JPS6188952A - Method for adding alloy component to mold inside in continuous casting - Google Patents

Method for adding alloy component to mold inside in continuous casting

Info

Publication number
JPS6188952A
JPS6188952A JP21027084A JP21027084A JPS6188952A JP S6188952 A JPS6188952 A JP S6188952A JP 21027084 A JP21027084 A JP 21027084A JP 21027084 A JP21027084 A JP 21027084A JP S6188952 A JPS6188952 A JP S6188952A
Authority
JP
Japan
Prior art keywords
alloy
mold
magnetic field
static magnetic
additives
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21027084A
Other languages
Japanese (ja)
Inventor
Shoji Miyagawa
宮川 昌治
Kenichiro Suzuki
健一郎 鈴木
Kenji Murata
村田 賢治
Kyoji Nakanishi
中西 恭二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP21027084A priority Critical patent/JPS6188952A/en
Publication of JPS6188952A publication Critical patent/JPS6188952A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To dissolve and mix quickly additives for adjusting alloy components and to improve the yield of drawing a target component ingot by providing brake devices which brake and disperse the molten metal discharged from an immersion nozzle and adding the above-mentioned additives between the discharge port and brake dispersion region. CONSTITUTION:Static magnetic field generators 10A, 10B are disposed on one long side of a casting mold 2 as the brake devices and static magnetic field generators 11A, 11B on the other long side on the sides opposite from each other with the immersion nozzle 1 in-between. The supply position of a supply device 4 which supplies the alloy additives 5 to the molten steel in the mold 2 is provided between the discharge port 1A of the nozzle 1 and the brake dispersion region 13A by the static magnetic field. The alloy additives 5 are therefore trapped into the jet-like discharge flow 12 of the molten steel discharged from the port 1A and are then quickly and uniformly stirred as the discharge flow near the region 13A is dispersed and stirred. The dissolution of the alloy additives 5 into the molten steel and the mixing thereof progress smoothly and the alloy components are uniformly dispersed into the ingot.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、y4等の金属を連続鋳造するにあたって、
その鋳型内の溶融金属中に合金成分調整用の添加物を添
加する方法に関するものである。
[Detailed Description of the Invention] Industrial Application Field This invention is applicable to continuous casting of metal such as Y4.
The present invention relates to a method of adding additives for adjusting alloy composition to molten metal in the mold.

従来の技術 周知のように鋼の製造過程においては、その鋼製品の使
用目的や使用環境などに応じて、降伏強度や抗張力、耐
衝撃性、クリープ強度、疲労強度、あるいは耐食性、耐
酸化性、電気抵抗、磁化率などの種々の物理的特性や化
学的特性を付与するために、種々の合金元素が添加され
る。このような合金成分を鋼の製造過程で調整する方法
としては、例えば一般の転炉製鋼法を用いている場合、
炉内で酸化・消費されない元素であるNi 、Cr、M
Oは均一溶解の観点からスクラップ装入時に同時に転炉
内に添加するのが通常であるが、その他の合金成分は大
部分出鋼時に取鍋にて添加するのが通常である。しかる
に出鋼時に取鍋にて添加する方法は、酸素との親和力の
相違から添加尖角りが大きく異なり、また特に被酸化性
の強いAβ、Ca、REM(希土類元素)などは出鋼時
の取鍋添加では歩留りが大きく変動する欠点があり、そ
こでワイヤ・フィーダー法や合金弾投射法などの特殊な
添加方法が採用されることもあり、また出鋼時より後の
取鋼内、例えば説ガス処理時あるいはArガスバブリン
グ時の取鋼内添加や、連続鋳造時のタンディツシュ内添
加もしくは鋳型的添加が採用されることも多い。そして
これらのうち、連続鋳造時の鋳型内で合金鉄などの合金
成分調整用添加物を添加する方法は、特に被酸化性の強
い合金成分を含有する添加物を少j添加する場合に有効
であることが知られている。
Conventional Technology As is well known, in the steel manufacturing process, yield strength, tensile strength, impact resistance, creep strength, fatigue strength, corrosion resistance, oxidation resistance, Various alloying elements are added to impart various physical and chemical properties such as electrical resistance and magnetic susceptibility. As a method for adjusting such alloy components during the steel manufacturing process, for example, when using a general converter steel manufacturing method,
Ni, Cr, and M are elements that are not oxidized or consumed in the furnace.
From the viewpoint of uniform melting, O is usually added into the converter at the same time as scrap is charged, but most of the other alloying components are usually added in a ladle during tapping. However, in the method of adding in a ladle at the time of tapping, the addition angle differs greatly due to the difference in affinity with oxygen, and Aβ, Ca, REM (rare earth elements), etc., which are particularly susceptible to oxidation, are added at the time of tapping. Ladle addition has the disadvantage that the yield fluctuates significantly, so special addition methods such as the wire feeder method or alloy bullet projection method are sometimes adopted. Addition in the steel stock during gas treatment or Ar gas bubbling, addition in the tundish during continuous casting, or addition in the mold are often adopted. Among these methods, the method of adding additives for adjusting alloy components such as ferroalloys in the mold during continuous casting is particularly effective when adding a small amount of additives containing alloy components that are highly oxidizable. It is known that there is.

このように連続鋳造工程において鋳型内へ合金成分調整
用添加物(以下合金添加物と記す)を添加する方法とし
ては、第6図および第7図に示すように取鍋もしくはタ
ンディツシュ(図示せず)から浸漬ノズル1をとおして
鋳型2内に供給される溶鋼3の吐出流中に合金添加物供
給装置4によって例えば線材状の合金添加rIJ5を供
給し、合金添加物5を溶解させて鋳片6中に合金成分を
分散させる方法(特rMF!7a57−168755J
M)が9Ilられている。なお第6図において7は溶r
!A3の鋳型内湯面、8は鋳片6の凝固シェルである。
In this way, in the continuous casting process, additives for adjusting alloy composition (hereinafter referred to as alloy additives) are added into the mold in a ladle or tundish (not shown) as shown in Figures 6 and 7. ) into the discharge stream of molten steel 3 supplied into the mold 2 through the immersion nozzle 1, an alloy additive rIJ5, for example, in the form of a wire is supplied by the alloy additive supply device 4, and the alloy additive 5 is melted to form a slab. 6 (Special rMF!7a57-168755J)
M) is 9Il. In addition, in Fig. 6, 7 is the melt r.
! A3 is the hot water level in the mold, and 8 is the solidified shell of the slab 6.

発明が解決しようとする問題点 上述のような従来の鋳型内合金成分添加方法においては
、合金添加物の素材や形状によっては溶鋼中で充分な溶
解が行なわれないために、鋳型内に供給する合金添加物
の形状や素材に制約を受けるのみならず、溶鋼中への均
一な分散・混合が充分には達成できず、そのため鋳片に
合金成分の偏在が生じ易い問題がある。また合金の溶鋼
中t\の均一分散がすみやかになされないため、例えば
合金添加物の添加を開始してから実際に鋳片の横開面の
全体に合金成分元素が均一に分散された状態となるまで
には相当な時間を要し、そのため目標成分の鋳片の採取
歩留りが低い問題がある。
Problems to be Solved by the Invention In the conventional in-mold alloy addition method as described above, depending on the material and shape of the alloy additive, sufficient melting may not take place in the molten steel. Not only are there restrictions on the shape and material of the alloy additive, but also it is difficult to achieve sufficient uniform dispersion and mixing in the molten steel, resulting in the problem that alloy components tend to be unevenly distributed in the slab. In addition, since uniform dispersion of t\ in the molten steel of the alloy is not achieved quickly, for example, after the addition of alloying additives is started, it is not possible to achieve a state in which the alloying elements are actually uniformly dispersed over the entire transversely cut surface of the slab. It takes a considerable amount of time to achieve this, and therefore there is a problem that the yield of slabs containing the target components is low.

したがってこの発明は、鋳型内に供給する合金添加物の
すみやかな溶解と均一な分散混合を達成し、これによっ
て合金添加物の形状、種類の制約を少なくすると同時に
、鋳片に対する合金成分の問題を解決するための手段 この発明の方法は、浸漬ノズルにより鋳型内に溶鋼等の
溶融金属を供給して3%続H造するとともに、その鋳型
内の溶融金属中に合金成分調整用添加物(合金添加物)
を添加する方法において、前記浸漬ノズルの吐出口から
流出した溶融金ぶの吐出流を制動分散させるための制動
装置を鋳型に設け、前記吐出口から前記制動装置による
溶融金属の1liII動分散領域に至るまでの間の位置
において前記合金添加物を添加することを特徴とするも
のである。なおここで前記制動装置は、要は浸漬ノズル
の吐出口からの吐出流に制動を与えて吐出流を分散させ
得るものであれば良く、代表的には前記吐出流に静磁場
を印加して制動力を与える静磁場発生装置を用いること
ができる。
Therefore, this invention achieves rapid dissolution and uniform dispersion of alloy additives supplied into the mold, thereby reducing restrictions on the shape and type of alloy additives, and at the same time solving the problem of alloy composition for slabs. Means for Solving the Problems The method of the present invention involves supplying molten metal such as molten steel into a mold using an immersion nozzle to perform 3% continuous H forming, and adding additives (alloy component adjustment) to the molten metal in the mold. Additive)
In the method of adding molten metal, the mold is provided with a braking device for braking and dispersing the discharge flow of molten metal flowing out from the discharge port of the immersion nozzle, and the molten metal is dynamically dispersed from the discharge port into a dynamic dispersion area of the molten metal by the braking device. It is characterized in that the alloy additive is added at a position between. Here, the braking device may be any device as long as it can brake the discharge flow from the discharge port of the immersion nozzle and disperse the discharge flow, and typically applies a static magnetic field to the discharge flow. A static magnetic field generator that provides braking force can be used.

発明の実施のための具体的説明 第1図および第2図はこの発明の方法を実施する3!!
!続鋳造別の鋳型付近の状況を示すものであり、鋳型2
を構成する長辺2A、2Aおよび短辺2’B、2Bのう
ち、長辺2A、2Aの側には、制り装門トt、、T(7
)211fl(7)静miu生tlfflOA、10B
;11A、11Bが配設されている。これら2組の静磁
場発生装置10A、IOB:IIA、11Bは、鋳型2
内の浸漬ノズル1の吐出口1A、IBから吐出する溶鋼
のジェット状の吐出流が通過する位置において静磁場を
発生させるためのものであり、一方の組の静磁場発生装
置10A、10Bと他方の組の静磁場発生装置ff11
1A、11Bとが浸漬ノズル1の位置を間にして反対側
に配設され、かつ各組の一方↑OA;11Aが例えばI
Iとされるとともに各組の他方10B、11Bが例えば
S極とされている。なおこれら2組のD[1場発生装置
10A1108;11A、11Bの位置は、浸漬ノズル
1の吐出口IA、1Bから吐出した溶鋼の吐出流が直ち
に静磁場中を通過するのではなく、吐出口1A、1Bか
ら吐出したジェット状の吐出流がそのまま小距離進んで
から静磁場中にはいるように位置決めされている。そし
て鋳型2内の溶鋼中に合金添加物5を1P、給するため
の合金コ加物供給装置4は、その供給位置く添加位置)
が浸漬ノズル1の吐出口1Aと一方の組の静磁場発生装
置10A、10Bにより誘起される静磁場の領域(すな
わち後述する如く制動分散領域に相当する)13Aとの
間の(ffliとなるように位置決めされている。
DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION FIGS. 1 and 2 show 3! !
! It shows the situation near the mold for each continuous casting, and the mold 2
Among the long sides 2A, 2A and the short sides 2'B, 2B, there are fixed gates t, , T (7
) 211fl (7) Shizu miu raw tlfflOA, 10B
; 11A and 11B are provided. These two sets of static magnetic field generators 10A, IOB:IIA, 11B are
This is for generating a static magnetic field at a position where the jet-like discharge flow of molten steel discharged from the discharge ports 1A and IB of the immersion nozzle 1 passes through, and one set of static magnetic field generators 10A and 10B and the other set A set of static magnetic field generators ff11
1A and 11B are arranged on opposite sides with the position of the immersion nozzle 1 in between, and one of each set is ↑OA; 11A is, for example, I
I, and the other one 10B, 11B of each pair is, for example, an S pole. Note that the positions of these two sets of D[1 field generators 10A, 1108; 11A and 11B are such that the discharge flow of molten steel discharged from the discharge ports IA and 1B of the immersion nozzle 1 does not immediately pass through the static magnetic field, but is located at the discharge ports. They are positioned so that jet-like discharge streams discharged from 1A and 1B travel a short distance and then enter the static magnetic field. The alloy additive supply device 4 for supplying 1P of alloy additive 5 into the molten steel in the mold 2 is located at its supply position (addition position).
is (ffli) between the discharge port 1A of the immersion nozzle 1 and the static magnetic field region 13A induced by one set of static magnetic field generators 10A and 10B (that is, corresponds to the damping dispersion region as described later). is positioned.

上述のような段重を用いて飛の連続鋳造を行なうにあた
っては、取mもしくはタンディツシュから浸漬ノズル1
を通って鋳型2内に供給される溶鋼は、第3図、第4図
に模式的に示すように浸漬ノズル1の吐出口1A、IB
からジェット状の吐出流12として吐出された侵、静磁
場発生装置10A、10B:11A、11Bにより誘起
される静磁場のvi域13A、13Bを通過する際に、
その溶鋼の流れと静磁場との相互作用によって吐出流1
2の方向に対し逆向きの電til力、すなわち溶鋼の吐
出流12を減速させる方向のm VU till動力F
bを受ける。このように吐出口IA、1Bから吐出され
たジェット状の吐出流12は制動領域13A、13Bで
の電磁制動力Fbによって第3図、第4図の白抜矢印で
示すように強制的に分散ゼしめられ、その制動領域13
A、13Bの付近で廃拌流動が生じることになる。した
がって静磁場領[13A、13Bは、吐出流12に対し
制動力を与えて吐出流12を分散させる制動分散領域と
言い換えることができるっ 上述のようにジェット状の吐出流12に対し制動力を与
えることによって、吐出流の下方への仔入深さが減少す
るのみならず、溶閉の流動、撹拌の行なわれる領域の鋳
込み方向長さが減少するため、溶覇の持つ運動エネルギ
ーが制動弁¥1.領戚13A、13Bの付近に集中して
その位置における運動エネルギーの密度が大きくなる。
When performing continuous casting using the above-mentioned stage weight, the immersion nozzle 1 is
Molten steel is supplied into the mold 2 through the discharge ports 1A and IB of the immersion nozzle 1, as schematically shown in FIGS. 3 and 4.
When passing through the vi regions 13A and 13B of the static magnetic field induced by the static magnetic field generators 10A and 10B: 11A and 11B,
Due to the interaction between the flow of molten steel and the static magnetic field, the discharge flow 1
m VU till power F in the direction opposite to the direction of 2, that is, the direction that decelerates the discharge flow 12 of molten steel
receive b. The jet-like discharge flow 12 discharged from the discharge ports IA and 1B is forcibly dispersed as shown by the white arrows in FIGS. 3 and 4 by the electromagnetic braking force Fb in the braking regions 13A and 13B. The braking area 13
Waste agitation flow will occur near A and 13B. Therefore, the static magnetic field regions [13A and 13B can be rephrased as braking dispersion regions that apply a braking force to the discharge flow 12 to disperse the discharge flow 12. This not only reduces the downward penetration depth of the discharge flow, but also reduces the length in the pouring direction of the region where melt-closing flow and stirring occur, so the kinetic energy of the melt is transferred to the brake valve. ¥1. The kinetic energy is concentrated near the regions 13A and 13B, and the density of kinetic energy at that position increases.

なお上述のようなり磁場を印加しない場合には第8図に
模式的に示すように吐出口1A、1Bから吐出したジェ
ット状の吐出流12に制動力が与えられないため、吐出
流12がそのまま下方へ深く侵入し、かつ鋳型的上部に
おける撹拌、流動は少なく、なる。
Note that when no magnetic field is applied as described above, no braking force is applied to the jet-shaped discharge flow 12 discharged from the discharge ports 1A and 1B, as schematically shown in FIG. It penetrates deeply downward, and there is less stirring and flow in the upper part of the mold.

本発明者等の経験によれば、静磁場を印加しない場合と
比較して、2000ガウスの磁束密度の静磁場を印加し
た場合には鋳型内の溶鋼の混合状態は約4倍程度改善さ
れ、3200ガウスの磁束密度で杓10倍改善されるこ
とが確認されている。
According to the experience of the present inventors, when a static magnetic field with a magnetic flux density of 2000 Gauss is applied, the mixing state of molten steel in the mold is improved by about 4 times compared to when no static magnetic field is applied. It has been confirmed that a magnetic flux density of 3200 Gauss can improve the magnetic field by a factor of 10.

ここで、この発明の方法においては、前述のように合金
添加物5が浸漬ノズル1の吐出口1Aと静1町発生装置
 10 A、108による制動分散領域13Aとの間の
位置で添加されるから、その合金添加物5は先ず吐出口
1Aから吐出される溶鋼のジェット状吐出流12にトラ
ップされた後、制動分散領域13△の付j1において吐
出流が分散・1躇拌されるにともなって急速かつ均一に
撹拌される。したがって合金添加物5の溶鋼中への溶解
とそれに引続く混合とが円)nに進行し、合金成分の鋳
片中への均一な分散が可能となる。すなわち、合金添加
物5をト′ラップした溶鋼の吐出流が制動分散類1唆1
3△付j1で分散・撹拌されるに加えて、前述のように
その位置での撹拌エネルギー密度が大きくなる結梁、溶
解した合金添加力5の混合が急速かつ充分になされるこ
とになる。また合金添加物5の溶解自体に閂しても、鋳
型内に供給されて合金添加物5は>7fflノズル1の
吐出口から吐出してからの時間経過の少ない高温の吐出
流12にトラップされかつその後ただちに制動分故第1
戎13A付近で撹拌されるため、合金添加物5の溶解も
日清かつすみやかに進行するのである。
Here, in the method of the present invention, as described above, the alloy additive 5 is added at a position between the discharge port 1A of the submerged nozzle 1 and the damping dispersion region 13A by the Shizuoka generator 10A, 108. Therefore, the alloy additive 5 is first trapped in the jet-like discharge flow 12 of molten steel discharged from the discharge port 1A, and then as the discharge flow is dispersed and stirred in the damping dispersion region 13Δ. Stir quickly and evenly. Therefore, the melting of the alloy additive 5 into the molten steel and the subsequent mixing thereof proceed in a circular manner, making it possible to uniformly disperse the alloy components into the slab. In other words, the discharge flow of the molten steel trapping the alloy additive 5 is caused by the braking dispersion class 1
In addition to being dispersed and stirred at j1 with 3△, as mentioned above, the stirring energy density at that position increases, and the molten alloy addition force 5 is rapidly and sufficiently mixed. Furthermore, even if the melting of the alloy additive 5 itself is interrupted, the alloy additive 5 supplied into the mold is trapped in the high-temperature discharge stream 12 with a short elapsed time after being discharged from the discharge port of the nozzle 1. and immediately after that, the first braking failure occurs.
Since the mixture is stirred near Ebisu 13A, the alloy additive 5 also dissolves quickly.

実筋例 250トン転炉で精錬した後、RH脱ガス処理を施した
A1キルド暑を、スラブ連続鋳造口によって厚さ220
mm、幅1600mmの断面寸法のスラブに鋳造するに
あたり、合金添加物として、0.1ma/!;rの桶薄
軟円板で被覆した外お4+n+nのRE〜17B合金線
(REM60wt%、B 40 wt?6 )を添加す
る実験を行なった。なお鋳造速度は1.2m/’ in
nとし、また合金線の添加は、Bの添加口(7(直20
pl)mとして、合金線の添加速rNヲ0.17 kg
/馳とした。そして鋳型の長辺側に第1図、第2図に示
すように静El fQ発生装置10A、108:11A
、11Bを股胃しておき、直流800、kVA、鋳型内
溶閘の磁束密度が2000ガウスとなるよう静磁場を加
えた状態、および静磁場を加えない状態でそれぞれ実験
を(1ない、合金元素の分散状況、特にBの分散状況を
鋳片の各部からのサンプル採取により調べた。なお静磁
場を印加する場合、合金添加物の添加位置は浸漬ノズル
1の吐出口1Aと静「jrliによるF1乃分散領戚1
3Aとの間とした。その結果を第5図に示す。なお第5
図において横軸(詩造距閂)の起点は、合金添加開始位
置を示す。
Actual example: After smelting in a 250-ton converter, A1 killed heat, which has been subjected to RH degassing treatment, is cast into a slab with a thickness of 220 mm using a continuous slab casting orifice.
When casting into a slab with a cross-sectional dimension of 1,600 mm and a width of 1,600 mm, 0.1 ma/! An experiment was conducted in which 4+n+n RE-17B alloy wire (REM 60 wt%, B 40 wt?6) was added to the outer layer covered with a thin soft disk. The casting speed is 1.2m/'in
n, and the alloy wire is added through the addition port B (7 (straight 20
As pl)m, the addition rate rN of alloy wire is 0.17 kg
/ It was refreshing. Then, as shown in Fig. 1 and Fig. 2, static El fQ generators 10A and 108:11A are installed on the long side of the mold.
, 11B, DC 800 kVA, a static magnetic field was applied so that the magnetic flux density of the melt in the mold was 2000 Gauss, and an experiment was conducted with no static magnetic field (1, alloy The dispersion state of the elements, especially the dispersion state of B, was investigated by taking samples from each part of the slab.When applying a static magnetic field, the addition position of the alloy additive was determined by the discharge port 1A of the immersion nozzle 1 and the static "jrli" F1 No Distributed Territories 1
It was between 3A and 3A. The results are shown in FIG. Furthermore, the fifth
In the figure, the starting point of the horizontal axis (Shizo taiken) indicates the starting position of alloy addition.

第5図から明らかなように、静磁場を印加しない場合す
なわち*す動を与えない場合には、合金成分(B)の濃
度推移がM糟であるのみならず、合金門度目標伯よりも
低い値で飽和する傾向が認められた。このような現牟が
生じた理由は、静磁場を印加しない場合にはジェット状
の溶権吐出流の鋳片未凝固部への侵入深さが大きいため
、鋳片射込み方向に帛麿勾配が生じ、n型内では目標の
合金濃度に達しないためと思われる。そして静磁場を印
加しない場合には、合金元素が鋳片中に均一に分散して
いない状態が鋳造長さにして少なくとも10mは続くこ
とが判明した。
As is clear from Fig. 5, when a static magnetic field is not applied, that is, when no motion is given, the concentration transition of the alloy component (B) is not only M but also lower than the alloy concentration target ratio. A tendency to saturate at low values was observed. The reason for this phenomenon is that when no static magnetic field is applied, the penetration depth of the jet-shaped solute discharge flow into the unsolidified part of the slab is large, which causes the slope of the melt in the direction of injection of the slab. This appears to be because the target alloy concentration is not reached within the n-type. It was also found that when no static magnetic field is applied, the state in which the alloying elements are not uniformly dispersed in the slab continues for a casting length of at least 10 m.

これに対し静磁場を印加して溶鋼流を制動させた場合に
は、合金成分(B)の濃度推移が極めて迅速であり、合
金製度目(7値に達するまでの時間が短時間で、鋳造長
さにして約2mでスラブの表面、内部どしに均一に目標
値にj7シていることか明らかである。
On the other hand, when a static magnetic field is applied to brake the molten steel flow, the concentration transition of the alloy component (B) is extremely rapid, and the time it takes to reach the alloy grade (7) is short and the casting It is clear that the length of the slab is about 2 m, and the target value is uniformly reached on the surface and inside of the slab.

発明の効果 以上の説明で明らかなようにこの発明の方法によれば、
>2 Wiノズルの吐出口から吐出されるF El金属
の吐出流に対して制動を与えるv1肋装置をも2けてお
き、前記吐出口から制動領域に至るまでの間において合
金添加物を添加供給することによって、その合金添加物
を迅速溶解・混合させて、均一に合金成分が分散した鋳
片をすみやかに(qることがてき、したがって目標合金
成分濃度の鋳片の採取歩留りが高くなるとともに合金成
分の隔板のない鋳片を確実に得ることができ、しかも合
金添加物の溶解も促進されるため、使用する合、、金添
加吻の種類や形状の制約も少なくなる等、各種の効果が
得られる。
Effects of the Invention As is clear from the above explanation, the method of this invention has the following effects:
>2 Two v1 ribs are provided to brake the flow of FEl metal discharged from the discharge port of the Wi nozzle, and alloy additives are added between the discharge port and the braking region. By supplying the alloy, the alloy additives can be quickly melted and mixed, and slabs with uniformly dispersed alloy components can be quickly produced (q), thus increasing the sampling yield of slabs with the target alloy component concentration. At the same time, it is possible to reliably obtain slabs with no partition plates of alloy components, and the dissolution of alloy additives is also promoted, so there are fewer restrictions on the type and shape of the gold-added proboscis when used, etc. The effect of this can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の方法を実施している状況を示すM続
鋳造機の鋳型付近の′ji所面図、第2図は第1図の平
面図、第3図はこの発明の方法を突座した場合の溶鋼の
流れを第′1図に対応して示す模式図、第4図は同じく
この発明の方法を実話した場合の溶nの沢れを第2図に
対応して示す模式図、第5図は実茄例における鋳片の合
金成分としての8の3度推移を、鋳片の鋳造距離を基準
にして示す線区である。第6図は従只の方法を実座して
いる状況を示す遠続涛造橢の鋳型付近のa西面図、第7
図は第6図の平面図、第8図は第6図における溶鋼の流
れを示す模式図であるっ 1・・・浸漬ノズル、 1.へ、1B・・・吐出口、 
2・・・J型、 5・・・合金添加物、 10A、10
B;11A、IIB・・・制動装スとしての静磁場発生
装!、12・・・吐出流、 13.A、13B・・・シ
1肋分敢領域→1場印加須域ン。
Figure 1 is a top view of the vicinity of the mold of an M continuous casting machine showing the situation in which the method of the present invention is implemented, Figure 2 is a plan view of Figure 1, and Figure 3 is a diagram showing the method of the present invention. Figure 4 is a schematic diagram showing the flow of molten steel in the case of bumping, corresponding to Figure 1, and Figure 4 is a schematic diagram corresponding to Figure 2, showing the flow of molten steel when the method of this invention is actually applied. FIG. 5 is a line section showing the transition of 3 degrees of 8 as an alloy component of a slab in an actual example, based on the casting distance of the slab. Figure 6 is a west view of the area around the mold of the Enzoku Tozokuri, showing the situation in which the method of adjudication is actually practiced;
The figure is a plan view of FIG. 6, and FIG. 8 is a schematic diagram showing the flow of molten steel in FIG. 6.1... Immersion nozzle, 1. To, 1B...discharge port,
2...J type, 5...Alloy additive, 10A, 10
B; 11A, IIB...Static magnetic field generator as a braking device! , 12...discharge flow, 13. A, 13B...C1 subpart area → 1 field application area.

Claims (2)

【特許請求の範囲】[Claims] (1)浸漬ノズルにより鋳型内に溶融金属を供給して連
続鋳造するとともに、その鋳型内の溶融金属中に合金成
分調整用の添加物を添加する方法において、 前記浸漬ノズルの吐出口から吐出する溶融金属の吐出流
を制動分散させるための制動装置を鋳型に設けておき、
前記吐出口と、前記制動装置による制動分散領域との間
の位置において前記合金成分調整用の添加物を添加する
ことを特徴とする連続鋳造における鋳型内合金成分添加
方法。
(1) In a method of continuously casting by supplying molten metal into a mold using an immersion nozzle, and adding additives for adjusting the alloy composition to the molten metal in the mold, the molten metal is discharged from the outlet of the immersion nozzle. A braking device is installed in the mold to brake and disperse the discharge flow of molten metal.
A method for adding alloy components in a mold in continuous casting, characterized in that the additive for adjusting the alloy components is added at a position between the discharge port and a braking distribution area by the braking device.
(2)前記制動装置として静磁場発生装置を鋳型の長辺
側に設けた特許請求の範囲第1項記載の連続鋳造におけ
る鋳型内合金成分添加方法。
(2) The method for adding alloy components in a mold in continuous casting according to claim 1, wherein a static magnetic field generator is provided as the braking device on the long side of the mold.
JP21027084A 1984-10-05 1984-10-05 Method for adding alloy component to mold inside in continuous casting Pending JPS6188952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21027084A JPS6188952A (en) 1984-10-05 1984-10-05 Method for adding alloy component to mold inside in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21027084A JPS6188952A (en) 1984-10-05 1984-10-05 Method for adding alloy component to mold inside in continuous casting

Publications (1)

Publication Number Publication Date
JPS6188952A true JPS6188952A (en) 1986-05-07

Family

ID=16586609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21027084A Pending JPS6188952A (en) 1984-10-05 1984-10-05 Method for adding alloy component to mold inside in continuous casting

Country Status (1)

Country Link
JP (1) JPS6188952A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0321206A1 (en) * 1987-12-16 1989-06-21 Kawasaki Steel Corporation Immersion nozzle for continuous casting
JPH0289544A (en) * 1988-09-27 1990-03-29 Nippon Steel Corp Method for controlling molten steel flow in mold in continuous casting

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0321206A1 (en) * 1987-12-16 1989-06-21 Kawasaki Steel Corporation Immersion nozzle for continuous casting
US4949778A (en) * 1987-12-16 1990-08-21 Kawasaki Steel Corporation Immersion nozzle for continuous casting
JPH0289544A (en) * 1988-09-27 1990-03-29 Nippon Steel Corp Method for controlling molten steel flow in mold in continuous casting

Similar Documents

Publication Publication Date Title
JP4495455B2 (en) Steel strip casting
CN108893576B (en) Smelting method of welding rod steel H08A
CN110184548A (en) A kind of method of potassium steel continuous casting billet solidified structure refinement
RU2539253C2 (en) Method and unit for regulation of flows of molten metal in crystalliser pan for continuous casting of thin flat slabs
KR19990008228A (en) Steel strip continuous casting method
JPS6188952A (en) Method for adding alloy component to mold inside in continuous casting
JPH03142049A (en) Method and apparatus for continuously casting steel using static magnetic field
KR20020013862A (en) Production method for continuous casting cast billet
KR101239537B1 (en) Method for deceasing a depression of strip surface by optimization a deposition depth in submerged entry nozzle
JP7151247B2 (en) Flow controller for thin slab continuous casting and thin slab continuous casting method
JP3593328B2 (en) Method for controlling flow of molten steel in mold and apparatus for forming electromagnetic field therefor
KR102324300B1 (en) Method of continuous casting of steel
JPS6250054A (en) Continuous casting method for obtaining ingot having high oxygen content
JP6500682B2 (en) Method and apparatus for continuous casting of multi-layer cast slab
DE3590837C2 (en)
JPH01271045A (en) Production of lead free cutting steel by continuous casting method
JP2002001501A (en) Method of manufacturing continuous cast slab
CN116673452B (en) Method for controlling magnesium content in steel in casting process
EP3238856B1 (en) A method of controlling the solidification process of continuously cast metals and alloys and a device for implementing the method
JP2898199B2 (en) Manufacturing method of continuous cast slab
JP4508209B2 (en) Continuous casting method of multi-layer slab and slab
JPH0839196A (en) Production of continuously cast slab
JP2002239691A (en) Method for continuously casting molten metal
JPH07290195A (en) Production of continuously cast slab
JP2006255759A (en) Method for continuously casting steel