateral deviation even if the vehicle body is tilted significantly with respect to the longitudinal direction of the boundary. As a result, it has become possible to avoid the above-mentioned troubles and to more accurately follow the boundary.

以下、本発明の実施例を図面に基いて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図に示すように、前輪2,2および後輪
3,3のいずれをもステアリング操作可能に構成
した車体1の中間部に、デイスク型刈刃を内装し
た芝刈装置4を上下動自在に懸架するとともに、
後記構成になる未処理作業地としての未刈地Bと
処理済作業地としての既刈地Cの境界Lを検出す
る倣いセンサーA,A、および、車体1の走行方
位θを検出する方位センサーとしての地磁気強度
を検出することにより方位を判別すべく構成され
た地磁気センサー5を設け、もつて、自動走行作
業車としての芝刈作業車を構成してある。
As shown in Fig. 1, a lawn mower 4 equipped with a disc-shaped cutting blade is movable vertically in the middle of a vehicle body 1 in which both front wheels 2, 2 and rear wheels 3, 3 can be steered. Along with suspending
Tracing sensors A, A that detect a boundary L between an unmoved land B as an untreated work area and a mowed land C as a treated work area, and a direction sensor that detects the traveling direction θ of the vehicle body 1, which will be configured as described later. A geomagnetic sensor 5 configured to determine the orientation by detecting the geomagnetic strength as the terrestrial magnetic field is provided, thereby configuring a lawn mowing vehicle as an automatic traveling vehicle.

そして、前記倣いセンサーAによる境界L検出
結果および地磁気センサー5による走行方位θ検
出結果に基いて、前記前輪2,2および後輪3,
3の両方をステアリング操作して走行方向を自動
修正すべく構成してある。
Based on the boundary L detection result by the copying sensor A and the traveling direction θ detection result by the geomagnetic sensor 5, the front wheels 2, 2, the rear wheels 3,
The vehicle is configured to automatically correct the traveling direction by operating the steering wheel on both of the vehicles.

前記倣いセンサーAは車体1左右方向に並設さ
れたふたつの光センサーS1,S2によつて構成して
あり、この光センサーS1,S2は、第2図に示すよ
うに、コの字形状のセンサーフレーム6,6を前
記芝刈装置4に設けたセンサー取付フレーム7に
固着するとともに、前記センサーフレーム6の内
側対向面に夫々発光素子P1と受光素子P2を一対
として設けてあり、この発光素子P1と受光素子
P2との間に、車体1の走行に伴つて導入される
芝の有無を感知することによつて、未刈地と既刈
地との境界を判別すべく構成してある。なお、セ
ンサーAとしては光センサーS1,S2を用いるもの
に限らず、接触式・非接触式をとわず、どのよう
な形式のセンサーから構成してもよい。
The copying sensor A is composed of two optical sensors S 1 and S 2 that are arranged in parallel in the left and right direction of the vehicle body 1, and these optical sensors S 1 and S 2 are arranged in parallel as shown in FIG. A square-shaped sensor frame 6, 6 is fixed to a sensor mounting frame 7 provided on the lawn mower 4, and a light emitting element P1 and a light receiving element P2 are respectively provided as a pair on the inner facing surface of the sensor frame 6. Yes, this light emitting element P1 and light receiving element
P 2 is configured to determine the boundary between unmowed land and mowed land by sensing the presence or absence of grass that is introduced as the vehicle body 1 travels. Note that the sensor A is not limited to one using the optical sensors S 1 and S 2 , and may be constructed from any type of sensor, whether contact type or non-contact type.

以下、上記構成になる倣いセンサーAおよび地
磁気センサー5の各検出信号に基いて、前輪2,
2および後輪3,3を自動的にステアリング操作
する制御システムについて説明する。
Hereinafter, based on the detection signals of the copying sensor A and the geomagnetic sensor 5 configured as described above,
A control system for automatically steering the wheels 2 and rear wheels 3, 3 will be described.

第3図に示すように、制御システムは、主要部
をマイクロコンピユータによつて構成された制御
装置8に、前記倣いセンサーAを構成する光セン
サーS1,S2および地磁気センサー5からの信号を
入力してあり、これら各センサーS1,S2,5の検
出信号に基いて、前輪2,2および後輪3,3を
ステアリング操作するアクチユエータとしての油
圧シリンダ9,10夫々を作動させる電磁バルブ
11,12を駆動する制御信号を演算・出力すべ
く構成してある。
As shown in FIG. 3, the control system sends signals from the optical sensors S 1 and S 2 and the geomagnetic sensor 5, which constitute the scanning sensor A, to a control device 8 whose main part is composed of a microcomputer. and an electromagnetic valve that operates hydraulic cylinders 9 and 10 as actuators for steering the front wheels 2 and 2 and the rear wheels 3 and 3 based on the detection signals of these sensors S 1 , S 2 and 5. It is configured to calculate and output control signals for driving 11 and 12.

すなわち、前記境界Lに沿つて自動的に走行す
べく、前輪2及び後輪3の両方をステアリング操
作する制御手段が、前記制御装置8を用いて構成
されている。そして、その制御装置8は、方位セ
ンサー5による検出方位θと基準方位θ0との差が
許容差Kより大きい時には、前輪2と後輪3とを
異なる角度に操作する方位修正ステアリングにて
方位修正を行い、且つ、境界を検出するセンサー
としての倣いセンサーAが車体1と境界Lとの横
ズレを検出した時には、前輪2と後輪3とを同じ
方向に所定角操作する平行移動ステアリングにて
横ズレ修正を行うことになり、さらには、方位セ
ンサー5による検出方位θと基準方位θ0との差が
許容差K内にある時にのみ、平行移動ステアリン
グによる横ズレ修正を行わせるようにすべく、方
位修正ステアリングによる方位修正を平行移動ス
テアリングによる横ズレ修正よりも優先して行う
ようになつている。
That is, in order to automatically travel along the boundary L, a control means for steering both the front wheels 2 and the rear wheels 3 is configured using the control device 8. When the difference between the orientation θ detected by the orientation sensor 5 and the reference orientation θ 0 is greater than the tolerance K, the control device 8 controls the orientation using orientation correction steering that operates the front wheels 2 and rear wheels 3 at different angles. When the correction is made and the copying sensor A, which is a sensor that detects the boundary, detects a lateral deviation between the vehicle body 1 and the boundary L, the parallel steering is performed to operate the front wheels 2 and the rear wheels 3 by a predetermined angle in the same direction. In addition, only when the difference between the direction θ detected by the direction sensor 5 and the reference direction θ 0 is within the tolerance K, the lateral shift is corrected by the parallel steering. In order to achieve this, the direction correction using the direction correction steering is given priority over the lateral deviation correction using the parallel displacement steering.

説明を加えると前記倣いセンサーAが境界Lを
検出している状態、すなわち、車体1外側の光セ
ンサーS1が既刈地Cを検出し車体1内側の光セン
サーS2が未刈地Bを検出している状態にある場合
は、前輪2,2および後輪3,3を中立(ニユー
トラル)状態に復帰させて車体1を直進させる制
御を行なう。
To explain further, when the copying sensor A is detecting the boundary L, that is, the optical sensor S 1 on the outside of the vehicle body 1 detects the mowed land C, and the optical sensor S 2 on the inside of the vehicle body 1 detects the unmoved land B. If it is in the detected state, control is performed to return the front wheels 2, 2 and rear wheels 3, 3 to a neutral state and to move the vehicle body 1 straight.

一方、倣いセンサーAが境界Lからずれたこと
を検出、すなわち、ふたつの光センサーS1,S2
両方共に未刈地Bまたは既刈地Cを検出した場合
は、前記地磁気センサー5による検出方位θと基
準方位θ0とを較して、第4図に示すように、車体
1が境界に対して平行にずれているか斜めにずれ
ているかを判別して、そのずれ方に対応した前輪
2,2および後輪3,3のステアリング角θF,θR
を夫々演算して走行方向を修正するのである。
On the other hand, if the tracing sensor A detects that it has deviated from the boundary L, that is, if the two optical sensors S 1 and S 2 both detect the uncut area B or the cut area C, the geomagnetic sensor 5 detects By comparing the orientation θ and the reference orientation θ 0 , it is determined whether the vehicle body 1 is displaced parallel to or diagonally with respect to the boundary, as shown in FIG. Steering angles θ F , θ R of 2, 2 and rear wheels 3, 3
The running direction is corrected by calculating each of these.

即ち、前記検出方位θと基準方位θ0との差が誤
容差K以内である場合は、前記前後輪2,3の各
ステアリング角θF,θRを同一同方向の所定角S
で倣いセンサーAが検出した境界Lに対するずれ
の方向とは逆方向にステアリング操作して車体1
を平行移動させることにより境界Lに復帰させる
横ズレ修正の制御を行う。
That is, when the difference between the detected orientation θ and the reference orientation θ 0 is within the error tolerance K, the steering angles θF and θR of the front and rear wheels 2 and 3 are adjusted to a predetermined angle S in the same direction.
, operate the steering wheel in the opposite direction to the direction of deviation from the boundary L detected by the scanning sensor A, and move the vehicle body 1.
Control is performed to correct the lateral deviation to return to the boundary L by moving in parallel.

一方、前記検出方位θと基準方位θoとの差が
許容差Kを超えている場合は、前輪2,2のステ
アリング角θFを前記所定角Sに対して所定量
(α)オフセツトした角度(S±α)で、前記同
様にステアリング操作して、検出方位θを基準方
位θ0に近付けるように方位修正の制御を行う。
On the other hand, if the difference between the detected orientation θ and the reference orientation θo exceeds the tolerance K, the steering angle θF of the front wheels 2, 2 is offset by a predetermined amount (α) from the predetermined angle S ±α), the steering is operated in the same manner as described above to control the direction correction so that the detected direction θ approaches the reference direction θ 0 .

但し第3図中R1,R2は、夫々、前後輪2,3
の実際のステアリング角を制御装置8にフイード
バツクするためのポテンシヨメータであり、また
13は、前記基準方位θoおよび芝刈作業を行な
う未刈地Bの範囲を検出するための外周テイーチ
ング作業を行なう際に、車体1の移動距離を検出
すべく単位距離当り1回パルスを発生するように
構成された距離センサーである。
However, R 1 and R 2 in Fig. 3 refer to the front and rear wheels 2 and 3, respectively.
13 is a potentiometer for feeding back the actual steering angle of the steering wheel to the control device 8, and 13 is a potentiometer that is used to perform outer circumferential teaching work for detecting the reference direction θo and the range of the unmown area B where lawn mowing work is to be performed. The distance sensor is configured to generate a pulse once per unit distance in order to detect the moving distance of the vehicle body 1.

又、第5図は以上説明した制御装置8のステア
リング制御に関する動作を示すフローチヤートで
あり、第6図は、基準方位θ0および作業範囲の二
辺の長さ(lA)、(lC)を自動的に算出する外周テ
イーチング時の動作を示すフローチヤートであ
る。
Further, FIG. 5 is a flowchart showing the operation related to the steering control of the control device 8 explained above, and FIG . ) is a flowchart showing the operation during outer circumference teaching to automatically calculate.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る自動走行作業車の実施例を
示し、第1図は芝刈作業車の全体平面図、第2図
は倣いセンサーの要部正面図、第3図は制御シス
テムのブロツク図、第4図は境界に対するずれ方
の説明図、そして、第5図および第6図は制御装
置の動作を示すフローチヤートである。 1……車体、2……前輪、3……後輪、5……
方位センサー、8……制御手段、A……境界を検
出するセンサー、B……未処理作業地、C……処
理済作業地、L……境界、θ……検出方位、θ0
…基準方位。
The drawings show an embodiment of the automatic driving vehicle according to the present invention, in which FIG. 1 is an overall plan view of the lawn mowing vehicle, FIG. 2 is a front view of the main parts of the scanning sensor, and FIG. 3 is a block diagram of the control system. FIG. 4 is an explanatory diagram of the deviation from the boundary, and FIGS. 5 and 6 are flowcharts showing the operation of the control device. 1...Vehicle body, 2...Front wheel, 3...Rear wheel, 5...
Orientation sensor, 8... Control means, A... Sensor for detecting boundaries, B... Untreated work area, C... Treated work area, L... Boundary, θ... Detection orientation, θ 0 ...
...Reference direction.

Claims (1)

【特許請求の範囲】[Claims] 1 未処理作業地Bと処理済作業地Cとの境界L
を検出するセンサーAと、車体1の走行方位を検
出する方位センサー5とが設けられ、前記境界L
に沿つて自動的に走行すべく、前記車体1の前輪
2及び後輪3の両方をステアリング操作する制御
手段8が設けられ、その制御手段8は、前記方位
センサー5による検出方位θと基準方位θ0との差
が許容差Kより大きい時には、前記前輪2と前記
後輪3とを異なる角度に操作する方位修正ステア
リングにて方位修正を行い且つ、前記境界Lを検
出するセンサーAが前記車体1と前記境界Lとの
横ズレを検出した時には、前記前輪2と前記後輪
3とを同じ方向に所定角操作する平行移動ステア
リングにて横ズレ修正を行うように構成されてい
る自動走行作業車であつて、前記方位センサー5
による検出方位θと基準方位θ0との差が許容差K
内にある時にのみ、前記平行移動ステアリングに
よる横ズレ修正を行わせるようにすべく、前記制
御手段8は、前記方位修正ステアリングによる方
位修正を前記平行移動ステアリングによる横ズレ
修正よりも優先して行うように構成されている自
動走行作業車。
1 Boundary L between untreated working area B and treated working area C
A sensor A that detects the boundary L and a direction sensor 5 that detects the running direction of the vehicle body 1 are provided.
A control means 8 is provided for steering both the front wheels 2 and the rear wheels 3 of the vehicle body 1 in order to automatically travel along the direction θ and the reference direction detected by the direction sensor 5. When the difference from θ 0 is larger than the tolerance K, the direction is corrected by the direction correction steering that operates the front wheels 2 and the rear wheels 3 at different angles, and the sensor A that detects the boundary L When a lateral deviation between the front wheel 2 and the boundary L is detected, the automatic driving operation is configured to correct the lateral deviation using a parallel steering wheel that operates the front wheels 2 and the rear wheels 3 in the same direction by a predetermined angle. being a car, the direction sensor 5
The difference between the detected orientation θ and the reference orientation θ 0 is the tolerance K
In order to cause the lateral deviation correction by the parallel movement steering to be performed only when the direction is within the range, the control means 8 gives priority to the azimuth correction by the azimuth correction steering over the lateral deviation correction by the parallel movement steering. A self-driving work vehicle configured as follows.
JP58130428A 1983-06-28 1983-07-18 Self-propelling working vehicle Granted JPS6024109A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP58130428A JPS6024109A (en) 1983-07-18 1983-07-18 Self-propelling working vehicle
AU22322/83A AU548704B2 (en) 1983-07-18 1983-12-12 Automatic running work vehicle
US06/560,834 US4573547A (en) 1983-06-28 1983-12-13 Automatic running work vehicle
GB08333642A GB2143654B (en) 1983-07-18 1983-12-16 Automatic running work vehicle
FR8320499A FR2548401B1 (en) 1983-06-28 1983-12-21 UTILITY VEHICLE WITH STEERING WHEELS AND STEERING AUTOMATICALLY CONTROLLED BY A SENSOR FOR DETECTION OF BOUNDARY BETWEEN WORKED AND NON-WORKED AREAS
CA000444995A CA1226055A (en) 1983-06-28 1984-01-10 Automatic running work vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58130428A JPS6024109A (en) 1983-07-18 1983-07-18 Self-propelling working vehicle

Publications (2)

Publication Number Publication Date
JPS6024109A JPS6024109A (en) 1985-02-06
JPH022B2 true JPH022B2 (en) 1990-01-05

Family

ID=15034004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58130428A Granted JPS6024109A (en) 1983-06-28 1983-07-18 Self-propelling working vehicle

Country Status (3)

Country Link
JP (1) JPS6024109A (en)
AU (1) AU548704B2 (en)
GB (1) GB2143654B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6634332B2 (en) 2000-08-10 2003-10-21 Denso Corporation Engine start-stop control system
US6658948B2 (en) 2001-01-31 2003-12-09 Denso Corporation Semiconductor dynamic quantity sensor
US6665050B2 (en) 1990-11-15 2003-12-16 Nikon Corporation Projection exposure methods using difracted light with increased intensity portions spaced from the optical axis
US6715303B2 (en) 2002-04-16 2004-04-06 Denso Corporation Air conditioner for motor vehicles
US6789612B1 (en) 1999-09-29 2004-09-14 Denso Corporation Cooling device with waterproof structure
USRE38791E1 (en) 1994-03-18 2005-09-06 Taiho Kogyo Co., Ltd. Sliding bearing

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62265906A (en) * 1986-05-12 1987-11-18 株式会社クボタ Steering controller of automatic running working machine
CA1328054C (en) * 1987-05-05 1994-03-29 Brian T. Whitten Automated underground haulage truck
AU621803B3 (en) * 1991-08-19 1992-02-06 Steven James Rees Row crop, row deviation sensing device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6665050B2 (en) 1990-11-15 2003-12-16 Nikon Corporation Projection exposure methods using difracted light with increased intensity portions spaced from the optical axis
US6704092B2 (en) 1990-11-15 2004-03-09 Nikon Corporation Projection exposure method and apparatus that produces an intensity distribution on a plane substantially conjugate to a projection optical system pupil plane
USRE38791E1 (en) 1994-03-18 2005-09-06 Taiho Kogyo Co., Ltd. Sliding bearing
US6789612B1 (en) 1999-09-29 2004-09-14 Denso Corporation Cooling device with waterproof structure
US7100682B2 (en) 1999-09-29 2006-09-05 Denso Corporation Cooling device with water proof structure
US6634332B2 (en) 2000-08-10 2003-10-21 Denso Corporation Engine start-stop control system
US6658948B2 (en) 2001-01-31 2003-12-09 Denso Corporation Semiconductor dynamic quantity sensor
US6715303B2 (en) 2002-04-16 2004-04-06 Denso Corporation Air conditioner for motor vehicles

Also Published As

Publication number Publication date
AU2232283A (en) 1985-01-24
GB8333642D0 (en) 1984-01-25
AU548704B2 (en) 1986-01-02
GB2143654B (en) 1987-06-17
GB2143654A (en) 1985-02-13
JPS6024109A (en) 1985-02-06

Similar Documents

Publication Publication Date Title
US4603753A (en) Automatic running work vehicle
CA1211536A (en) Automatic running work vehicle
US5079706A (en) Control system for self-propelled working vehicle including vehicle course correction means
JPH022B2 (en)
JPH06141614A (en) Unmanned traveling lawn mower
JPH09128043A (en) Method for controlling unmanned moving work machine
JPS6047606A (en) Self-propelling working vehicle
JPS641B2 (en)
JPH0468885B2 (en)
JPH0365922B2 (en)
JP2870893B2 (en) Moving agricultural machine
JPH0241282B2 (en)
JPH012503A (en) Self-driving work vehicle
JPH0365921B2 (en)
JPH0477906A (en) Steering controller for automatic traveling work vehicle
JPH0365122B2 (en)
JPH0517808B2 (en)
JPH01121907A (en) Running controller for automatic running working vehicle
JP2612389B2 (en) Body direction detection device
JPH04259014A (en) Automatic steering type working vehicle
JPH021B2 (en)
JPS609405A (en) Self-propelling work vehicle
JPS6043305A (en) Self-propelling working vehicle
JPH0214001B2 (en)
JPS6024110A (en) Self-propelling working vehicle