JPS6188510A - Manufacture of ultra small size spiral element - Google Patents

Manufacture of ultra small size spiral element

Info

Publication number
JPS6188510A
JPS6188510A JP20952084A JP20952084A JPS6188510A JP S6188510 A JPS6188510 A JP S6188510A JP 20952084 A JP20952084 A JP 20952084A JP 20952084 A JP20952084 A JP 20952084A JP S6188510 A JPS6188510 A JP S6188510A
Authority
JP
Japan
Prior art keywords
substrate
laser beam
ultra small
spiral element
focusing point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20952084A
Other languages
Japanese (ja)
Inventor
Tadayoshi Otani
男谷 忠義
Kazuyuki Toki
土岐 和之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP20952084A priority Critical patent/JPS6188510A/en
Publication of JPS6188510A publication Critical patent/JPS6188510A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/041Printed circuit coils
    • H01F41/042Printed circuit coils by thin film techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Lasers (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To obtain an ultra small size element by focusing a laser beam on a substrate in a reactive gas ambient and rotating or linearly moving the substrate or focusing point of laser beam. CONSTITUTION:A chamber 1 is exhausted 2, a reaction gas 4 is supplied thereto in order obtain gas ambient and a laser beam is focused in size of several muto a substrate 9 through a lens 11. Position of substrate can be controlled by driving 10 a shaft 8 which can rotate and move straight. The reaction gas generates photo-chemical reaction or thermally decomposes at the laser beam focusing point, a metal component geraminates from the focusing point and grows like a line along the irradiating direction of laser beam. When the substrate 9 moves downward while it is rotated at an adequate speed on the horizontal plane, an ultra small spiral element in the diameter of several hundreds mucan be obtained.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、レーザ光を使用した微小スパイラル状素子製
作方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Industrial Application Field" The present invention relates to a method of manufacturing a micro spiral element using laser light.

「従来の技術」 コイルやスプリング等スパイラル状の素子を作る時、巻
ぎ枠〈ボビン)に線を巻く方法が一般的である。そして
、小さいスパイラル系子を作るHllには、小型の巻き
枠を使用している。
``Prior Art'' When making spiral elements such as coils and springs, the common method is to wind wire around a winding frame (bobbin). A small winding frame is used for the Hll that creates the small spiral system.

「発明が解決しようとする問題点」 しかし、極めて微小なインダクタンスを右する、 物体
や、超小型装置等に使用する微小バネ等を想定して数1
00ミクロン以下の径のいわゆる微小スパイラル素子を
作ろうとした時、該微小スパイラル素〒の径に略対応し
た大きさの微小な巻き伜を使用する必要があるが、その
様な微小な巻き枠を製作してスパイラル素子を作る事は
極めて困テ銭である。
``Problem to be solved by the invention'' However, assuming an object with an extremely small inductance or a small spring used in an ultra-small device, etc., the equation 1.
When trying to make a so-called micro spiral element with a diameter of 0.00 microns or less, it is necessary to use a micro winding whose size approximately corresponds to the diameter of the micro spiral element. It is extremely difficult to manufacture a spiral element.

本発明はこの様な問題を解決することを目的としたもの
である。
The present invention aims to solve such problems.

r問題を解決する為の手段」 本発明の微小スパイラル状素子製作方法は、反応性ガス
雰囲気中で、基板上にレーザ光を集束し、該基板又はシ
ー1F光の集束点を回転及び直線移動させる様にしたし
のである。
The method for manufacturing a micro spiral element of the present invention focuses a laser beam on a substrate in a reactive gas atmosphere, and rotates and linearly moves the substrate or the focal point of the sea 1F light. I decided to let him do it.

「実施例」 第1図は本発明を実施する為の微小スパイラル素子製作
装置の一例である。
"Embodiment" FIG. 1 is an example of a micro spiral element manufacturing apparatus for carrying out the present invention.

図中1はチトンバーで、排気装置2に繋がった排気1]
3、ガス供給装置4に繋がったガス供給口5、チ1シン
バー外に配置されたレーザ光源6からのレーザ光をチャ
ンバー1内に通過させる為のガラス窓7を有する。該チ
ャンバー内には、回転及び直線移動@8に接続された基
板9が配置されている。該基板としては石英ガラスか金
属等が適当である。該回転及び直線移動軸8はヂ1!ン
バー外の駆動機構10により、垂直方向、水平方向、及
び軸Oの回りに回転可能に成されている。11は前記レ
ーザ光源6からのレーザ光を前記基板9上に集束させる
為の光学的レンズである。
1 in the figure is a chiton bar, exhaust 1 connected to exhaust device 2]
3. The chamber 1 has a gas supply port 5 connected to the gas supply device 4, and a glass window 7 for allowing laser light from a laser light source 6 disposed outside the chamber 1 to pass into the chamber 1. A substrate 9 is placed within the chamber, which is connected to rotation and linear movement @8. Suitable materials for the substrate include quartz glass and metal. The rotational and linear movement axis 8 is 1! A drive mechanism 10 outside the member allows rotation in the vertical direction, horizontal direction, and around the axis O. Reference numeral 11 denotes an optical lens for focusing the laser light from the laser light source 6 onto the substrate 9.

先ず、排気装置2によりチャンバー内を高真空状態に排
気する。次に、ガス供給装置4から反応性ガス(例、ト
リメチルアルミの如きアルキル金属)をチャンバー内に
供給し、該チャンバー内をガス雰囲気にする。この状態
において、レーザ光源6を作動させ、該光源からのレー
ザ光を光学的レンズ11により基板9上に数ミクロンに
集束させる。この時、基板9の位置は、駆動機構10に
より回転及び直線移動軸8を通じてコントロールされる
。該基板上へのレーザ光の集束により、該集束個所にお
いて、レーザ光と反応性ガスが光化学反応を起こしたり
、該反応性ガスがレーザ光により熱分解することにより
、基板のレーザ集束点から金属の成分が発芽する。この
発芽した金属成分は該1ノーIJ’光の照射方向に沿っ
て線状に成長づる。従って、この時、前記基板9を水平
面上で適宜な速度で回転させつつ、下方に直線的に移動
させると、第2図に示す様に、スパイラル状物体が生成
される1、但し、該基板を速く回転させ過ぎたり、速く
移動させ過ぎると、スパイラルの先端からの成長が踏切
れてしまうので、この点を考處して該基板の回転及び直
線移動の速さを駆動偲構10により制御する必要がある
。この場合、生成されるスパイラル状物体のピッチは前
記基板の直線的移動速度によりコントロール出来、速度
が速い程ピッチは大きくなり、遅い程小さくなる。又、
このスパイラル状物体の径は、レーザ光線の集束点が基
板9上の回転半径の小さい個所へ近付く程小さくなり、
遠のく程大ぎくなる。従って例えば、数100ミクロン
の直径のスパイラル状物体を作成する場合には、基板上
の回転半径50ミクロン前後の点がレーザ光の集束点に
位置するように前記基板を移動させる。更に、スパイラ
ル状物体自身の線の太さは、レーザ光の強度、集束点へ
の照射時間及び集束具合による。即ち、反応性ガスから
金属の成分が発芽し、成長するに必要なレーザ光の最低
強度があり、この強度を越すと略強度に比例した成長が
あり、該成長に従った太さのスパイラル状物体が生成さ
れる。又、該レーザ光の集束点への照射時間に略比例し
た太さになる。更に、該レーザ光の集束の径に略比例し
た太さになる。
First, the inside of the chamber is evacuated to a high vacuum state by the exhaust device 2. Next, a reactive gas (for example, an alkyl metal such as trimethylaluminum) is supplied into the chamber from the gas supply device 4 to create a gas atmosphere inside the chamber. In this state, the laser light source 6 is activated, and the laser light from the light source is focused onto the substrate 9 by an optical lens 11 to a size of several microns. At this time, the position of the substrate 9 is controlled by the drive mechanism 10 through the rotation and linear movement shafts 8. When the laser beam is focused on the substrate, the laser beam and the reactive gas cause a photochemical reaction at the focused point, and the reactive gas is thermally decomposed by the laser beam, so that the metal is removed from the laser focused point on the substrate. The ingredients germinate. This germinated metal component grows linearly along the irradiation direction of the 1NO IJ' light. Therefore, at this time, when the substrate 9 is rotated at an appropriate speed on a horizontal plane and moved linearly downward, a spiral-shaped object is generated as shown in FIG. If the substrate is rotated too fast or moved too fast, the growth from the tip of the spiral will be interrupted.With this in mind, the speed of rotation and linear movement of the substrate is controlled by the drive mechanism 10. There is a need to. In this case, the pitch of the spiral-shaped object produced can be controlled by the linear movement speed of the substrate; the faster the speed, the larger the pitch, and the slower the speed, the smaller the pitch. or,
The diameter of this spiral object becomes smaller as the focal point of the laser beam approaches a point on the substrate 9 with a smaller radius of rotation.
The farther away it gets, the bigger it gets. Therefore, for example, when creating a spiral-shaped object with a diameter of several hundred microns, the substrate is moved so that a point on the substrate with a radius of rotation of about 50 microns is located at the focal point of the laser beam. Furthermore, the thickness of the line of the spiral object itself depends on the intensity of the laser beam, the irradiation time to the focal point, and the degree of convergence. In other words, there is a minimum intensity of laser light necessary for the metal component to germinate and grow from the reactive gas, and when this intensity is exceeded, growth occurs approximately in proportion to the intensity, and a spiral shape with a thickness corresponding to the growth occurs. An object is generated. Further, the thickness becomes approximately proportional to the irradiation time of the laser beam to the focal point. Furthermore, the thickness is approximately proportional to the diameter of the convergence of the laser beam.

「発明の効果」 本発明によれば、故100ミクロン以下の径のいわゆる
微小スパイラル素子を作成することが出来る。又、反応
ガスの種類を変えることにより種々の性質のスパイラル
素子を作成することが出来る。
"Effects of the Invention" According to the present invention, a so-called micro spiral element having a diameter of 100 microns or less can be produced. Furthermore, by changing the type of reaction gas, spiral elements with various properties can be created.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施する為の装置の一例を示したもの
、第2図はその動作の説明を補足りる為のものである。 1:チレンバー 2:排気装置 3:排気口 4:ガス供給装置 5:ガス供給口 6ニレーザ光源 7:ガラス窓 8:回転及び直線移動軸 9:基板 10:駆l1機構 11:光学的レンズ
FIG. 1 shows an example of an apparatus for implementing the present invention, and FIG. 2 is for supplementary explanation of its operation. 1: Chillen bar 2: Exhaust device 3: Exhaust port 4: Gas supply device 5: Gas supply port 6 Laser light source 7: Glass window 8: Rotation and linear movement axis 9: Substrate 10: Drive l1 mechanism 11: Optical lens

Claims (1)

【特許請求の範囲】[Claims]  反応性ガス雰囲気中で、基板上にレーザ光を集束し、
該基板又はレーザ光の集束点を回転及び直線移動させる
様にした微小スパイラル状素子製作方法。
Focusing laser light onto the substrate in a reactive gas atmosphere,
A method of manufacturing a micro spiral element in which the substrate or the focal point of the laser beam is rotated and linearly moved.
JP20952084A 1984-10-05 1984-10-05 Manufacture of ultra small size spiral element Pending JPS6188510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20952084A JPS6188510A (en) 1984-10-05 1984-10-05 Manufacture of ultra small size spiral element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20952084A JPS6188510A (en) 1984-10-05 1984-10-05 Manufacture of ultra small size spiral element

Publications (1)

Publication Number Publication Date
JPS6188510A true JPS6188510A (en) 1986-05-06

Family

ID=16574149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20952084A Pending JPS6188510A (en) 1984-10-05 1984-10-05 Manufacture of ultra small size spiral element

Country Status (1)

Country Link
JP (1) JPS6188510A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63234510A (en) * 1987-03-24 1988-09-29 Murata Mfg Co Ltd Manufacture of inductor
EP0376057A2 (en) * 1988-12-28 1990-07-04 General Electric Company Electromagnetic transducers and method of making them
US5167983A (en) * 1988-12-28 1992-12-01 General Electric Company Method of forming a conductor pattern on the inside of a hollow tube by reacting a gas or fluid therein with actinic radiation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63234510A (en) * 1987-03-24 1988-09-29 Murata Mfg Co Ltd Manufacture of inductor
EP0376057A2 (en) * 1988-12-28 1990-07-04 General Electric Company Electromagnetic transducers and method of making them
US5084311A (en) * 1988-12-28 1992-01-28 General Electric Company Electromagnetic transducers and method of making them
US5167983A (en) * 1988-12-28 1992-12-01 General Electric Company Method of forming a conductor pattern on the inside of a hollow tube by reacting a gas or fluid therein with actinic radiation

Similar Documents

Publication Publication Date Title
US4801352A (en) Flowing gas seal enclosure for processing workpiece surface with controlled gas environment and intense laser irradiation
JP6869900B2 (en) Beam director
CN206241474U (en) A kind of laser processing device
MXPA02002331A (en) Systems and methods using sequential lateral solidification for producing single or polycrystalline silicon thin films at low temperatures.
JP3343178B2 (en) Fine processing method and fine processing device
CN108115289A (en) A kind of laser processing device and laser processing
CN111660016A (en) Scanning galvanometer high-precision laser cutting machine
JPS6188510A (en) Manufacture of ultra small size spiral element
JPH08206866A (en) Energy beam processing method and energy beam processing device
SU1798090A1 (en) Method of and device for laser treatment of dielectric materials
JPS6380987A (en) Laser beam machine
JPS6285433A (en) Polishing apparatus
TW202221178A (en) Single crystal fiber manufacturing device and method for manufacturing single crystal fiber
JP2705132B2 (en) Wiring forming method and apparatus
JPS595621A (en) Forming method for thin-film
JPS6317240A (en) Coating method for optical fiber and apparatus therefor
JPS63187542A (en) Ion micro-beam device
JP2736266B2 (en) Method and apparatus for manufacturing single crystal optical fiber
JP2003080389A (en) Device and method for laser beam machining and method for manufacturing product having laser beam machined work
JP2532591B2 (en) Single crystal optical fiber manufacturing equipment
JPH0230392A (en) Laser beam machine
JPH06186435A (en) Method for removing coating material of optical fiber
JPS6188185A (en) Preparation of microminiature bimetal
JPH01208455A (en) Laser vacuum vapor deposition apparatus
JPH0375203A (en) Production of ceramic film by laser