JPS6188524A - Electron beam exposure apparatus - Google Patents

Electron beam exposure apparatus

Info

Publication number
JPS6188524A
JPS6188524A JP20949584A JP20949584A JPS6188524A JP S6188524 A JPS6188524 A JP S6188524A JP 20949584 A JP20949584 A JP 20949584A JP 20949584 A JP20949584 A JP 20949584A JP S6188524 A JPS6188524 A JP S6188524A
Authority
JP
Japan
Prior art keywords
signal
deflection
distortion
electron beam
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20949584A
Other languages
Japanese (ja)
Inventor
Tomohide Watanabe
渡辺 智英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20949584A priority Critical patent/JPS6188524A/en
Publication of JPS6188524A publication Critical patent/JPS6188524A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Abstract

PURPOSE:To realize drawing of fine pattern by measuring nonlinear distortion of deflection voltage waveform, calculating a distortion correcting value from this value, mixing a distortion correcting signal with a deflection signal having nonlinear distortion and forming a deflection signal having good linearity. CONSTITUTION:When a signal VS which attenuates a deflection signal VSout in synchronization with a synchronous signal Scnt rises linearly, the time until it becomes equal to the reference voltage Vref output from a computer 20 is measured. The distortion of waveform of deflection voltage VSout is measured 19 by measuring 23 a count time for each rise like a step from the minimum voltage VL to the maximum voltage VH. Based on this calculated value, the computer 20 reverses the polarity of reference value to generate a corrected value in proportional to a deviation. The computer 20 moreover stores 27 a corrected value using a digital value at the timing where the measuring time is divided into n-point, reads 28 such value through control with the synchronous signal Scnt and converts it into analog signal through the D/A converter in order to generate a corrected signal VSb. This signal is then mixed with a deflection signal VSa. Thereby, a deflection signal having good linearity can be obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は電子ビームを偏向走査する電子ヒーム走査方式
の電子ビーム露光装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an electron beam exposure apparatus of an electron beam scanning type that deflects and scans an electron beam.

(発明の技術的背景とその問題点) 従来の電子ビーム露光装置として、例えば特開[115
753938号公報や特開昭57−83033号公fl
lに記載されてらのがある。これらに記載された従来の
電子ビーム露光装置の電子ビーム走査方式の例を、第7
図に示す。
(Technical background of the invention and its problems) As a conventional electron beam exposure apparatus, for example, Japanese Patent Application Laid-open [115
Publication No. 753938 and Japanese Unexamined Patent Publication No. 57-83033 fl
There are some listed in l. Examples of the electron beam scanning method of the conventional electron beam exposure apparatus described in these are shown in the seventh section.
As shown in the figure.

第7図に示すようにこの電子ビーム露光2首では試料の
搭載されたテーブルをY方向に連続して一定速度で移動
させながら、−辺がaの大きさをもつ正方形の電子ビー
ムのスボッ1−1をX方向に偏向走査させている。テー
ブルが電子ビームのスポット1の大きさaと同じ長さ△
Y(Y方向に)だけ移動するごとに、X方向の電子ビー
ムの走査が繰り返され、sx  、sx  、・・・、
sx、の順に露光される。このとき、描画すべき図形デ
ータに従って電子ビームの0N10FFを制御2Ilツ
ると、目的の図形に対応するパターン2と3が露光され
ることになる。
As shown in Fig. 7, in this two-stage electron beam exposure, the table on which the sample is mounted is moved continuously in the Y direction at a constant speed, and the electron beam is applied to a square electron beam spot whose side is a. -1 is deflected and scanned in the X direction. The length of the table is the same as the size a of spot 1 of the electron beam △
Every time the electron beam moves by Y (in the Y direction), scanning of the electron beam in the X direction is repeated, sx , sx ,...
sx, and are exposed in this order. At this time, if the 0N10FF of the electron beam is controlled according to the figure data to be drawn, patterns 2 and 3 corresponding to the target figure will be exposed.

第8図ではテーブルがY方向にΔY移動するごとにX方
向の電子ビームの偏向を開始さゼるための同期信号H3
と、それにより電子ビームのスポット1をX方向に偏向
させるための鋸歯状電圧波形、すなわちX偏向波形ws
と、第7図に示した図形データを電子ビームの0N10
FFで制御するための信号(以下ブランキング信号とい
う)sxcl、5xc2.5xc3,5xc4゜5XC
5,5XC6との関係を示している。例えば、Sx3の
電子ビームの走査において、描画されるパターンの位置
とパターンの幅は、ブランキング信号scx  のよう
に1 .1 .13゜t4の11.’i間で制御される
In Fig. 8, a synchronization signal H3 is used to start deflecting the electron beam in the X direction every time the table moves by ΔY in the Y direction.
and thereby a sawtooth voltage waveform for deflecting the electron beam spot 1 in the X direction, that is, an X deflection waveform ws
Then, the figure data shown in Fig. 7 is 0N10 of the electron beam.
Signals for controlling with FF (hereinafter referred to as blanking signals) sxcl, 5xc2.5xc3, 5xc4°5XC
The relationship with 5,5XC6 is shown. For example, in scanning with an Sx3 electron beam, the position and width of the pattern to be drawn are 1. 1. 11 of 13°t4. 'i is controlled between.

一般に、一度の電子ビームのX方向の偏向走査によって
露光できる領域は、描画幅Wで数十μmから数百μmで
あり、その鍋内時間twは数百n秒から数n秒である。
Generally, the area that can be exposed by one deflection scan of the electron beam in the X direction has a drawing width W of several tens of μm to several hundred μm, and the in-pan time tw thereof is several hundred nanoseconds to several nanoseconds.

第9図に、従来の電子ビーム露光装置の偏向系を示す。FIG. 9 shows a deflection system of a conventional electron beam exposure apparatus.

従来の電子ビーム露光装置は、偏向信号発生器4や偏向
信号増幅器5の内部で偏向信号の歪みが発生ずると、そ
の補正の方法をもたず、電子ビームの露光にむら(斑)
を生じるという欠点を有していた。すなわち、従来の方
法では電子ビーム7を偏向さる鋸歯状の偏向電圧波形が
直線から若干歪んで偏向電極板6に印加されたときに、
電子ビーム7の走査軌跡8の速度が一定でなくなって速
度のむらを生じてしまい、この結果描画されたパターン
も歪んで精度の良い寸法が得られないという問題があっ
た。
Conventional electron beam exposure equipment does not have a method for correcting distortion of the deflection signal when it occurs inside the deflection signal generator 4 or the deflection signal amplifier 5, resulting in unevenness (spots) in the electron beam exposure.
It had the disadvantage of causing That is, in the conventional method, when the sawtooth deflection voltage waveform for deflecting the electron beam 7 is slightly distorted from a straight line and applied to the deflection electrode plate 6,
The speed of the scanning locus 8 of the electron beam 7 is no longer constant, resulting in uneven speed, and as a result, the drawn pattern is also distorted, making it impossible to obtain accurate dimensions.

これを第9図でさらに詳細に説明する。第9図で、VS
2は理想的な直線偏向電圧波形であり、実線で示されて
いる。VS2は非直線性歪みをもつ偏向電圧波形であり
、破線で示され−Cいる。理想的な直線偏向電圧波形V
S1で電子ビームを偏向走査させ、ブランキング信号S
 Cでその0N10FFを制御した場合に描画されるパ
ターンは左下りの斜線領域9で示される。これに対し歪
/υだ直線偏向電圧波形VS で電子ビームを偏向走査
させ、同一のブランキング信号scを用いて描画される
パターンは右下りの斜線領域1oのようになる。後者の
パターン1oは理想的な前当のパターン9と比べて、パ
ターン幅でb−cの誤差をもち、パターンの位置もdだ
けずれてしまう。このように、従来の電子ビーム露光装
動は、偏向信号に生じた歪みを補正することができない
という問題点を有していた。
This will be explained in more detail with reference to FIG. In Figure 9, VS
2 is an ideal linear deflection voltage waveform, which is shown as a solid line. VS2 is a deflection voltage waveform with non-linear distortion and is indicated by a dashed line. Ideal linear deflection voltage waveform V
At S1, the electron beam is deflected and scanned, and a blanking signal S
The pattern drawn when the 0N10FF is controlled by C is shown by a diagonally shaded area 9 on the lower left. On the other hand, the electron beam is deflected and scanned using the strain/υ linear deflection voltage waveform VS, and the pattern drawn using the same blanking signal sc becomes a diagonally shaded area 1o downward to the right. The latter pattern 1o has an error b−c in pattern width compared to the ideal previous pattern 9, and the pattern position is also shifted by d. As described above, the conventional electron beam exposure device has a problem in that it cannot correct the distortion caused in the deflection signal.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情を考慮してなされたもので、パターン
のfI′imを悲くする原因で・ある電子ビームの偏向
信号の歪みを補正して、描画されるパターンの粘度を向
上させる電子ビーム露光装置を提供することを目的とす
る。
The present invention has been made in consideration of the above circumstances, and is an electron beam that improves the viscosity of a drawn pattern by correcting the distortion of the deflection signal of the electron beam, which is the cause of deteriorating fI'im of the pattern. The purpose is to provide an exposure device.

〔発明の概要〕[Summary of the invention]

上記1]的を達成するため、本発明による電子ビーム露
光装置は偏向電圧波形の非直線性歪みの測定を行ない、
この値から歪みの補正値を計算し、さらにこの)■≧み
を打ち消すような歪補正信号を発生させて、これを前記
の非直線性歪みをもつ偏向信号と混合して、直線性の良
い偏向信号を生成することを特徴としている。
In order to achieve the above object 1), the electron beam exposure apparatus according to the present invention measures the nonlinear distortion of the deflection voltage waveform, and
A distortion correction value is calculated from this value, and a distortion correction signal that cancels out this It is characterized by generating a deflection signal.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を図示の一実施例に基づいて詳述する。第
1図に本発明の一実施例による電子ビーム露光に首を示
す。偏向の開始を制御する同期信号S  は−面信号発
生器11と、偏向歪測定器nt 19と、歪補正信号発生器17に入力される。偏向信号
発生器11は、同期信号S  に同期してnt 鋸歯状電圧波形VSaを発生し、混合器12に入力する
。歪補正信号発生器17は、同期信号5C1ltに同期
して同周期の■補正信S号V S 、、を発生し、同(
、狗に混合器12に入力づ゛る。混合器12て【よ、こ
れら2人カーa>’3 V S  & V S B ヲ
Ka 合シ、U含イz号vSoを生成するが、この信号
は次段の(−向IS号増幅器13で増幅されて、偏向電
極板14に印加される(−向電圧波形VS  を生成す
Ouす る。この部面電圧波形VS  は、偏向電極板ut 14の間を通る電子ビーム15を偏向するので、テーブ
ル(図示せず)上の試13118の表面は、走査軌跡1
6を描いて露光される。このとき、偏向電極板14に印
加される電圧波形VSo、。が入力される偏向歪測定器
19は、その歪みを測定して計13120に入力する。
Hereinafter, the present invention will be explained in detail based on an illustrated embodiment. FIG. 1 shows the head of an electron beam exposure device according to an embodiment of the present invention. A synchronizing signal S for controlling the start of deflection is input to the negative plane signal generator 11, the deflection distortion measuring device nt 19, and the distortion correction signal generator 17. The deflection signal generator 11 generates an nt sawtooth voltage waveform VSa in synchronization with the synchronization signal S 1 and inputs it to the mixer 12 . The distortion correction signal generator 17 generates a correction signal S signal VS of the same period in synchronization with the synchronization signal 5C1lt.
, the dog is input to the mixer 12. The mixer 12 generates the z signal vSo, which includes U, by combining these two cars a>'3 V S & V SB wo Ka, but this signal is passed to the next stage (- direction IS signal amplifier 13). This partial voltage waveform VS deflects the electron beam 15 passing between the deflection electrode plates ut 14. The surface of sample 13118 on the table (not shown) is scanned by scanning trajectory 1.
6 is drawn and exposed. At this time, the voltage waveform VSo applied to the deflection electrode plate 14. The deflection distortion measuring device 19 to which is input measures the distortion and inputs it to the total 13120.

この入力信号に基づいて計算■20は、歪補正信号発生
器17の出力VSbを制御するための信号を出力する。
Based on this input signal, the calculation section 20 outputs a signal for controlling the output VSb of the distortion correction signal generator 17.

次にこの電子ビーム露光装置の動作を第2図(a)、(
b)を用いて説明づる。第2図(a)は、歪補正信号を
出力しない場合を示している。
Next, the operation of this electron beam exposure apparatus is shown in FIGS.
Explain using b). FIG. 2(a) shows a case where no distortion correction signal is output.

鍋内倍量発生器11の出力信号v s alが、破線で
示した理想的な直線波形に対し非直線性歪みを有する。
The output signal v s al of the in-pot double amount generator 11 has non-linear distortion with respect to the ideal linear waveform shown by the broken line.

波形(実線で示す)を出力する。歪補正信号発生器17
の出力信号v s biが平坦であって歪み補正をしな
ければ、混合器12や偏向信号増幅器13で発生りる歪
みがさらに加わって、最終的な偏向f、−i号増幅器1
3の出力信号VS  は第2ut1 図に示1ノよ・うに歪んだものになる。本実施例ではこ
の歪んだ出力信号■5out1を偏向歪測定器19に入
力して非直線性歪みを測定し、さらにこの測定値を計C
1tEi 20を用いて予め定められた関係により歪補
正設定1直を計算し、この計算値を歪補正信号発生器1
7へ出力する。すると、歪補正信号発生器17は第2図
(b)に示すような信号処理系全体の歪みを打ち消す出
力信号v s b2を発生し、混合器12で信号v s
 a2と混合されると、信号vS  のように直線性の
よい偏向電圧波形を141J t2 ることができる。
Outputs a waveform (shown as a solid line). Distortion correction signal generator 17
If the output signal v s bi of
The output signal VS of 3 becomes distorted as shown in 1 in FIG. 2 ut1. In this embodiment, this distorted output signal 5out1 is input to the deflection distortion measuring device 19 to measure the nonlinear distortion, and this measured value is further calculated by the C
1tEi 20 is used to calculate the distortion correction setting 1 shift according to a predetermined relationship, and this calculated value is applied to the distortion correction signal generator 1.
Output to 7. Then, the distortion correction signal generator 17 generates an output signal v s b2 that cancels the distortion of the entire signal processing system as shown in FIG.
When mixed with a2, a deflection voltage waveform of 141J t2 with good linearity like the signal vS can be generated.

次にこの電子ビーム露光装置の主要部である偏向歪測定
器19について第3図、第4図、第5図を用いてさらに
詳しく説明する。
Next, the deflection strain measuring device 19, which is the main part of this electron beam exposure apparatus, will be explained in more detail with reference to FIGS. 3, 4, and 5.

第3図に偏向歪測定器1つを示す。発振器21は周期が
Δしのパルス波形Cc[Kを生成し、計数制御回路22
に入力Jる。このパルス波形C6,K(ま計数a、++
 t2++回路22でのS T A RT端子入力で通
過し、S T Op 端子入力で遮断されることにより
、カウントパルス波形C1となって計数回路23へ出力
される。一方、偏向信号vS  は減衰器ut 24で減衰されて信号VSとなり、コンパレータ26の
一方の入力端子C1nAに入力される。コンパレータ2
6のもう一方の入力端子C1nBには、基t$電圧発生
器25の出力V、8.が入力される。
Figure 3 shows one deflection strain measuring device. The oscillator 21 generates a pulse waveform Cc[K with a period of Δ, and the counting control circuit 22
Enter it. This pulse waveform C6, K (count a, ++
It passes through the S T A RT terminal input in the t2++ circuit 22 and is cut off by the S T Op terminal input, thereby becoming a count pulse waveform C1 and outputting it to the counting circuit 23 . On the other hand, the deflection signal vS is attenuated by an attenuator ut 24 to become a signal VS, which is input to one input terminal C1nA of the comparator 26. Comparator 2
The other input terminal C1nB of 6 is connected to the output V of the base t$ voltage generator 25, 8. is input.

また、この基準電圧発生器25は、計惇機20の出力す
る基準電圧設定値を入力としている。計数制御回路22
は、5TART端子に同明信号5cntを入力し、S 
T OP 端子にコンパレータ26の出力EQUを入力
することにより、パルス波形C6,にの計数の開9(3
と中止を制御しつつカラン1−パルスCを出力するので
、ム1数回路23でのカウントパルスC6の計数値を訓
”) l 20により読み取ることができる。この計数
(「1はパルス波形CCl−にの周期がΔtと一定であ
ることから計数時間を示し−(いる。従って、偏向歪測
定器19は偏向電圧VS  と、計算様20の基準電圧
設定値Ou[ 及びリレット信号と、同期信号S。ntを入力とし、時
間の81数を行なう機能を有している。
Further, this reference voltage generator 25 receives the reference voltage setting value outputted from the metering device 20 as input. Counting control circuit 22
inputs the Domei signal 5cnt to the 5TART terminal, and
By inputting the output EQU of the comparator 26 to the T OP terminal, the count opening 9 (3
Since the count value of the count pulse C6 in the M1 number circuit 23 can be read by the count value of the count pulse C6 in the M1 number circuit 23, it is possible to read the count value of the count pulse C6 in the M1 number circuit 23. Since the period of - is constant as Δt, the counting time is shown as - It has a function of inputting S.nt and calculating 81 times.

次に第4図を用いて、この時間計数によって歪補正信号
を求める方法を詳しく説明する。第4図で偏向歪測定器
19は、同期信号S  に同期しnt て偏向電圧波形VSo、tを減衰させた信号■Sが、最
低電位V より最高電位■。に向けて直線状に昇圧して
ゆくとき、任意に設定された基準電圧■  に達するま
での時間Tを測定する。基準電ef 圧VrefをV、から■1まで段階的に昇圧させる毎に
、計数時間下を測定すれば、偏向電圧波形の(1向歪み
の状態を知ることができる。いま、理想的な偏向信号は
、■ から■。まで直線的に昇圧し するので、直線pにより図中実線で示される。これにス
=1し、G面歪み補正をしていない偏向信号は、■ か
らVllまで破線で示された曲線mのようにン7圧り−
る。従って、後者の場合、時間Tのときに■、。rとな
ったとしても、前者の場合と比べて電位差ΔVが異なる
ことになる。この差電位ΔVは次式で与えられる。
Next, using FIG. 4, a method for obtaining the distortion correction signal by this time counting will be explained in detail. In FIG. 4, the deflection distortion measuring device 19 detects that the signal S, which is obtained by attenuating the deflection voltage waveform VSo, nt in synchronization with the synchronizing signal S, is at the highest potential V than the lowest potential V. When increasing the voltage linearly toward , measure the time T until reaching an arbitrarily set reference voltage . Each time the reference voltage Vref is increased stepwise from V to 1, the state of one-way distortion of the deflection voltage waveform can be determined by measuring the count time. Since the signal increases linearly from ■ to ■, it is shown as a solid line in the figure by the straight line p.S=1 and the deflection signal without G-plane distortion correction is shown as a broken line from ■ to Vll. As shown by the curve m shown in
Ru. Therefore, in the latter case, at time T, ■. Even if it becomes r, the potential difference ΔV will be different compared to the former case. This difference potential ΔV is given by the following equation.

Δv=V、。f−−−(V  −V、)−r s   
 II ここで、TSは実効電子ビーム走査時間であって、同期
信号S。ntの周期のうち正電位の区間を示し、この場
合は計測時間範囲を示している。結局、この差電位Δ■
が偏向信号の歪み分として検出される。
Δv=V,. f---(V-V,)-r s
II Here, TS is the effective electron beam scanning time and the synchronization signal S. It shows the section of positive potential in the period of nt, and in this case, it shows the measurement time range. After all, this potential difference Δ■
is detected as a distortion component of the deflection signal.

次に、この偏向歪測定器19の動作を具体的に説明する
。まず、計算は20より予め基準電圧発生器25に基準
電圧設定値を入力して、測定点の基準電圧vrefを指
定しておく。ここで計算殿20よりリセット信号RES
ETを出し、計数制御回路22と計数回路23をこのリ
セット信号RESETによりリセットする。次に、同期
信号S  により計数制御回路22はカウントパルスn
t Cを出力し、計数回路23に計数させる。時間ρ とともに計数回路23の計数値は増加するが、減Q器2
4の出力信呂VSも最低電位■1.から電圧して、つい
にvS≧V  となる。このとき、コef ンバレータ26の出力端子C88,から一致信号EQU
が出力され、計数制御回路22のカウントパルスCを停
止し、計数回路23の計数は終了す]) る。訓障機20はこの計数値を読むことによって、同+
1/J (3号S  が出されて偏向を開始してから減
nt Q器24の出力信号■Sが指定された基準電圧V、。[
に達するまでの時間Tを、知ることができる。つまり、 T−Δtx(計数値) で求めることができる。以上のように、基準電圧V  
を何度ちV とVllの間で指定し、その度ref  
        L に計数U、゛[間−「を測定することによって偏向電圧
■50111の非直線性歪みΔ■の、計ぶ1時間TS内
での分子すを知ることができる。この場合発振器21の
生成するパルスC65,の周期Δtを計測時間TSと比
べて十分小さくすることにより、基賭電圧■、。1に達
する時間Tを、充分な粘度で求めることができる。また
、基t!¥電圧■、。fを最低電位■、と最高電位Vl
lの間で多数設定することにより、非直線性歪みΔVの
分布の状態をより詳しく知ることが可能である。
Next, the operation of this deflection distortion measuring device 19 will be specifically explained. First, the calculation is performed by inputting a reference voltage setting value to the reference voltage generator 25 in advance from step 20, and specifying the reference voltage vref at the measurement point. Here, the reset signal RES is sent from the calculation hall 20.
ET, and the counting control circuit 22 and counting circuit 23 are reset by this reset signal RESET. Next, the counting control circuit 22 receives a count pulse n by the synchronization signal S.
It outputs tC and causes the counting circuit 23 to count. Although the count value of the counting circuit 23 increases with time ρ,
4's output Noburo VS also has the lowest potential■1. , and finally vS≧V. At this time, the coincidence signal EQU is output from the output terminal C88 of the comparator 26.
is output, the counting pulse C of the counting control circuit 22 is stopped, and the counting of the counting circuit 23 is completed]). By reading this count value, the troubleshooting machine 20 determines the same +
[
It is possible to know the time T until reaching . In other words, it can be determined by T-Δtx (count value). As mentioned above, the reference voltage V
How many times is specified between V and Vll, and each time ref
By measuring the count U between L and ``[-'', it is possible to know the numerator of the nonlinear distortion Δ■ of the deflection voltage 50111 within one hour TS.In this case, the generation of the oscillator 21 By making the period Δt of the pulse C65, sufficiently smaller than the measurement time TS, the time T for reaching the base voltage ■, .1 can be determined with sufficient viscosity.In addition, the base t!\voltage ■ , .f is the lowest potential ■, and the highest potential Vl
By setting a large number of values between l, it is possible to know the state of the distribution of the nonlinear distortion ΔV in more detail.

次に、歪補正信号発生器17について第5図を用いて説
明する。ここで、歪補正信号発生器17は、メモリー2
7とメモリー読出し制御回路28と、D/A変換器29
で構成されている。実際の電子ビームによる偏向の前に
、予め計算礪20は偏向歪測定器1つで測定した計測値
をもとに、歪補正信号器17に与える補正値を計算して
メモリー27に書き込んでおく。;1算方法としては、
例えば基準値からの極性を逆にし、基準(直からの偏差
に比例した値を補正値とする。第6図に示すように、メ
モリー27に書き込む補正1直として、計測時間TSを
n分割した時間軸上の点P、P1゜・・・、P におけ
るデジタル(直り、Dl、・・・。
Next, the distortion correction signal generator 17 will be explained using FIG. 5. Here, the distortion correction signal generator 17 is connected to the memory 2
7, memory read control circuit 28, and D/A converter 29
It consists of Before the actual deflection by the electron beam, the calculation unit 20 calculates in advance the correction value to be given to the distortion correction signal unit 17 based on the measurement value measured by one deflection distortion measuring device, and writes it in the memory 27. . ;As a calculation method,
For example, the polarity from the reference value is reversed, and a value proportional to the deviation from the reference value is used as the correction value.As shown in FIG. Digital (correction, Dl,...) at points P, P1゜..., P on the time axis.

n                    OD、を
使う。ここで、 P  i  =  −XTS  (i=o、1.−、n
)である。
n OD, is used. Here, P i = -XTS (i=o, 1.-, n
).

時間計測は基準電圧■refに対して実行されたノテ、
時間軸上(7)点P i (i =o、 1 、 =・
、 n )でのデジタル値[)i (i=o、1.・・
・、n)は基準電圧■、。、を充分細く、多数設定する
ことにより決めることができる。
Note that the time measurement was performed with respect to the reference voltage ref,
Point (7) on the time axis P i (i = o, 1, =・
, n) at digital value [)i (i=o, 1...
・, n) is the reference voltage ■,. , can be determined by setting sufficiently thin and large numbers of .

以上のように、本実施例によれば)!電圧vrefを与
えて時間計測をし、偏向信号の非直線性歪みを測定した
が、逆に初めから時間点P1(i=o、1.・・・、n
)での偏向信号の電圧(真を、A/D変換器を用いて計
測することにより、直接補正用デジタル値Di (i=
o、1.・・・、n)を生成゛することも可能である。
As described above, according to this embodiment)! Although time was measured by applying voltage vref and nonlinear distortion of the deflection signal was measured, conversely, time point P1 (i=o, 1..., n
) by measuring the voltage (true) of the deflection signal using an A/D converter, a digital value Di for direct correction (i=
o, 1. ..., n).

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明によれば上記のように、工み補正の
は能を追加することにより非直線性歪みの少ない高精度
の偏向が得られ、パターンの描画都度が向上さ「ること
かできる。
As described above, according to the present invention, by adding the function of roughness correction, highly accurate deflection with less nonlinear distortion can be obtained, and the pattern drawing rate can be improved. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における電子ビーム露光装置
のブロック図、 第2図(a)(b)は同電子ビーム露光装置の各入出力
信号波形を示すタイムチャート、第3図は同電子ビーム
露光装置における偏向歪測定器1つのブロック図、 第4図は同偏向歪測定器19の動作を示すタイムチャー
ト、 第5図は同電子ビーム露光装置の歪補正信号発生器1つ
のブロック図、 第6図は同歪補正信号発生器19の動作を説明するタイ
ムチャート、 第7図はは従来電子ビーム露光装置の電子ビーム走査方
式を示す図、 第8図は第1図の電子ビーム走査にJ3ける同期信号H
8,Xgl向波形W S、ブランキング信号5xc1,
5xc2.・・・、5XC6を示すタイムチャート、 第9図は従来の電子ビーム露光装置のブロック図、 第10図は同電子ビーム露光装置の偏向電圧波形描画パ
ターンの関係を示す図である。 1・・・電子ビームのスポット、2.3・・・描画され
る図形に対応する露光パターン、4・・・偏向信号発生
器、5・・・偏向信号増幅器、6・・・偏向電極板、7
・・・電子ビーム、8・・・電子ビームの走査軌跡、9
・・・歪みのない偏向電圧波形で描画されたパターン、
10・・・歪みのある偏向電圧波形で描画されたパター
ン、11・・・偏向信号発生器、12・・・混合器、1
3・・・偏向信号増幅器、14・・・偏向電極板、15
・・・電子ビーム、16・・・電子ビームの走査軌跡、
17・・・歪補正信号発生器、18・・・試料、19・
・・偏向歪測定器、20・・・計算様、21・・・発撮
器、22・・・計数制御回路、23・・・計数回路、2
4・・・減衰器、25・・・基準電圧発生器、26・・
・コンパレータ、27・・・メモリー、28・・・メモ
リー読出制御回路、29・・・D/A変換器。 第7図 第9図 第10図 −吟間
FIG. 1 is a block diagram of an electron beam exposure apparatus according to an embodiment of the present invention, FIGS. 2(a) and 2(b) are time charts showing each input/output signal waveform of the electron beam exposure apparatus, and FIG. 3 is the same. A block diagram of one deflection distortion measuring device in the electron beam exposure apparatus. FIG. 4 is a time chart showing the operation of the deflection distortion measuring device 19. FIG. 5 is a block diagram of one distortion correction signal generator in the electron beam exposure apparatus. , FIG. 6 is a time chart explaining the operation of the distortion correction signal generator 19, FIG. 7 is a diagram showing the electron beam scanning method of a conventional electron beam exposure apparatus, and FIG. 8 is a diagram showing the electron beam scanning method of the conventional electron beam exposure apparatus. Sync signal H at J3
8, Xgl direction waveform W S, blanking signal 5xc1,
5xc2. . . , a time chart showing 5XC6, FIG. 9 is a block diagram of a conventional electron beam exposure apparatus, and FIG. 10 is a diagram showing the relationship between deflection voltage waveform drawing patterns of the electron beam exposure apparatus. DESCRIPTION OF SYMBOLS 1... Spot of electron beam, 2.3... Exposure pattern corresponding to the figure to be drawn, 4... Deflection signal generator, 5... Deflection signal amplifier, 6... Deflection electrode plate, 7
...electron beam, 8...electron beam scanning trajectory, 9
...Pattern drawn with distortion-free deflection voltage waveform,
DESCRIPTION OF SYMBOLS 10... Pattern drawn with distorted deflection voltage waveform, 11... Deflection signal generator, 12... Mixer, 1
3... Deflection signal amplifier, 14... Deflection electrode plate, 15
...electron beam, 16...electron beam scanning trajectory,
17... Distortion correction signal generator, 18... Sample, 19.
... Deflection distortion measuring device, 20... Calculation, 21... Shooting device, 22... Counting control circuit, 23... Counting circuit, 2
4... Attenuator, 25... Reference voltage generator, 26...
- Comparator, 27...Memory, 28...Memory read control circuit, 29...D/A converter. Figure 7 Figure 9 Figure 10 - Ginma

Claims (1)

【特許請求の範囲】 1、電子ビームを偏向走査させて、試料に微細パターン
を描画する電子ビーム露光装置において、前記電子ビー
ムを偏向走査する偏向走査信号の偏向歪を測定する偏向
歪測定手段と、この偏向歪測定手段に基づいて、この偏
向歪を補正する歪補正信号を発生する歪補正信号発生手
段と、この歪補正信号発生手段から発生する前記歪補正
信号により前記偏向走査信号を補正する歪補正手段とを
備えたことを特徴とする電子ビーム露光装置。 2、特許請求の範囲第1項記載の装置において、前記偏
向歪測定手段は、基準偏向走査信号を発生する基準信号
発生手段と、この基準信号発生手段から発生された基準
偏向走査信号と前記偏向走査信号とを比較し、これら信
号の各時点における差分を演算する演算手段とを有し、
この差分から偏向歪を測定することを特徴とする電子ビ
ーム露光装置。
[Scope of Claims] 1. In an electron beam exposure apparatus that draws a fine pattern on a sample by deflection scanning an electron beam, a deflection distortion measuring means for measuring deflection distortion of a deflection scanning signal for deflection scanning the electron beam; , distortion correction signal generating means for generating a distortion correction signal for correcting the deflection distortion based on the deflection distortion measuring means, and correcting the deflection scanning signal with the distortion correction signal generated from the distortion correction signal generation means. An electron beam exposure apparatus characterized by comprising a distortion correction means. 2. In the device according to claim 1, the deflection distortion measuring means includes a reference signal generating means for generating a reference deflection scanning signal, and a reference deflection scanning signal generated from the reference signal generating means and the deflection distortion measuring means. and a calculation means for comparing the scanning signals and calculating the difference at each point in time of these signals,
An electron beam exposure apparatus characterized by measuring deflection distortion from this difference.
JP20949584A 1984-10-05 1984-10-05 Electron beam exposure apparatus Pending JPS6188524A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20949584A JPS6188524A (en) 1984-10-05 1984-10-05 Electron beam exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20949584A JPS6188524A (en) 1984-10-05 1984-10-05 Electron beam exposure apparatus

Publications (1)

Publication Number Publication Date
JPS6188524A true JPS6188524A (en) 1986-05-06

Family

ID=16573752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20949584A Pending JPS6188524A (en) 1984-10-05 1984-10-05 Electron beam exposure apparatus

Country Status (1)

Country Link
JP (1) JPS6188524A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5757015A (en) * 1995-06-08 1998-05-26 Fujitsu Limited Charged-particle-beam exposure device and charged-particle-beam exposure method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5757015A (en) * 1995-06-08 1998-05-26 Fujitsu Limited Charged-particle-beam exposure device and charged-particle-beam exposure method
US5969365A (en) * 1995-06-08 1999-10-19 Fujitsu Limited Charged-particle-beam exposure device and charged-particle-beam exposure method
US6242751B1 (en) 1995-06-08 2001-06-05 Fujitsu Limited Charged-particle-beam exposure device and charged-particle-beam exposure method
US6420700B2 (en) 1995-06-08 2002-07-16 Fujitsu Limited Charged-particle-beam exposure device and charged-particle-beam exposure method

Similar Documents

Publication Publication Date Title
US3343030A (en) Bar graph oscilloscope display
EP0721202A2 (en) Method and structure for electronically measuring beam parameters
US4219719A (en) Method and apparatus for automatically positioning a workpiece relative to a scanning field or mask
US4121292A (en) Electro-optical gaging system having dual cameras on a scanner
US2563395A (en) Calibration
US3968404A (en) Arrangement for controlling the vertical deflection of a flying spot tube
GB1000560A (en) Electron probe system
EP0250682A2 (en) Pulse measurement circuit
CA1241469A (en) Digital image correction circuit for cathode ray tube displays
JPS6188524A (en) Electron beam exposure apparatus
US4121294A (en) Electro-optical gaging system
JPS5922183B2 (en) Chiensou Wingata Oscilloscope
JPS6010720A (en) Electron beam controller
GB1373601A (en) Spot positioning control for display tubes
US3924156A (en) Method and system for correcting an aberration of a beam of charged particles
US4099244A (en) Recalibration system for electro-optical gage
US4121291A (en) Linearity correction system for electro-optical gage
GB1597203A (en) Position setting systems using a scanning beam
US6941006B1 (en) Method and system for calibrating the scan amplitude of an electron beam lithography instrument
US3889155A (en) Apparatus for calibrating an image dissector tube
US4484203A (en) Method and system for registration in CRT typesetting
JP2720651B2 (en) Ion implanter
SU798792A1 (en) Device for displaying information on crt screen
JPH048938B2 (en)
JPS5824726B2 (en) Scanning length measuring device