JPS6189538A - Apparatus for testing ceramic material - Google Patents

Apparatus for testing ceramic material

Info

Publication number
JPS6189538A
JPS6189538A JP21051084A JP21051084A JPS6189538A JP S6189538 A JPS6189538 A JP S6189538A JP 21051084 A JP21051084 A JP 21051084A JP 21051084 A JP21051084 A JP 21051084A JP S6189538 A JPS6189538 A JP S6189538A
Authority
JP
Japan
Prior art keywords
displacement
test piece
motor
load
stress intensity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21051084A
Other languages
Japanese (ja)
Inventor
Hiroshi Uno
宇野 博
Kazuhiko Ozawa
一彦 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP21051084A priority Critical patent/JPS6189538A/en
Publication of JPS6189538A publication Critical patent/JPS6189538A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C3/00Registering or indicating the condition or the working of machines or other apparatus, other than vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/20Investigating strength properties of solid materials by application of mechanical stress by applying steady bending forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/38Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
    • G01N33/388Ceramics

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To accurately calculate the stress intensity factor of a ceramic material, by providing a means which has a pressurizing element operated by a motor and a displacement meter and controls the motor so as to maintain the displacement imparted to a test piece at a high speed by the pressurizing element. CONSTITUTION:A pressurizing part 13 is contacted with the almost central part of the test piece T placed on a support part 6 and, when an objective displacement signal is applied to a control means consisting of a displacement meter 7 and amplifiers 19, 20 to operate a motor 14, a screw shaft part (pressurizing part) 12 is fallen to bent the test piece T and the central part thereof is displaced. This displacement amount is measured by the displacement meter 7 and the motor 14 is operated corresponding to the deviation amount of the measured value and the objective displacement signal. When the displacement amount is kept at the point of time when the test piece T was quickly displaced to a predetermined value, a crack gradually advances and the load received by the test piece T is detected by a load cell 8 to be recorded as a load wave form and a stress intensity factor and a crack growing speed are calculated from said wave form.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はセラミック材料試験装置に係るもので、詳しく
はセラミック材料の応力拡大係数に1とクラック成長速
度■を測定する方法の一つであるり。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a ceramic material testing device, and more specifically, it is a method for measuring a stress intensity factor of 1 and a crack growth rate of a ceramic material. the law of nature.

T、法(Double torsion techni
que)を実施する試験装置に関するものである。
Double torsion technique
que).

〔従来の技術〕[Conventional technology]

近年、セラミック材料は種々の分野での使用が検討され
、このためセラミック材料の寿命予測に貴重なデータを
提供する応力拡大係数に1とクラック成長速度Vを正確
に測定することが要求されるようになった。
In recent years, the use of ceramic materials in various fields has been considered, and for this reason, it has become necessary to accurately measure the stress intensity factor of 1 and the crack growth rate V, which provides valuable data for predicting the life of ceramic materials. Became.

セラミック材料の応力拡大係数に、とクラック成長速度
■を測定する方法としてり、C,B、法(Double
 cantilever beam techniqu
e)とり、 T。
The C, B, method (Double
cantilever beam technique
e) Tori, T.

法等が知られている。The law is known.

D、C,B、法では、応力拡大係数に1とクランク成長
速度■を求めるのに、共にクランク長さの測定を必要と
し、しかもクランク成長速度■を求める際には顕微鏡に
よりクラック長さの変化を時間とともに観測するため、
不透明なセラミック材料の場合、測定が困難であるとい
った原理的な問題がある。
In the D, C, B method, the stress intensity factor is 1 and the crank length is required to determine the crank growth rate (■).Moreover, when determining the crank growth rate (■), the crack length is measured using a microscope. To observe changes over time,
In the case of opaque ceramic materials, there are fundamental problems in that measurements are difficult.

これに対し、D、T、法では、応力拡大係数K。On the other hand, in the D, T, method, the stress intensity factor K.

を求めるのにクランク長さの測定を必要とせず、またク
ラック成長速度■を求めるのに顕微鏡によりクラック長
さの変化を時間とともにta測しなくてもすみ、原理的
な便利さがある。
It is convenient in principle because it is not necessary to measure the crank length to determine the crack growth rate, and it is not necessary to measure the change in crack length over time using a microscope to determine the crack growth rate.

第5図はり、T、法で使用する試験片Tの形状を示して
いる。試験片Tは長手方向の両端に沿って支持され、中
央の溝tに沿ってあらかじめ生成させられたクランクは
一端部で荷重Pを受けて成長する。
Figure 5 shows the shape of the test piece T used in the beam, T, method. The test specimen T is supported along both ends in the longitudinal direction, and a crank previously generated along the central groove t grows under a load P at one end.

クラック成長速度■は次の手順で求められる。The crack growth rate ■ is determined by the following procedure.

先ず、加圧子により試験片に所定の変位を急速に生じさ
せた後、該変位が変化しないように維持し、このときの
試験片が受ける荷重の変化を記録計で求める。本明細書
中では、“試験片の変位”は、無負荷時の試験片の中央
部の軸線方向の位置を基準とし、該中央部の周辺を加圧
して試験片が湾曲し中央部の軸線方向の位置が変化した
ときその変化のことを意味する。
First, after a predetermined displacement is rapidly caused in the test piece using a pressurizer, the displacement is maintained so as not to change, and the change in the load applied to the test piece at this time is determined using a recorder. In this specification, "displacement of a test piece" refers to the position in the axial direction of the center of the test piece under no load, and when the periphery of the center is pressurized, the test piece curves and the axis of the center It means a change in the position of a direction.

また、応力拡大係数に1は試験片が受ける荷重Pを次式
に代入して求めることができる。
Further, the stress intensity factor of 1 can be determined by substituting the load P that the test piece receives into the following equation.

ここで、γはポアソン比である。Here, γ is Poisson's ratio.

なお、D、T、法には、この方法の外に、試験片に加圧
子により一定のスピードで所定の荷重まで急速に加重し
、所定の荷重になった時点で加圧子を停止して求める方
法もあるが、本明細書中でのり、T、法は、上述の方法
(試験片に所定の変位を急速に生じさせて行う方法)を
意味する。
In addition to this method, the D, T, method involves rapidly applying a load to a test piece with a pressurizer at a constant speed up to a predetermined load, and stopping the pressurizer when the predetermined load is reached. Although there are other methods, in this specification, "glue", "T", and "method" refer to the above-mentioned method (a method in which a predetermined displacement is rapidly caused in a test piece).

従来、D、T、法の試験には、通常の材料試験で使用さ
れる“ねじざお式”構造の試験機が使われていた。しか
し、この試験機では、移動台(第1図参照)自体を下降
させて荷重を作用させる構成で、重量の重い移動台を急
速に下降させることは慣性が大きすぎて構造的に無理で
あり、このため試験片に所定の変位を急速に生じさせる
ことが困難で、試験片に作用する荷重曲線はその立上が
り部がなだらかとなり(第3図実゛線参照)、応力拡大
係数に、(特に臨界応力拡大係数Kleに近い部分、第
4図参照)を正確に求めることができなかった。
Conventionally, D, T, and method tests have used testing machines with a "screw rod" structure that is used in ordinary material testing. However, this test machine has a configuration in which the load is applied by lowering the moving platform itself (see Figure 1), and it is structurally impossible to rapidly lower the heavy moving platform because the inertia is too large. For this reason, it is difficult to rapidly produce a predetermined displacement in the test piece, and the load curve acting on the test piece has a gentle rising part (see the solid line in Figure 3), and the stress intensity factor (especially The portion close to the critical stress intensity factor Kle (see FIG. 4) could not be accurately determined.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記事情に鑑みてなされたもので、その目的と
するところは、正確な応力拡大係数Klを求めることが
できるセラミック材料試験装置を提供することである。
The present invention has been made in view of the above circumstances, and its purpose is to provide a ceramic material testing device that can accurately determine the stress intensity factor Kl.

〔問題を解決するための手段〕[Means to solve the problem]

本発明者は上記問題を解決すべ(鋭意研究の結果、セラ
ミック材料に加える荷重はkgオーダで、金属材料のよ
うにTonオーダまで要求されず、移動台自体を移動さ
せなくても加圧子のみをモータで移動させるだけで充分
に荷重を作用できること、及びモータを制御することに
より第3図点線に示すような急速な立上がり部を有する
荷重曲線が簡単に得られることを見い出し、本発明をな
すに至った。
The present inventor has solved the above problem (as a result of intensive research, the load applied to the ceramic material is on the order of kg, unlike metal materials, it is not required to be on the order of a ton, and the load applied to the ceramic material is not required to be on the order of a ton, and the load applied to the ceramic material is not required to be on the order of tons, and only the pressurizer can be applied without moving the movable table itself. We have discovered that a sufficient load can be applied simply by moving it with a motor, and that by controlling the motor, a load curve with a rapid rise as shown by the dotted line in Figure 3 can be easily obtained, and the present invention has been made based on this discovery. It's arrived.

すなわち、本発明は、モータにより軸線方向に移動され
て試験片を変位させる加圧子と、試験片の変位を検出す
る変位検出手段を有して、前記加圧子が試験片に所定の
変位を急速に生じさせた後、該変位を変化させないよう
に前記モータを制御する制御手段とを具備してなること
を特徴としている。
That is, the present invention includes an indenter that is moved in the axial direction by a motor to displace the test piece, and a displacement detection means that detects the displacement of the test piece, so that the indenter rapidly applies a predetermined displacement to the test piece. and a control means for controlling the motor so as not to change the displacement after the displacement is caused to occur.

〔実施例〕〔Example〕

以下本発明の一実施例を図面を参照して説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は“わじざお式”構造の試験機に本発明の材料試
験装置を付設した例を示している。図中符号1は“わじ
ざお式”構造の試験機本体、2はこの本体1を構成する
基台、3,3はこの基台Z上に立設された一対のねじ支
柱、4はこの一対のねし支柱3,3に支持されて軸線方
向に移動される移動台である。
FIG. 1 shows an example in which a material testing device of the present invention is attached to a testing machine having a "wajizao" structure. In the figure, reference numeral 1 is the main body of the testing machine with a "wajizao" structure, 2 is the base that constitutes this main body 1, 3, 3 is a pair of screw supports erected on this base Z, and 4 is this This is a movable platform supported by a pair of vertical struts 3, 3 and moved in the axial direction.

基台2のねし支柱3,3間位置のほぼ中央部には、試験
片Tの支持台5が設けられている。この支持台5の上面
には、試験片Tをその両端近傍で支持する断面三角形状
の支持部6,6が設けられている。また、支持台5の内
部空間には変位計7が装備されていて、該変位計7の検
出ピン7aが孔5aを介して支持台5の上面から突出し
て試験片Tの裏面中央部(溝りが形成れている部分、第
5図参照)に接触している。試験片Tの中央部が撓んで
変位すると検出ビン7aが押されて、変位計7により該
変位量が測定される。
A support stand 5 for the test piece T is provided approximately in the center of the base 2 between the pillars 3, 3. On the upper surface of this support stand 5, support parts 6, 6 having a triangular cross-section and supporting the test piece T near both ends thereof are provided. Further, a displacement gauge 7 is installed in the internal space of the support base 5, and a detection pin 7a of the displacement gauge 7 protrudes from the upper surface of the support base 5 through a hole 5a, so that a detection pin 7a of the displacement gauge 7 protrudes from the upper surface of the support base 5 through a hole 5a. (see Figure 5). When the central portion of the test piece T is bent and displaced, the detection bottle 7a is pushed, and the displacement meter 7 measures the amount of displacement.

移動台4のねじ支柱3,3間位置のほぼ中央部下面には
、ロードセル8とボールネジ9が設けられている。ロー
ドセル8は移動台4に固定され、ボールネジ9を構成す
るナツト部10はスラスト軸受11を介して該ロードセ
ル8に対し回転可能となっている。
A load cell 8 and a ball screw 9 are provided on the lower surface of the movable table 4 at a substantially central position between the screw supports 3 and 3. The load cell 8 is fixed to the movable table 4, and a nut portion 10 constituting a ball screw 9 is rotatable relative to the load cell 8 via a thrust bearing 11.

ボールネジ9を構成するネジ軸部12は加圧子となって
いて、ナンド部10の回転により軸線方向に移動して試
験片Tを押圧し変位させる。ネジ軸部12の試験片Tを
押圧する側の端部には、二叉状の加圧部13が設けられ
ている。
A screw shaft portion 12 constituting the ball screw 9 serves as a pressurizer, and moves in the axial direction by rotation of the NAND portion 10 to press and displace the test piece T. A bifurcated pressing section 13 is provided at the end of the screw shaft section 12 on the side that presses the test piece T.

また、移動台4にはボールネジ9と平行にサーボモータ
14が設けられていて、該サーボモータ14の回転が駆
動軸14aに設けた歯車15、中間歯車16、ナツト部
lOの外周面に設けた歯車17を介してナンド部10に
伝達される。ナンド部10はこれにより回転してネジ軸
部12を軸線方向に移動させる。
Further, a servo motor 14 is provided on the moving table 4 in parallel with the ball screw 9, and the rotation of the servo motor 14 is caused by the rotation of the gear 15 provided on the drive shaft 14a, the intermediate gear 16, and the outer circumferential surface of the nut portion IO. The signal is transmitted to the NAND unit 10 via the gear 17. The NAND portion 10 thereby rotates and moves the screw shaft portion 12 in the axial direction.

サーボモータ14を制御する制御手段18は、前述の変
位計7と、該変位計7の測定信号を増幅するアンプ19
と、該アンプ19で増幅された測定信号と試験片Tに与
える目標変位信号(第2参照)との偏差量を増幅してサ
ーボモータ14に出力するアンプ20とを具備してフィ
ートバンク制御を行う。
The control means 18 that controls the servo motor 14 includes the aforementioned displacement meter 7 and an amplifier 19 that amplifies the measurement signal of the displacement meter 7.
and an amplifier 20 that amplifies the deviation amount between the measurement signal amplified by the amplifier 19 and the target displacement signal (see second reference) given to the test piece T and outputs it to the servo motor 14 to perform foot bank control. conduct.

次に上記実施例の作用を説明する。Next, the operation of the above embodiment will be explained.

支持部6,6上に試験片Tをセットして、加圧部13を
該試験片Tのほぼ中央部に当接させる。
A test piece T is set on the support parts 6, 6, and the pressurizing part 13 is brought into contact with approximately the center of the test piece T.

そして、制御手段18の設定部(図示せず)に第2図に
示すような変位波形の目標変位信号を設定して、サーボ
モータ14を動作させる。
Then, a target displacement signal having a displacement waveform as shown in FIG. 2 is set in a setting section (not shown) of the control means 18, and the servo motor 14 is operated.

すると、ネジ軸部12が下降して試験片Tが撓み中央部
が変位する。この変位量は変位計7により測定され、目
標変位信号と比較されて偏差量が求められ、この偏差量
に応じてサーボモータ14が動作する。
Then, the screw shaft portion 12 descends, the test piece T is bent, and the central portion is displaced. This amount of displacement is measured by the displacement meter 7 and compared with the target displacement signal to determine the amount of deviation, and the servo motor 14 operates according to this amount of deviation.

これにより、試験片Tの中央部が第2図に示すように、
はじめ所定値まで急速に変位し、所定値になった時点で
変位量が所定値に維持される。このように変位量を所定
値に維持しておくと、クラックが徐々に進行する。この
ときの試験片Tが受ける荷重(反力)は、ネジ軸部12
、ナツト部10、スラスト軸受11を介してロードセル
8により検出される。ロードセル8の検出信号は図示し
ないX−Yレコーダに入力されて、該レコーダで第3図
の点線に示すような荷重波形が記録される。
As a result, the center part of the test piece T becomes as shown in FIG.
At first, the displacement is rapidly reached to a predetermined value, and when the displacement amount reaches the predetermined value, the amount of displacement is maintained at the predetermined value. If the amount of displacement is maintained at a predetermined value in this way, cracks will gradually progress. The load (reaction force) that the test piece T receives at this time is
, the nut portion 10, and the thrust bearing 11, and are detected by the load cell 8. The detection signal from the load cell 8 is input to an X-Y recorder (not shown), and the recorder records a load waveform as shown by the dotted line in FIG. 3.

この荷重波形から応力拡大係数に、とクラック成長速度
Vが求められる。
From this load waveform, the stress intensity factor and the crack growth rate V are determined.

第4図はこのようにして求めた応力拡大係#!1.K。Figure 4 shows the stress magnification factor # calculated in this way! 1. K.

とクラック成長速度■との関係を示すグラフである。こ
のグラフから明らかなように、Klcに近い応力拡大係
数に+(一点鎖線で囲んだ部分)を正確に求めることが
できる。
It is a graph showing the relationship between the crack growth rate and the crack growth rate. As is clear from this graph, + (the part surrounded by the dashed-dotted line) can be accurately determined for the stress intensity coefficient close to Klc.

通常の材料試験を行うときには、移動台4をねし支柱3
,3に沿って移動させることにより加圧子となるネジ軸
部12が試験片Tに荷重を作用する。
When performing a normal material test, move the moving table 4 to the supporting column 3.
, 3, the screw shaft portion 12 serving as a pressurizer applies a load to the test piece T.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、モータにより動作
される加圧子と、変位検出手段を有して、該加圧子が試
験片に所定の変位を急速に生じさせた後、該変位を変化
させないように前記モータを制御する手段とを具備して
なるので、セラミック材料の応力拡大係数に1を正確に
求めることができる。
As explained above, the present invention includes an indenter operated by a motor and a displacement detection means, and after the indenter rapidly causes a predetermined displacement on a test piece, the displacement is changed. Since the present invention includes means for controlling the motor so that the stress intensity factor of the ceramic material does not increase, the stress intensity factor of the ceramic material can be accurately determined to be 1.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示すもので、第1図は一部切
欠して示した略解側面図、第2図は変位波形を示すグラ
フ、第3図は荷重曲線を示すグラフ、第4図は応力拡大
係数に、とクラック成長速度■との関係を示すグラフ、
第5図は試験片の斜視図である。 7・・・・・・変位計、9・・・・・・ボールネジ、1
2・・・・・・加圧子(ネジ軸部)、14・・・・・・
モータ(サーボモータ)、18・・・・・・制御手段。 特許出願人   株式会社鷺宮製作所 −叫M 第3図 −j18−眉 手  わ1ε  主市  肩三  マワ:(自発)昭和
60年 3月260 特許庁長官 志 ヱ2   学  殿 1、 1H牛の耘 昭和59年 特許願 第210510号2、 発明の名
称 セラミック材料試験装置 3、 補正をする者 事件との関係    特許出願人 住所 東京都中野区若宮2丁目55番5号名称  株式
会社鷺宮製作所 4、代理人
The drawings show one embodiment of the present invention, in which Fig. 1 is a partially cutaway schematic side view, Fig. 2 is a graph showing a displacement waveform, Fig. 3 is a graph showing a load curve, and Fig. 4 is a graph showing a load curve. The figure is a graph showing the relationship between stress intensity factor and crack growth rate.
FIG. 5 is a perspective view of the test piece. 7...Displacement meter, 9...Ball screw, 1
2... Pressure element (screw shaft part), 14...
Motor (servo motor), 18... Control means. Patent Applicant Saginomiya Seisakusho Co., Ltd. - Shou M Figure 3 - j18 - Eyebrows Wa 1 ε Main City Shoulder 3 Mawa: (Voluntary) March 260, 1985 Commissioner of the Patent Office Shi 2 Manabu Tono 1, 1H Cow Showa 1959 Patent Application No. 210510 2 Name of the invention Ceramic material testing device 3 Relationship to the amended person's case Patent applicant address 2-55-5 Wakamiya, Nakano-ku, Tokyo Name Saginomiya Seisakusho Co., Ltd. 4, Agent

Claims (1)

【特許請求の範囲】[Claims] モータにより軸線方向に移動されて試験片を変位させる
加圧子と、試験片の変位を検出する変位検出手段を有し
て、前記加圧子が試験片に所定の変位を急速に生じさせ
た後、該変位を変化させないように前記モータを制御す
る制御手段とを具備してなることを特徴とするセラミッ
ク材料試験装置。
A presser that is moved in the axial direction by a motor to displace the test piece, and a displacement detection means that detects the displacement of the test piece, and after the presser rapidly causes a predetermined displacement on the test piece, A ceramic material testing device comprising: control means for controlling the motor so as not to change the displacement.
JP21051084A 1984-10-09 1984-10-09 Apparatus for testing ceramic material Pending JPS6189538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21051084A JPS6189538A (en) 1984-10-09 1984-10-09 Apparatus for testing ceramic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21051084A JPS6189538A (en) 1984-10-09 1984-10-09 Apparatus for testing ceramic material

Publications (1)

Publication Number Publication Date
JPS6189538A true JPS6189538A (en) 1986-05-07

Family

ID=16590562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21051084A Pending JPS6189538A (en) 1984-10-09 1984-10-09 Apparatus for testing ceramic material

Country Status (1)

Country Link
JP (1) JPS6189538A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326546A (en) * 1986-07-19 1988-02-04 Matasaburo Shindo Testing machine for bending strength of fine ceramics
FR2624605A1 (en) * 1987-12-09 1989-06-16 Armines Apparatus for carrying out bending tests with four support points
US4901582A (en) * 1986-12-29 1990-02-20 Nippon Steel Corporation Fixture for brittle pre-crack introduction in ceramic specimen
WO2013030566A1 (en) * 2011-09-02 2013-03-07 Loughborough University Method and apparatus for determining interlaminar shear mechanical properties of composite laminates
JP2020046217A (en) * 2018-09-14 2020-03-26 株式会社島津テクノリサーチ Material testing machine and radiation CT device
CN111398022A (en) * 2020-03-20 2020-07-10 山东省产品质量检验研究院 Automatic testing device for bending strength of fine ceramic bonding interface

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326546A (en) * 1986-07-19 1988-02-04 Matasaburo Shindo Testing machine for bending strength of fine ceramics
US4901582A (en) * 1986-12-29 1990-02-20 Nippon Steel Corporation Fixture for brittle pre-crack introduction in ceramic specimen
FR2624605A1 (en) * 1987-12-09 1989-06-16 Armines Apparatus for carrying out bending tests with four support points
WO2013030566A1 (en) * 2011-09-02 2013-03-07 Loughborough University Method and apparatus for determining interlaminar shear mechanical properties of composite laminates
JP2020046217A (en) * 2018-09-14 2020-03-26 株式会社島津テクノリサーチ Material testing machine and radiation CT device
CN111398022A (en) * 2020-03-20 2020-07-10 山东省产品质量检验研究院 Automatic testing device for bending strength of fine ceramic bonding interface
CN111398022B (en) * 2020-03-20 2022-08-05 山东省产品质量检验研究院 Automatic testing device for bending strength of fine ceramic bonding interface

Similar Documents

Publication Publication Date Title
US5616857A (en) Penetration hardness tester
EP3076153B1 (en) Method for calculating an indenter area function and quantifying a deviation from the ideal shape of an indenter
US3927558A (en) Determination of properties of metals
CN101504357A (en) Friction wear testing machine for on-line measurement
JPS6329209B2 (en)
CN105698650A (en) Supporting roller type test device for dynamically monitoring bending angle
US7021155B2 (en) Universal material testing method and device therefor
JPH05203550A (en) Method and apparatus for measuring surface
JPS6189538A (en) Apparatus for testing ceramic material
CN207123456U (en) One kind titanium alloy stress relaxation and creep test device under high pressure thermal and hydric environment
US3443423A (en) Apparatus for testing the compressive strength of soil specimens
JP2006266964A (en) Strain control type super-high cycle fatigue testing method and fatigue testing apparatus
JP2001033371A (en) Biaxial material-testing machine
JP2002357520A (en) Viscoelasticity-measuring apparatus
JPS627964B2 (en)
DE29711490U1 (en) Universal measuring device for non-destructive stiffness tests for tablets
RU2077718C1 (en) Device to study deformation properties of flat fibre-containing materials
KR0165604B1 (en) Method and apparatus of measuring fracture toughness
JPH02259544A (en) Method for testing three-point bending rupture toughness
JPH0446373B2 (en)
JP4116204B2 (en) Hardness tester and force verification method
JPH0647847U (en) Device for measuring shear strength and deformation of foundry sand
Johnson et al. Paper 12: A Biaxial-Stressing Creep Machine and Extensometer
JP3230340B2 (en) Material testing machine
JP3170256B2 (en) Hardness tester