JPS6190042A - Analyzing method of uranium - Google Patents

Analyzing method of uranium

Info

Publication number
JPS6190042A
JPS6190042A JP59211979A JP21197984A JPS6190042A JP S6190042 A JPS6190042 A JP S6190042A JP 59211979 A JP59211979 A JP 59211979A JP 21197984 A JP21197984 A JP 21197984A JP S6190042 A JPS6190042 A JP S6190042A
Authority
JP
Japan
Prior art keywords
wavelength
light
uranium
excitation light
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59211979A
Other languages
Japanese (ja)
Inventor
Yoichiro Iwanaga
岩永 洋一郎
Naomi Ito
伊藤 尚美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP59211979A priority Critical patent/JPS6190042A/en
Publication of JPS6190042A publication Critical patent/JPS6190042A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence

Abstract

PURPOSE:To detect an extremely slight amt. of uranium elements with high accuracy by subjecting sodium fluoride contg. the uranium element to wavelength scanning at the specified wavelength difference provided between excitation light and detection light. CONSTITUTION:The light from a light source 1a is passed through a diffraction grating filter 1b and an optional wavelength is taken out in an excitation light emitting part 1. The light from a sample chamber 3 is subjected to wavelength selection by a diffraction grating filter 2a and is converted to an electric signal by a photodetector 2b in a fluorescent light detecting part 2. On the other hand, the sample chamber 3 is disposed on the optical path connecting the light emitting part 1 and the photodetecting part 2 and is so arranged that the wavelength scanning is executed while the specified wavelength difference is maintained between the filters 1b and 2a by a motor 4. The NaF-KCO3 flux eluted with uranium in the sample is imposed in the sample chamber 3 and while the wavelength of the excitation light is changed in one direction, the light from the sample S is detected at the specified wavelength difference provided with the excitation light.

Description

【発明の詳細な説明】 イ、技術の利用分野 本発明は、金属材料等に含まれている極微小量のウラン
元素を蛍光法により分析する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Application of the Technology The present invention relates to a method of analyzing an extremely small amount of uranium element contained in a metal material or the like using a fluorescence method.

口、従来技術 ?J4体集積回路の著しい進歩に伴ない、原材料である
酸化シリコン中に極微ψ含まれるウラン元、kからのア
ルファ線の影響が問題になって来ている。
Mouth, conventional technology? With the remarkable progress of J4 integrated circuits, the influence of alpha rays from k, a uranium element contained in extremely small amounts of ψ in silicon oxide, which is the raw material, has become a problem.

ところで、金属材ネ1等に含まれるウラン元諌、の分析
は、試料中に含まれるウランをフン化ナトリウムに融出
後、これを凝固させてなるNaF−NaKCO3フラッ
クス、つまりサンプルを調整し、蛍光光度分析計により
分析していた。
By the way, in order to analyze the uranium base contained in metal materials such as NaF, the uranium contained in the sample is melted into sodium fluoride and then solidified to form a NaF-NaKCO3 flux, that is, the sample is prepared. It was analyzed using a fluorescence spectrometer.

しかしながら、ウラン坦体となるフッ化ナトリウムから
散乱してくる励起光が非常に大きい一方、目的成分から
の蛍光スペクトル強度が極めて小さいため、第3図に示
したようにベースラインレベルの傾斜が大きくて分析精
度が低いという問題があった。
However, while the excitation light scattered from sodium fluoride, which is the uranium carrier, is very large, the intensity of the fluorescence spectrum from the target component is extremely small, so the slope of the baseline level is large as shown in Figure 3. There was a problem that the analytical accuracy was low.

ハ、目的 本発明は、このような問題に鑑み、極微量のウラン元素
を高精度により検出することができる分析方法を提供す
ることを目的とする。
C. Objectives In view of the above problems, an object of the present invention is to provide an analysis method capable of detecting extremely small amounts of uranium element with high accuracy.

二1発明の構成 すなわち、本発明の特徴とするところは、ウラン元素を
含むフッ化ナトリウムを励起光と検出光との間に一定の
波長差を持たせて波長走査する点にある。
21. Structure of the Invention, that is, the feature of the present invention is that sodium fluoride containing uranium element is wavelength scanned with a certain wavelength difference between excitation light and detection light.

ホ、実施例 そこで、以下に本発明の詳細を図示した実施例にス(づ
いて説明する。
E. Embodiments The details of the present invention will now be described with reference to illustrated embodiments.

第1図は、未発明に使用する装置の一例を示すものであ
って1図中符号−1は、励起光発光部で、キセノンラン
プ等の光源1aからの光を回折格子フィルターbにより
任意の波長を取出すように構成されている。2は、蛍光
受光部で、後述する試料室3からの光を回折格子フィル
タ2aにより波佼選択して受光素子2bにより電気信号
に変換するように構成されている。3は、前述の試料室
で、励起光発光部と蛍光受光部を結ぶ光路上に配設され
ている。4は、モータで、励起光側フィルタlb及び受
光側フィルタ2aを一定の波長差を保持しながら波長走
査を行なうように構成されている。なお、図中符吟5は
、蛍光受光部2からの電気値ηを記録する記録装置を示
す。
Fig. 1 shows an example of a device used in the invention, and reference numeral -1 in Fig. 1 is an excitation light emitting section, which converts light from a light source 1a such as a xenon lamp into an arbitrary shape using a diffraction grating filter b. It is configured to extract wavelengths. Reference numeral 2 denotes a fluorescent light receiving section, which is configured to selectively select light from a sample chamber 3, which will be described later, by a diffraction grating filter 2a and convert it into an electrical signal by a light receiving element 2b. Reference numeral 3 denotes the aforementioned sample chamber, which is disposed on the optical path connecting the excitation light emitting section and the fluorescence receiving section. 4 is a motor configured to perform wavelength scanning while maintaining a constant wavelength difference between the excitation light side filter lb and the light receiving side filter 2a. Note that the reference numeral 5 in the figure indicates a recording device that records the electrical value η from the fluorescent light receiving section 2.

このような装置において、試料中のウラニウムを溶出し
てなるN a F  K CO3フラツクスを試ネ4室
3に載置し、励起光の波長を一方向に変化させつつ、励
起光と一定波長差を持ってサンプルSからの光を検出し
たところ、検出出力は励起光源のスペクトル強度に対応
してベースラインがなだらかに変化した。しかし、検出
波長がウランのijf光スペクトル領域に入ると、検出
出力は、ベースライン」、に屯峰性のピークを示し、ま
たこの波長領域を通り過ぎると励起光源のスペクトル強
度に応じてなだらかなベースラインの変化を示した。
In such an apparatus, a N a F K CO3 flux produced by eluting uranium from a sample is placed in the test tube 4 chamber 3, and while the wavelength of the excitation light is changed in one direction, a constant wavelength difference from the excitation light is set. When the light from the sample S was detected using the probe, the baseline of the detection output changed smoothly in response to the spectral intensity of the excitation light source. However, when the detection wavelength enters the ijf optical spectral region of uranium, the detection output exhibits a flat peak at the baseline, and after passing through this wavelength region, it shows a gentle base depending on the spectral intensity of the excitation light source. Showing line changes.

このようにして得られたスペクトラムのベースラインを
結び、ベースライン1−に突出したウランスペクトルP
の大きさを測定したところ、試料中に含まれていたウラ
ンの濃度と極めて高い精度で−・致した。このことから
、サンプル面における励起光の乱反射の影響を除去でき
ることが解った。
Connecting the baselines of the spectra obtained in this way, we
When we measured the size of the uranium, we found that it matched the concentration of uranium contained in the sample with extremely high accuracy. From this, it was found that the influence of diffused reflection of excitation light on the sample surface can be removed.

「実施例] 試料である醇化シリコン(Si02)5g、及びフッ化
水素(HF)及び硝酸(HNO3)の笠n’+ JN合
液10ccを白金ルツボに収容して加熱分解し、これを
乾燥させた。この乾燥粉末にNaF、NaCO3,及び
に3Co3が1:4:4の11;1合からなる混合融剤
2gを加えて加熱融解した後。
"Example" 5 g of silicon liquefied (Si02) as a sample and 10 cc of a Kasa n'+ JN mixture of hydrogen fluoride (HF) and nitric acid (HNO3) were placed in a platinum crucible, thermally decomposed, and dried. After adding 2 g of a mixed flux consisting of 11:1 of NaF, NaCO3, and 3Co3 at a ratio of 1:4:4 to this dry powder, the mixture was heated and melted.

固化させてNaF−NaKCO3フラックスを調整した
It was solidified to adjust the NaF-NaKCO3 flux.

このようにして得られたN a F −N a K C
O3フラツグスの表面を平滑に什、1−げ、全面に無蛍
光石英板を配設して試料室に載置し、励起側波長と受光
側波長の間に266nmの波長を設定した。
Thus obtained N a F - N a K C
The surface of the O3 flag was smoothed, a non-fluorescent quartz plate was placed on the entire surface, and the sample was placed in a sample chamber, and a wavelength of 266 nm was set between the excitation side wavelength and the light reception side wavelength.

このような準備を終えた段階で励起波長を低波長側から
長波長側に走査して分析を行なったところ、第2図に示
したようなスペクトラムを得ることができた。
When such preparations were completed, an analysis was performed by scanning the excitation wavelength from the low wavelength side to the long wavelength side, and a spectrum as shown in FIG. 2 could be obtained.

すなわち、励起光源のスペクトル変化をベースラインに
持ち、励起波長556nm(ウランの蛍光波長290n
m)において検出光がピークを持つスペクトラムが得ら
れた。このスペクトラムのベースラインを結び(第2図
点線)、ベースラインヒのピーク高さPを測定したとこ
ろ試料中に含まれる0、0IPPbオーダのウランを従
来法に比較して20パーセント程高い精度で検出するこ
とができた。
In other words, the spectral change of the excitation light source is used as the baseline, and the excitation wavelength is 556 nm (the fluorescence wavelength of uranium is 290 nm).
A spectrum was obtained in which the detected light had a peak at m). By connecting the baselines of this spectrum (dotted lines in Figure 2) and measuring the peak height P of the baseline, it was possible to detect uranium on the order of 0,0IPPb contained in the sample with an accuracy about 20% higher than with the conventional method. I was able to detect it.

なお、1〕述した実施例では、励起光側と受光側の波長
差を266nmに設定しているが、これに限られないこ
とは云うまでもない。
1] In the above-mentioned embodiment, the wavelength difference between the excitation light side and the light receiving side is set to 266 nm, but it goes without saying that the wavelength difference is not limited to this.

1・、効果 以」二、説明したように未発明においては、励起光側と
受光側の波長差を一定に保持しつつ波長走査を行なって
ウランを含むNaF−NaKCO3フラックスからの光
を検出するようにしたので、フン化ナトリウム表面から
反射される励起光の影響が除去しながらスペクトラムの
ベースラインを補促できて、極微少量のウランを高い精
度により検出することができる。
1. Effects 2. As explained, in the uninvention, light from the NaF-NaKCO3 flux containing uranium is detected by performing wavelength scanning while keeping the wavelength difference between the excitation light side and the light reception side constant. This makes it possible to supplement the baseline of the spectrum while removing the influence of the excitation light reflected from the surface of sodium fluoride, making it possible to detect extremely small amounts of uranium with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、未発明に使用する装置の一例を示す構成図、
第2図は、未発明の分析結果を示す波形図、第3図は、
従来法による分析結果を示す図である。
FIG. 1 is a configuration diagram showing an example of a device used in the invention;
Figure 2 is a waveform diagram showing the uninvented analysis results, Figure 3 is
It is a figure showing the analysis result by the conventional method.

Claims (1)

【特許請求の範囲】[Claims] 励起波長と受光波長の間に一定の波長差を維持しつつ波
長走査を行なってウランを含有するNaF−NaKCO
_3フラックスからの反射光を検出するウラン分析方法
NaF-NaKCO containing uranium is obtained by performing wavelength scanning while maintaining a constant wavelength difference between the excitation wavelength and the reception wavelength.
_3 A uranium analysis method that detects reflected light from flux.
JP59211979A 1984-10-09 1984-10-09 Analyzing method of uranium Pending JPS6190042A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59211979A JPS6190042A (en) 1984-10-09 1984-10-09 Analyzing method of uranium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59211979A JPS6190042A (en) 1984-10-09 1984-10-09 Analyzing method of uranium

Publications (1)

Publication Number Publication Date
JPS6190042A true JPS6190042A (en) 1986-05-08

Family

ID=16614874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59211979A Pending JPS6190042A (en) 1984-10-09 1984-10-09 Analyzing method of uranium

Country Status (1)

Country Link
JP (1) JPS6190042A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063949A1 (en) * 2014-10-24 2016-04-28 京都府公立大学法人 Method for determining tumor sites, and device for determining tumor sites

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016063949A1 (en) * 2014-10-24 2016-04-28 京都府公立大学法人 Method for determining tumor sites, and device for determining tumor sites
JP2016085112A (en) * 2014-10-24 2016-05-19 京都府公立大学法人 Method and device for determining tumor site
CN107003240A (en) * 2014-10-24 2017-08-01 京都府公立大学法人 The discriminating conduct of tumor locus, the condition discriminating apparatus of tumor locus
CN107003240B (en) * 2014-10-24 2020-06-12 京都府公立大学法人 Method and device for identifying tumor site

Similar Documents

Publication Publication Date Title
Rosencwaig Photoacoustic spectroscopy. New tool for investigation of solids
O'haver Potential clinical applications of derivative and wavelength-modulation spectrometry.
Eastman Quantitative spectrofluorimetry‐the fluorescence quantum yield of quinine sulfate
Warner et al. Fluorescence analysis: a new approach
Piqué et al. Organic materials in wall paintings
Kontoyannis et al. Quantitative non-destructive determination of salicylic acid acetate in aspirin tablets by Raman spectroscopy
Stubley et al. Measurement of inductively coupled plasma emission spectra using a Fourier transform spectrometer
JPS6190042A (en) Analyzing method of uranium
JP3207882B2 (en) Spectral fluorometer spectral correction method and spectral fluorometer with spectrum correction function
Remy et al. Real sample analysis by ETA-LEAFS with background correction: application to gold determination in river water
WO1993007470A1 (en) Analyzer
Lefar et al. Thin layer densitometry
Edel et al. Simultaneous multielement determination in complex matrices using frequency-modulated electrothermal atomic absorption spectrometry
JPS58143254A (en) Substance identifying device
Petty et al. The analysis of thin layer chromatography plates by near-infrared FT-Raman
JPS6459018A (en) Method and measuring instrument for long time resolution total reflection spectrum analyzing
JPH0219897B2 (en)
Huff et al. Laser fluorometric detection for thin-layer chromatography
JPS6024447A (en) High performance liquid chromatography quantitative analytical method and apparatus using multi-wavelength simultaneous detection
Genshaw et al. Rapid scanning reflectance spectrophotometer
JPS59184539A (en) Method for measuring dislocation density of semiconductor crystal
JP3738789B2 (en) Method for measuring Amadori compounds by light scattering
CN209624388U (en) The measuring system of high reflectance fruit surface wax content based on light scattering
US3583811A (en) Electrode
Walden et al. Comparison of ellipsoidal and parabolic mirror systems in fluorimetry and room temperature phosphorimetry