JPS6188755A - Three phase brushless motor - Google Patents

Three phase brushless motor

Info

Publication number
JPS6188755A
JPS6188755A JP20934984A JP20934984A JPS6188755A JP S6188755 A JPS6188755 A JP S6188755A JP 20934984 A JP20934984 A JP 20934984A JP 20934984 A JP20934984 A JP 20934984A JP S6188755 A JPS6188755 A JP S6188755A
Authority
JP
Japan
Prior art keywords
poles
phase
torque
rotor magnet
brushless motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20934984A
Other languages
Japanese (ja)
Inventor
Satoshi Sakamoto
敏 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP20934984A priority Critical patent/JPS6188755A/en
Publication of JPS6188755A publication Critical patent/JPS6188755A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Brushless Motors (AREA)

Abstract

PURPOSE:To reduce the torque ripple of a brushless motor, by providing auxiliary poles changing the magnetized wave of a rotor magnet partly. CONSTITUTION:So far as a three phase brushless motor is concerned, three phase coils are arranged at an interval of an electrical angle 120 deg. multiplied by an integral number, and a rotor magnet M is magnetized in eight poles for example, and main poles 1S, 1N are organized so that they may alternately confront the torque action side in the radial direction of each coil. The respective coils are electrically conducted by switch elements every 120 deg. or every 180 deg. in succession. Then, on the center of the flux width in the rotary direction of the main poles 1S, 1N of the rotor magnet M (at any position of 30 deg., 90 deg., or 150 deg. off the range of the main poles), auxiliary poles 3N, 3S for reducing the effective flux of the main poles 1S, 1N partly are provided. Then, the peak position (90 deg. and 270 deg.) for flux distribution of sine wave form is greatly concaved, and the synthesized torque ripple can be greatly reduced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、トルクリップルの低減を図った三相ブラシレ
スモークに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a three-phase brushless smoke designed to reduce torque ripple.

従来の技術 二相ブラシレスモーフの通電方式としては、三、−相方
向120°通電、三相片方向180°通電、三相両方向
180°通電の各方式が知られている。
Conventional techniques As the energization method for a two-phase brushless morph, three-phase 120° energization in a negative phase direction, a three-phase unidirectional 180° energization, and a three-phase 180° bidirectional energization method are known.

何れの場合も、三相コイルは電気角で120°の整数倍
の間隔で配置され、ロータマグネットの回転位置をボー
ル素子等の惑(イヨ性素子で検出して、各コイルの鎖交
磁束の極性に合わせて三相コイルを切換通電している。
In either case, the three-phase coils are arranged at intervals that are an integral multiple of 120 degrees in electrical angle, and the rotational position of the rotor magnet is detected by a ball element (orientation element) to determine the interlinkage magnetic flux of each coil. The three-phase coil is switched and energized according to the polarity.

従って基本的には電気角で120°間隔の各相のトルク
を合成するため、原理的にトルクリップルが発生する。
Therefore, since the torques of each phase are basically synthesized at intervals of 120 degrees in electrical angle, torque ripples occur in principle.

このモータをテープレコーダやVTRのテープ走行系或
いはプレーヤのフォノモータなどに使用すると、再生音
声のワウ・フラツグや映像のジッターなど再生品質の劣
化の原因となる。
If this motor is used in the tape running system of a tape recorder or VTR, or the phono motor of a player, it will cause deterioration in playback quality such as wow and flags in playback audio and jitter in video.

発明が解決しようとする問題点 そこで、従来ではロータマグネットの着磁を台形波状に
して合成トルクのピーク・ディップの差を少なくしたり
、成るいは着磁を三角波状にして合成トルクを一定値に
する対策がとられていた。
Problems to be Solved by the Invention Therefore, in the past, the magnetization of the rotor magnet was made into a trapezoidal waveform to reduce the difference between peak and dip of the resultant torque, or alternatively, the magnetization was made into a triangular waveform so that the resultant torque was kept at a constant value. Measures were taken to prevent this.

しかし台形波状の着磁の場合、トルク発生に寄与する有
効磁束量が減少し、モータの効率が大巾に低下すること
がある。また三角波状の着磁を正しく行うのは非常に困
難であり、理想的な一定トルクを得ることは出来なかっ
たのが実情である。本発明はこの問題に鑑みて成された
ものであって、簡単な手段で、出力トルクを低下させず
にトルクリップルを低減することを目的とする。
However, in the case of trapezoidal wave-like magnetization, the amount of effective magnetic flux that contributes to torque generation is reduced, and the efficiency of the motor may be significantly reduced. In addition, it is very difficult to correctly perform triangular wave magnetization, and the reality is that it has not been possible to obtain an ideal constant torque. The present invention has been made in view of this problem, and it is an object of the present invention to reduce torque ripple by simple means without reducing output torque.

発明の概要 本発明による三相ブラシレスモークは、ロータマグネッ
ト(M)に形成された主極(Is、IN)の境界からほ
ぼ電気角で30°、90°、150゜の少なくとも一箇
所に主極磁束を部分的に減じるための補極(3N、3S
)が設けられていることを特徴とするものである。
Summary of the Invention The three-phase brushless smoke according to the present invention has a main pole at at least one location approximately 30°, 90°, and 150° in electrical angle from the boundary of the main poles (Is, IN) formed on the rotor magnet (M). Compensating poles (3N, 3S) to partially reduce magnetic flux
) is provided.

作用 三相ブラシレスモータでは、電気角で120゜の位相差
で住じる各相のトルクを合成するので、電気各で30°
、90”、150°、210°、270°及び330°
の位置にトルクリップルの山が生じ易い。そこで補極を
山部に対応させて設けることにより、山部が凹み、トル
クリンプルが低減する。
In a working three-phase brushless motor, the torques of each phase that live with a phase difference of 120 degrees in electrical angle are combined, so the phase difference is 30 degrees in each electrical angle.
, 90”, 150°, 210°, 270° and 330°
Torque ripple peaks are likely to occur at these locations. Therefore, by providing a commutative electrode corresponding to the peak, the peak is recessed and torque ripple is reduced.

実施例 第1図は本発明が適用される三相ブラシレスモークの基
本構成を示す路線図で、三相コイルLA。
Embodiment FIG. 1 is a route diagram showing the basic configuration of a three-phase brushless smoke to which the present invention is applied, and includes a three-phase coil LA.

LB、LCは電気角で120”の整数倍の間隔で配置さ
れ、これらのコイルと対称配置のコイルLA’、LB’
、LC′は夫々LA、LB、LCと直列に結合されてい
る。ロータマグネットMは例えば8極に着磁され、主極
IS、INが交互に各コイルの放射方向のトルク作用辺
と対向するようになっている。
LB and LC are arranged at intervals of an integral multiple of 120" in electrical angle, and the coils LA' and LB' are arranged symmetrically with these coils.
, LC' are coupled in series with LA, LB, and LC, respectively. The rotor magnet M is magnetized to have, for example, eight poles, and the main poles IS and IN alternately face the torque acting sides of the respective coils in the radial direction.

第2図は両方向通電形の駆動回路図で5EPP構成の出
力段DA−DCによって各コイルLA。
FIG. 2 is a diagram of a bidirectional current-carrying type drive circuit, in which each coil LA is connected to an output stage DA-DC of a 5EPP configuration.

LB、LCがスイッチング駆動される。スイッチングは
電気角で60°ごとに行われ、例えばまずコイルLAの
電流をコイルLB、LCに分流させ、次のタイミングで
はLCの電流を反転させてLA。
LB and LC are driven by switching. Switching is performed every 60 degrees in electrical angle, for example, first the current in coil LA is divided into coils LB and LC, and then at the next timing, the current in LC is reversed and sent to LA.

LCの電流をLBに流し、更に次のタイミングではLA
の電流を反転させてLCからLA、LBに分流すさせる
といった6種の通電モードを循環的に行う。ロータマグ
ネットMの回転位置はホール素子HA、HB、HCで検
出され、その検出出力に基づいてスイッチング回路2に
おいて出力段DA−DCの各素子を駆動するスイッチン
グ信号を論理的に形成している。
LC current flows to LB, and at the next timing, LA
Six types of energization modes are performed cyclically, such as reversing the current and branching it from LC to LA and LB. The rotational position of the rotor magnet M is detected by Hall elements HA, HB, and HC, and based on the detection output, a switching signal for driving each element of the output stages DA-DC is logically formed in the switching circuit 2.

第3図は片方向通電型(120°又は180°)の駆動
回路図で、各コイルLA−LCはスイッチ素子TA−T
Cで120°ごと又は180°ごとに順次通電される。
Figure 3 is a drive circuit diagram of a unidirectional current type (120° or 180°), where each coil LA-LC is connected to a switch element TA-T.
The current is applied sequentially every 120° or every 180° at C.

スイッチング信号は、第2図と同様にホール素子HA−
HCの出力に基づいてスイッチング回路2にて形成され
る。
The switching signal is sent to the Hall element HA- as in FIG.
It is formed by the switching circuit 2 based on the output of the HC.

、次に第4図は本発明を三相両方向180′通電形ブラ
シレスモークに適用した場合のロータマグネットMの着
磁パターン図で、第5図は動作波形図(電流、磁束、ト
ルク)である。各相コイルLA−LCに流す電流は、第
5図a ”−cに示すように、60°ごとに1つのコイ
ルに大きさlの所定方向の電流、他の2つのコイルに上
記電流とは逆向きの1/2の電流が流される。トルクは
第5図eに示すように同図fの点線で示す正弦波状の鎖
交磁束の中央の60°の区間で大きさ1となり、その両
側の60°の区間で大きさ1/2となる。
Next, Fig. 4 is a magnetization pattern diagram of the rotor magnet M when the present invention is applied to a three-phase bidirectional 180' current-carrying type brushless smoke, and Fig. 5 is an operating waveform diagram (current, magnetic flux, torque). . The current flowing through each phase coil LA-LC is as shown in Figure 5 a"-c, a current of magnitude l flows through one coil every 60 degrees, and the above-mentioned current flows through the other two coils. 1/2 current in the opposite direction is passed.As shown in Fig. 5e, the torque becomes 1 in the central 60° section of the sinusoidal interlinkage flux shown by the dotted line in Fig. The size becomes 1/2 in the 60° section.

各相の合成トルクは第5図dに示すようになり、トルク
リンプルを多く含んでいる。原理的には、のリップルが
生じる。
The combined torque of each phase is as shown in FIG. 5d, and includes many torque ripples. In principle, a ripple of .

そこで第4図の着磁パターン図に示すように、ロータマ
グネットMの主極IS、INの回転方向磁束中のほぼ中
央に主極の有効磁束を局部的に減じる補極3N、3Sを
設けている。これらの補極3N、3Sは主極IS、IN
とは逆極性であってよく、或いは主極と同極性の非飽和
弱着(H部分又は無着磁部分であってもよい。これらの
補i3N。
Therefore, as shown in the magnetization pattern diagram in Fig. 4, commutating poles 3N and 3S are provided approximately in the center of the magnetic flux in the rotational direction of the main poles IS and IN of the rotor magnet M to locally reduce the effective magnetic flux of the main pole. There is. These complementary poles 3N, 3S are the main poles IS, IN
The polarity may be opposite to that of the main pole, or it may be an unsaturated weak bond (H portion or non-magnetized portion) having the same polarity as the main pole.These supplements i3N.

3Sにより、第5図fの実線で示すように、正弦波状の
磁束分布のピーク位置(90°及び270°)が大きく
凹む。このため各相のトルク波形のピークが第5図りの
ように凹み、合成トルクのリップルは第5図gの如くに
大巾に低減する。実測ではトルクリップルは約4.4%
であった。
Due to 3S, the peak positions (90° and 270°) of the sinusoidal magnetic flux distribution are greatly depressed, as shown by the solid line in FIG. 5f. For this reason, the peaks of the torque waveforms of each phase are depressed as shown in Figure 5, and the ripple of the combined torque is greatly reduced as shown in Figure 5g. Actual measurement shows that the torque ripple is approximately 4.4%.
Met.

次に第6図は本発明を三相片方向120′通電形ブラシ
レスモークに適用した場合のロータマグネソ)Mの着磁
パターン図で、第7図は動作波形図である。第7図a 
−cに示すように、各相のコイルLA−LCに流す電流
は電気角で120°ずつ切り換えられ、第7図dのよう
なリップルを含むトルクが発生する。原理的には、 1 +0.5 のリップルが含まれる。
Next, FIG. 6 is a diagram of the magnetization pattern of the rotor magneto (M) when the present invention is applied to a three-phase, one-way, 120' current-carrying type brushless smoke, and FIG. 7 is an operating waveform diagram. Figure 7a
As shown in FIG. 7-c, the current flowing through the coils LA-LC of each phase is switched by 120 degrees in electrical angle, and a torque including ripples as shown in FIG. 7d is generated. In principle, a ripple of 1 +0.5 is included.

そこで、リップルを低減するこめに、第6図の着磁パタ
ーン図に示すように各主極Is、INの回転方向中央部
に逆極性の補極3N、  3sa’x設けている。この
補極は第4図と同様に主極IS。
Therefore, in order to reduce the ripple, as shown in the magnetization pattern diagram of FIG. 6, commutating poles 3N and 3sa'x of opposite polarity are provided at the center of each main pole Is and IN in the rotational direction. This interpolation is the main pole IS as in Fig. 4.

INの境界から90°及び270°の位置であり、これ
により主極Is、INの有効磁束がそのピーク位置で局
部的に減少するので、第7図eに示すようにトルクリッ
プルの山がつぶれて、はぼ平坦なトルクが得られる。実
測ではトルクリップルは14.3%に減少した。
The positions are 90° and 270° from the boundary of IN, and as a result, the effective magnetic flux of the main pole Is, IN is locally reduced at its peak position, so the peak of the torque ripple collapses as shown in Figure 7e. As a result, a fairly flat torque can be obtained. Actual measurements showed that the torque ripple decreased to 14.3%.

次に第8図は本発明を三相片方向180°通電形ブラシ
レスモークに適用した場合のロータマグネットMの着磁
パターン図で、第9図は動作波形図である。第9図a 
”−cに示すように、各相のコイルLA−LCに流す電
流は電気角で180°ずつ順次通電され、第9図dのよ
うなリップルを含むトルクが発生する。原理的に、 のリップルが含まれる。
Next, FIG. 8 is a magnetization pattern diagram of the rotor magnet M when the present invention is applied to a three-phase single-direction 180° current-carrying type brushless smoke, and FIG. 9 is an operating waveform diagram. Figure 9a
As shown in Fig. 9-c, the current flowing through the coils LA-LC of each phase is sequentially applied at 180° electrical angle, and a torque including ripples as shown in Fig. 9d is generated.In principle, the ripple of is included.

そこで、リップルを低減するこめに、第8図の着磁パタ
ーン図に示すように各主極Is、INの回転方向に沿っ
て30°、90°、150°、210°、270°及び
330°の位置に主極と逆極性の補極3S、3Nを主極
の有効磁束を局部的に減じるために設けている。これら
の補極3S。
Therefore, in order to reduce the ripple, as shown in the magnetization pattern diagram in Fig. 8, the main poles Is and IN are rotated at 30°, 90°, 150°, 210°, 270° and 330° along the rotational direction. Compensating poles 3S and 3N having opposite polarity to the main pole are provided at positions , in order to locally reduce the effective magnetic flux of the main pole. These complementary poles 3S.

3Nは第9図dのトルクリップルの各ピーク位置に対応
し、これらの位置でトルク発生に関与する磁束が減少す
るので、第9図eに示すようにトルクリップルの山がつ
ぶれてほぼ平坦なトルクが得られる。実測ではリップル
は約3.5%に減少した。
3N corresponds to each peak position of the torque ripple in Figure 9d, and since the magnetic flux involved in torque generation decreases at these positions, the peaks of the torque ripple collapse and become almost flat as shown in Figure 9e. Torque can be obtained. According to actual measurements, the ripple decreased to about 3.5%.

なお上述の第8図の実施例で、90°、270゜の位置
にのみ補極3S、3Nを設けても成る程度のトルクリッ
プル低減の効果が得られ、また30°、150°、21
0°、330°の位置にのみ補極を設けても効果が得ら
れる。また30°と150゜(21O°と330°)の
一方のみに設けてもよい。
In addition, in the embodiment shown in FIG. 8 described above, even if the commutating poles 3S and 3N are provided only at the positions of 90° and 270°, the effect of reducing torque ripple can be obtained to the extent that it can be achieved.
Even if the commutating poles are provided only at the 0° and 330° positions, the effect can be obtained. Further, it may be provided only at one of 30° and 150° (210° and 330°).

発明の効果 本発明によれば、ロータマグネットの着磁波形を部分的
に変更するという簡単な手段でトルクリップルを著しく
低減することができ、安価で高性能のブラシレスモーフ
が得られる。
Effects of the Invention According to the present invention, torque ripple can be significantly reduced by a simple means of partially changing the magnetization waveform of the rotor magnet, and an inexpensive and high-performance brushless morph can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第2図は本発明を適用することができる三相ブラシレス
モークの基本構成を示す路線図、第2図は第1図のモー
タを駆動する両方向通電形の駆動回路図、第3図は片方
向通電形の駆動回路図、第4図は本発明を三相両方向1
80°通電形ブラシレスモークに適用した場合の着磁パ
ターン図、第5図は第4図の場合の電流、磁束、トルク
の動作波形図、第6図は本発明を三相片方向120°通
電形ブラシレスモークに適用した場合の着はパターン図
、第7図は第6図の場合の第5図と同様な動作波形図、
第8図は本発明三相片方向18o。 通電形ブラシレスモーフに適用した場合の着磁パターン
図、第9図は第8図の場合の第5図と同様な動作波形図
である。 なお、図面に用いられた符号において、IS、IN−・
−・−主極 3S、3 N−−−−−−一補極 LA   LB   LC −・−−−−−−−−−・−・・−コイルM−・−・−
・−−−−−−−−−・−ロータマグネットHA   
HB   HC ・−・−・−・・・・・−# −)Lt素子である。
Figure 2 is a route diagram showing the basic configuration of a three-phase brushless smoke to which the present invention can be applied, Figure 2 is a drive circuit diagram of a bidirectional energization type that drives the motor in Figure 1, and Figure 3 is a unidirectional drive circuit diagram. The current-carrying type drive circuit diagram, Figure 4, shows the present invention as a three-phase bidirectional drive circuit.
A diagram of the magnetization pattern when applied to an 80° current-carrying type brushless smoke, Fig. 5 is a diagram of operating waveforms of current, magnetic flux, and torque in the case of Fig. 4, and Fig. 6 is a diagram of the magnetization pattern when applied to a three-phase unidirectional 120° current-carrying type. When applied to brushless smoke, the pattern diagram is shown, and Figure 7 is an operation waveform diagram similar to Figure 5 in the case of Figure 6.
FIG. 8 shows the three-phase one-way 18o of the present invention. FIG. 9, a magnetization pattern diagram when applied to an energized brushless morph, is an operation waveform diagram similar to FIG. 5 in the case of FIG. 8. In addition, in the symbols used in the drawings, IS, IN-・
---Main pole 3S, 3 N-----One counter pole LA LB LC ------------------- Coil M----
・---------・-Rotor magnet HA
HB HC ・-・-・-・・・・・-# −) Lt element.

Claims (1)

【特許請求の範囲】[Claims] ロータマグネットに形成された主極の境界から電気角で
ほぼ30°、90°、150°の少なくとも一箇所に主
極磁束を部分的に減じるための補極が設けられているこ
とを特徴とする三相ブラシレスモータ。
A commutating pole for partially reducing the main pole magnetic flux is provided at at least one location approximately 30°, 90°, or 150° electrically from the boundary of the main pole formed on the rotor magnet. Three-phase brushless motor.
JP20934984A 1984-10-05 1984-10-05 Three phase brushless motor Pending JPS6188755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20934984A JPS6188755A (en) 1984-10-05 1984-10-05 Three phase brushless motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20934984A JPS6188755A (en) 1984-10-05 1984-10-05 Three phase brushless motor

Publications (1)

Publication Number Publication Date
JPS6188755A true JPS6188755A (en) 1986-05-07

Family

ID=16571476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20934984A Pending JPS6188755A (en) 1984-10-05 1984-10-05 Three phase brushless motor

Country Status (1)

Country Link
JP (1) JPS6188755A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5004965A (en) * 1987-05-20 1991-04-02 Canon Kabushiki Kaisha Brushless motor with torque compensation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57206267A (en) * 1981-06-12 1982-12-17 Hitachi Ltd Dc motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57206267A (en) * 1981-06-12 1982-12-17 Hitachi Ltd Dc motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5004965A (en) * 1987-05-20 1991-04-02 Canon Kabushiki Kaisha Brushless motor with torque compensation

Similar Documents

Publication Publication Date Title
US7795830B2 (en) Electric motor
JPH06508975A (en) Polyphase switching reluctance motor
JPS6240085A (en) Brushless motor
JPS62244265A (en) Multiphase dc motor and controller for the same
JPS62201048A (en) Two-phase brushless motor
JPS6188755A (en) Three phase brushless motor
JPH027280B2 (en)
JP2620110B2 (en) Brushless motor
JPS6122553B2 (en)
JPH06315293A (en) Driving equipment for permanent magnet type motor
JPH0635657Y2 (en) Stepping motor
JPS6169362A (en) Brushless motor
JPS592556A (en) Dc motor
JPS631598Y2 (en)
JPS62236349A (en) Dc motor
JPS62285686A (en) Brushless motor
JPS6240087A (en) Drive circuit for brushless motor
JPH0870562A (en) Brushless motor
JPH11206101A (en) N-phase linear pulse motor
JPH02237453A (en) Dc brushless motor
JPH05252718A (en) Motor
JPH06319294A (en) Five-phase stepping motor
JPH088767B2 (en) Single-phase motor
JP2002199769A (en) Drive method for switched reluctance motor
JPH09261931A (en) Rotating-electric machine