JPS6188150A - Instrument for measuring concentration of component to be oxidized in water - Google Patents

Instrument for measuring concentration of component to be oxidized in water

Info

Publication number
JPS6188150A
JPS6188150A JP21022084A JP21022084A JPS6188150A JP S6188150 A JPS6188150 A JP S6188150A JP 21022084 A JP21022084 A JP 21022084A JP 21022084 A JP21022084 A JP 21022084A JP S6188150 A JPS6188150 A JP S6188150A
Authority
JP
Japan
Prior art keywords
gas
combustion furnace
sample water
gas analyzer
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21022084A
Other languages
Japanese (ja)
Inventor
Yasushi Zaitsu
財津 靖史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP21022084A priority Critical patent/JPS6188150A/en
Publication of JPS6188150A publication Critical patent/JPS6188150A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/12Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using combustion

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PURPOSE:To measure the concn. of an extremely slight amt. of the component to be oxidized in water with a low-sensitivity gas analyzer by accumulating the intended component in gas in an annular flow passage to increase the concn. of said component. CONSTITUTION:The sample water introduced into a combustion furnace 3 by a sample water introducing mechanism 4 is burned. The gas flowing out of the combustion furnace passes through the 1st pipeline 21 and is introduced into the gas analyzer 10, by which the concn. of the intended component is measured. The gas flowing out of the gas analyzer passes through the 2nd pipeline 22 and is introduced into the combustion furnace. A gas circulating mechanism 24 circulates the gas to the annular flow passage 23 consisting of the 1st pipeline, the gas analyzer and the 2nd pipeline. A calculator 25 calculates the difference between the output signal of the gas analyzer when the sample water is not introduced into the combustion furnace and the output signal of the gas analyzer when the sample water is introduced into the combustion furnace. Then the intended component in the gas flowing into the gas analyzer is accumulated eventually in the annular flow passage at every introduction of the sample water into the combustion furnace.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は水中の有機性あるいは無機性の炭素、窒素のよ
うな被酸化性成分をキャリアガスと共に燃焼させてガス
状酸化物とし、燃焼排ガス中の前記酸化物濃度をガス分
析計により測定して水中の前記被酸化性成分機AIを測
定する装置、特に半導体製造装置に使用する水中の炭素
成分のような、極めて低濃度の水中被酸化性成分の濃度
を比較的低感度のガス分析計を用いて測定することので
きる装置構成に関する。
Detailed description of the invention [Technical field to which the invention pertains] The present invention burns oxidizable components such as organic or inorganic carbon and nitrogen in water together with a carrier gas to form gaseous oxides, and produces combustion exhaust gas. A device for measuring the oxidizable component AI in water by measuring the concentration of the oxides in the water using a gas analyzer, especially for extremely low concentrations of oxidizable components in water, such as carbon components in water used in semiconductor manufacturing equipment. The present invention relates to an apparatus configuration capable of measuring the concentration of a chemical component using a relatively low-sensitivity gas analyzer.

〔従来技術とその問題点〕[Prior art and its problems]

第4図は水中の有機性および無機性の炭素の全量(TC
)濃度を測定するようにした従来の水中炭素濃度測定装
置の一構成例で、図において2は試料水1aが入れられ
た試料水槽1から該試料水1aを燃焼炉3の第1室3a
に導くようにした試料ポンプ、4は試料水槽1と試料ポ
ンプ2とからなる試料水導入機構である。燃焼炉3は隔
壁3cによって第1室3aと第2室3bとに分離され、
いずれの室も図示していない加熱装置および温度調節器
5によりほぼ900℃の温度に保持されている。燃焼炉
第1室3aに導入されろ試料水1aは、該室の流入点近
傍において、二酸化炭素(CO2)を言筐ずかつ酸素を
含んだキャリアガス6が注、入されて該ガス6と試料1
aとが混合され、このようにして形成された気液混合体
に有機性あるいは無機性の炭素が含まれていると、これ
らの炭素は燃焼炉第1室3a内で該呈に用意された触媒
の作用により燃焼してキャリアガス6中の酸素と結合し
てCO2ガスになる。したがって燃焼炉第1室3aから
はこのようにして生成したCO,ガスと試料水lの蒸気
とキャリアガス6との混合ガスが排出されるが、7はこ
の排出ガスを冷却して該ガス中の水分を除(ようにする
凝、縮器、8は凝縮器7に生成した水ン受は取ると共に
ガス流路の水封乞図るドレシポットである。凝縮器7か
ら流出したガスはカス分析計10に導かれ、ここでCO
2一度が測定される。11.12はガス分析計10のガ
ス流入管路に訛けたダストフィルタ、ガス流量監視用流
量計である。13は空気等の酸素を含む外気14を燃焼
炉3の第2室3bK導入するようにしたキャリアガスポ
ンプで、ポンプ13によって第2室3bに外気14が導
入されると、この外気中に有機性または無機性の炭素が
含まれている場合、これらの炭素は900℃近傍の温度
と第2室3bに用意された触媒との作用によってCO,
ガスンこ変換される。15は第2室3bから流出するガ
ス中の前記のようにして生成されたCO2と、外気14
中:こ当初から含まれていたCO2と、を共に吸収して
キャリアガス6を生成、流出させるようにしたC02吸
収器で、16は上述の各部からなる水中炭素濃度測定装
置である。
Figure 4 shows the total amount of organic and inorganic carbon in water (TC
) This is an example of the configuration of a conventional water carbon concentration measurement device that measures the concentration.
A sample pump 4 is a sample water introducing mechanism consisting of a sample water tank 1 and a sample pump 2. The combustion furnace 3 is separated into a first chamber 3a and a second chamber 3b by a partition wall 3c,
Both chambers are maintained at a temperature of approximately 900° C. by a heating device and temperature controller 5 (not shown). The sample water 1a introduced into the first chamber 3a of the combustion furnace is injected with a carrier gas 6 which contains no carbon dioxide (CO2) and contains oxygen near the inlet point of the chamber. Sample 1
If organic or inorganic carbon is contained in the gas-liquid mixture thus formed, these carbons are prepared in the first chamber 3a of the combustion furnace. It is combusted by the action of the catalyst and combined with oxygen in the carrier gas 6 to become CO2 gas. Therefore, from the first chamber 3a of the combustion furnace, a mixed gas of CO and gas produced in this way, the vapor of the sample water 1, and the carrier gas 6 is discharged. The condenser 8 is a drain pot that removes the moisture generated in the condenser 7 and seals the gas flow path. 10, here CO
2 times are measured. Reference numerals 11 and 12 are a dust filter and a flow meter for monitoring the gas flow rate attached to the gas inflow pipe of the gas analyzer 10. Reference numeral 13 denotes a carrier gas pump that introduces outside air 14 containing oxygen such as air into the second chamber 3b of the combustion furnace 3. When the outside air 14 is introduced into the second chamber 3b by the pump 13, organic Or, if inorganic carbon is included, these carbons are converted into CO,
Gasunko is converted. 15 is the CO2 generated as described above in the gas flowing out from the second chamber 3b and the outside air 14.
Middle: A CO2 absorber that absorbs both the CO2 that has been included since the beginning and generates and releases carrier gas 6. 16 is a water carbon concentration measuring device consisting of the above-mentioned parts.

炭素濃度測定装置16は上述のよウテ構成されているの
で、燃焼炉WJl室3aに導入されるキャリアガス6は
酸素を含んではいるが炭素は含まれていないガスとなっ
ており、この結果ガス分析計10の出力信号は試料水1
aに含まれている炭素の量に応じた値となり、前記出力
信号の形態は、試料水1aか燃焼炉3aに回分注入され
る場合は注入の都度前記量に応じた高さのパルス状にな
り、試料水1aが燃焼炉3aに連続注入される場合は前
記量に応じた高さの平坦な形状になる。放圧燃焼炉3a
K尋人される試料水1aの体!Rを管理することにより
ガス分析計10の出力信号から試料水la中の全炭素濃
側が測定される。測定装置16においてはガス分析計1
0から排出されるガスは大気に放出するようにしている
か、燃規炉第2室3bにおける炭素の不完全燃焼の結呆
生じる測定誤差乞防止したりCO□吸収畠15における
CO1吸収剤の更新期間を長(したりてるために、ガス
分析計10から排出されるガスをCO2吸収器15のガ
ス流入口に導(ように構成して、ポンプ13および燃焼
炉第2室3b’&省略した戻素痕度泗定装置も知られて
いる(特公昭53−47197参照)。
Since the carbon concentration measuring device 16 is configured as described above, the carrier gas 6 introduced into the combustion furnace WJl chamber 3a contains oxygen but does not contain carbon, and as a result, the gas The output signal of the analyzer 10 is the sample water 1
The value corresponds to the amount of carbon contained in a, and when the sample water 1a or the combustion furnace 3a is injected in batches, the output signal is in the form of a pulse whose height corresponds to the amount of carbon contained in the sample water 1a or the combustion furnace 3a. When the sample water 1a is continuously injected into the combustion furnace 3a, the sample water 1a has a flat shape with a height corresponding to the amount. Pressure combustion furnace 3a
The body of sample water 1a that is exposed to K! By controlling R, the total carbon concentration in the sample water la is measured from the output signal of the gas analyzer 10. In the measuring device 16, the gas analyzer 1
Is it possible to release the gas emitted from 0 to the atmosphere, to prevent measurement errors caused by incomplete combustion of carbon in the second chamber 3b of the fuel furnace, or to update the CO1 absorber in the CO□ absorption field 15? Because the period is long, the gas discharged from the gas analyzer 10 is introduced into the gas inlet of the CO2 absorber 15, and the pump 13 and the combustion furnace second chamber 3b' are omitted. A device for determining the concentration of traces of backing material is also known (see Japanese Patent Publication No. 53-47197).

上述のM定装置16は水中全炭素(TC)の濃度を測定
するものであるが、試料水1aから予め無機炭素(溶存
二酸化炭素、炭酸イオン、重炭酸イオン等)夕除いてお
(などして全有機炭素(TOO)の水中濃度を該測定装
f?ff116によって測定できることは明らかである
The above-mentioned M determination device 16 is used to measure the concentration of total carbon (TC) in water. It is clear that the concentration of total organic carbon (TOO) in water can be measured by the measuring device f?ff116.

従来の水中炭素1mm測測定装置上記のようにして測定
を行うものであるから、水中炭素濃度が低くなるとガス
分析計10に導かれる排ガス中のCO!濃度も当然低く
なり、測定装置16のような方法で、牛導体製造装置に
使用する水中TOCa度数ppb〜数十I)I)b程度
の超純水のTOO9度やTe3度を測定しようとすると
、ガス分析計10に導かれる排ガス中のCO,濃度は微
小な値になる。
Conventional water carbon 1 mm measuring device Measures as described above, so when the water carbon concentration becomes low, CO in the exhaust gas led to the gas analyzer 10! Naturally, the concentration will also be lower, and if you try to measure TOO 9 degrees or Te 3 degrees of ultrapure water with TOCa degrees ppb to several tens of ppb to several dozen I) b used in a conductor manufacturing device using a method like measuring device 16. , the concentration of CO in the exhaust gas guided to the gas analyzer 10 becomes a minute value.

ところが従来の水中炭素濃度測定装置16ではガス分析
計10として非分散形赤外線吸収式分析計が通常用いら
れていて、このものの最小測定範囲はO〜50 p p
m程度であるから、このようなガス分析計を用いた従来
の水中炭素濃度測定装置には微量炭素製置の測定ができ
ないという問題がある。
However, in the conventional water carbon concentration measuring device 16, a non-dispersive infrared absorption analyzer is usually used as the gas analyzer 10, and the minimum measurement range of this is 0 to 50 pp.
Therefore, there is a problem in that conventional water carbon concentration measuring devices using such gas analyzers cannot measure trace amounts of carbon.

〔発明の目的〕[Purpose of the invention]

本発明は、上述した水中炭素濃度測定装置におけるよう
な問題を解決して、水中に含まれる有機性あるいは無機
性の炭素や窒素のような被酸化性成分の微蓋濃度を、従
来広く使用されている比板的低感度のガス分析計を用い
て測定することのできる水中被酸化性成分濃度測定装置
を提供することを目的とする。
The present invention solves the problems of the above-mentioned underwater carbon concentration measuring device, and measures the minute concentration of oxidizable components such as organic or inorganic carbon and nitrogen contained in water using a method that has not been widely used in the past. An object of the present invention is to provide an apparatus for measuring the concentration of oxidizable components in water that can be measured using a relatively low-sensitivity gas analyzer.

〔発明の要点〕[Key points of the invention]

本発明は、上述の目的を達成するために、試料水を燃焼
させる燃焼炉と;この燃焼炉に試料水を導入する試料水
尋人機構と;導入されたガス中の目的成分の一部を測定
するガス分析計と;燃焼炉から流出するガスをガス分析
計に尋人する第1管路と;ガス分析計から流出するガス
を燃焼炉に導と;環状流路に外気を導入する給気機構と
;燃焼炉に試料水な導入しない時のガス分析計の出力信
号と燃焼炉に試料水ヲ導入した時のガス分析計の出力信
号との差を演算する演算器と;で水中被酸化性成分W度
測定装置を構成し、演算器の出力信号によって試料水中
の被酸化性成分の濃度を測定するようにしたもので、こ
のように構成することによって、燃焼炉に試料水が導入
されるごとにガス分析計に流入するガス中の目的成分が
環状流路内に蓄積されて該成分の濃度が上昇する結果、
従来広く使用されている比較的低感度のガス分析計を用
いても極く微量の水中被酸化性成分濃度を測定できる測
定装置が得られるようにしたものである。
In order to achieve the above-mentioned objects, the present invention provides a combustion furnace for burning sample water; a sample water control mechanism for introducing sample water into the combustion furnace; and a part of target components in the introduced gas. a gas analyzer for measurement; a first pipe line for introducing the gas flowing out from the combustion furnace to the gas analyzer; a line for guiding the gas flowing out from the gas analyzer to the combustion furnace; a supply line for introducing outside air into the annular flow path; A gas mechanism; and a calculator that calculates the difference between the output signal of the gas analyzer when no sample water is introduced into the combustion furnace and the output signal of the gas analyzer when sample water is introduced into the combustion furnace. This is an oxidizing component W measurement device that measures the concentration of oxidizable components in sample water based on the output signal of a computing unit. With this configuration, sample water is introduced into the combustion furnace. Each time the target component in the gas flowing into the gas analyzer is accumulated in the annular flow path, the concentration of the component increases.
The present invention provides a measuring device capable of measuring extremely small concentrations of oxidizable components in water even by using relatively low-sensitivity gas analyzers that have been widely used in the past.

〔発明の実施例〕[Embodiments of the invention]

力1図は本発明の一実施例の構成図で、図において燃焼
炉3は第1室3aのみで構成されている。
Figure 1 is a configuration diagram of an embodiment of the present invention, and in the figure, the combustion furnace 3 is composed of only a first chamber 3a.

17はドレンポット8に溜った水を排出するドレン弁、
18はドレンポット8のガス流出口8aと循環ポンプ1
9の入口19aとの間の管路を開閉するようにした弁、
20は外気14Yポンプ人口19aに導く外気弁である
。循環ポンプ19の出口19bはフィルタ11のガス人
口11aに接続されている。図においては凝縮器7、ド
レンポット8、弁18、ポンプ19.フィルタ11.流
量分析計10に4人されるように構成されている。
17 is a drain valve that drains water accumulated in the drain pot 8;
18 is the gas outlet 8a of the drain pot 8 and the circulation pump 1
a valve configured to open and close a pipeline between the inlet 19a of the
20 is an outside air valve that guides the outside air 14Y to the pump port 19a. The outlet 19b of the circulation pump 19 is connected to the gas port 11a of the filter 11. In the figure, a condenser 7, a drain pot 8, a valve 18, a pump 19. Filter 11. The flow rate analyzer 10 is configured so that four people can use it.

21は凝縮器7とドレンポット8とフィルタ11と流量
計12とそれらに接続する配管とからなり、燃焼炉3か
も流出するガスをガス分析計10に導入する第1管路で
ある。22はガス分析計10から流出するガスを燃焼炉
3に導入するようにした第2管路で、第2管路22は、
この場合、この管路によって導かれるガスと試料水1a
とがよく混合するよ5にするために該試料水の燃焼炉3
人口近傍の試料水配管に接続されている。第1図におい
ては各部が上述のように構成されているので、ドレン弁
17と外気弁20とを閉じ弁18を開いてポンプ19を
運転すると、ガスが第1管路21とガス分析計10と第
2管路22と燃焼炉3とからなる環状流路23’Y環流
する。24は環状流路23にガスを循環させる、弁18
とポンプ19とからなるガス循環機構で、25はガス分
析計10の出力信号10aについて後述のような演算動
作を行う演算器である。
Reference numeral 21 is a first pipe line which is composed of a condenser 7, a drain pot 8, a filter 11, a flow meter 12, and pipes connected to them, and introduces gas flowing out from the combustion furnace 3 into the gas analyzer 10. Reference numeral 22 denotes a second pipe line for introducing the gas flowing out from the gas analyzer 10 into the combustion furnace 3, and the second pipe line 22 includes:
In this case, the gas guided by this pipe and the sample water 1a
The sample water is heated in a combustion furnace 3 in order to mix well.
Connected to sample water piping near the population. In FIG. 1, each part is configured as described above, so when the drain valve 17 and the outside air valve 20 are closed and the valve 18 is opened and the pump 19 is operated, gas flows through the first pipe line 21 and the gas analyzer 10. The annular flow path 23'Y consisting of the second pipe line 22 and the combustion furnace 3 circulates. 24 is a valve 18 that circulates gas in the annular flow path 23;
and a pump 19, and 25 is a computing unit that performs arithmetic operations as will be described later on the output signal 10a of the gas analyzer 10.

第1図の測定装置では、まず初めに弁18’&閉じ、弁
17と20とを開いてポンプ19乞運転する。すると外
気14が弁20、ポンプ19、フィルタ11、流量計1
2、ガス分析計lO1第2管路22、燃焼炉3、凝縮器
7、ドレンポット8、弁17を順次通って流れ、この流
路におけるガスが外気14で置換される。この結果ガス
分析計lOの出力電圧は、外気14がたとえば空気であ
る場合、第2図のA−B間の特性線のようになる。この
出力電圧は300 p pm程度のCO,ガス濃度に相
当する電圧である。次にポンプ19の運転はその  ゛
ままにし℃弁18”k開き弁17および20ン閉じる。
In the measuring device shown in FIG. 1, first, valve 18' is closed, valves 17 and 20 are opened, and pump 19 is operated. Then, the outside air 14 flows through the valve 20, the pump 19, the filter 11, and the flow meter 1.
2. Gas analyzer lO1 The gas flows through the second pipe line 22, the combustion furnace 3, the condenser 7, the drain pot 8, and the valve 17 in order, and the gas in this flow path is replaced with outside air 14. As a result, when the outside air 14 is air, the output voltage of the gas analyzer IO becomes as shown by the characteristic line between AB in FIG. 2. This output voltage corresponds to a CO and gas concentration of about 300 ppm. Next, leave the operation of the pump 19 as it is, and close the °C valve 18" and the valves 17 and 20.

この結果環状流路23に閉じ込められた外気14が該流
路23をガス循環機構24によって循環させられる。こ
の時、前述したように、循環する外気14に炭素成分が
含まれているとこの炭素が燃焼炉3で燃焼してCO,ガ
スが発生するのでガス分析計10の出力電圧は)1次上
昇し、外気14が環状流路23を循環するにつれてやが
て全炭素成分が燃焼しつくされるので遂にガス分析計1
0の出力電圧は飽和する。第3図におけるB−0間の特
性線はこの模様1表している。Ecはこの飽和状態にお
ける分析計の出力電圧である。ポンプ19の運転をその
ままにして続いて試料水1aを導入機構4によって燃焼
炉3に連続的に導入する。この結果燃焼炉3では導入さ
れた試料水1aに含まれている全炭素量に応じた量のC
O2ガスが発生し、この発生ガス量は試料水1aの燃焼
炉3への導入に伴なって増加する。したがってこの時ガ
ス分析計10の出力電圧は第2図のC−9間の特性線で
示したように時間の経過と共に上昇する。第2図におい
てTc、Tdはそれぞれ特性線上の点C,Dに対応する
時刻、Edは時刻Tdにおける出力電圧で、差電圧E 
d−E cは燃焼炉3に導入された全炭素(TC)の積
算量に対応している。したがって試料水1aY燃焼炉3
に一定瞬時流量qで所定時間ΔTだげ導入するようにす
ると、差電圧Ed−Ecの値から、予め濃度既知の試料
水について同様な操作を行って得られた検量線を用いて
、試料水1aにおける全炭素濃度を測定することができ
る。上記においては流量qを一定値に制御するようにし
たが、燃焼炉3には試料水1aft最終的にq・ΔTだ
け導入するようにすれば、試料水流量を特に一定のqK
制御する必要のないものであることは明らかである。丁
なわち試料水1aはシリジン等を用いて手操作で燃焼炉
3に注入するようにしてもよい。
As a result, the outside air 14 trapped in the annular flow path 23 is circulated through the flow path 23 by the gas circulation mechanism 24. At this time, as mentioned above, if the circulating outside air 14 contains carbon components, this carbon will be burned in the combustion furnace 3 and CO and gas will be generated, so the output voltage of the gas analyzer 10 will increase by one degree. However, as the outside air 14 circulates through the annular flow path 23, all the carbon components are burned out, and the gas analyzer 1 finally
An output voltage of 0 saturates. The characteristic line between B and 0 in FIG. 3 represents this pattern 1. Ec is the output voltage of the analyzer in this saturated state. The sample water 1a is then continuously introduced into the combustion furnace 3 by the introduction mechanism 4 while the pump 19 continues to operate. As a result, in the combustion furnace 3, the amount of carbon corresponding to the total amount of carbon contained in the introduced sample water 1a is
O2 gas is generated, and the amount of this gas generated increases as the sample water 1a is introduced into the combustion furnace 3. Therefore, at this time, the output voltage of the gas analyzer 10 increases as time passes, as shown by the characteristic line C-9 in FIG. In Fig. 2, Tc and Td are the times corresponding to points C and D on the characteristic line, Ed is the output voltage at time Td, and the difference voltage E
d-E c corresponds to the cumulative amount of total carbon (TC) introduced into the combustion furnace 3. Therefore, sample water 1aY combustion furnace 3
When the sample water is introduced for a predetermined time period ΔT at a constant instantaneous flow rate q, from the value of the differential voltage Ed-Ec, the sample water is The total carbon concentration in 1a can be measured. In the above, the flow rate q was controlled to a constant value, but if the sample water 1aft is finally introduced into the combustion furnace 3 by q・ΔT, the sample water flow rate can be controlled to a constant qK.
It is clear that there is no need to control it. In other words, the sample water 1a may be manually injected into the combustion furnace 3 using silydine or the like.

上述したように差電圧Ed−Ecを用いて訝(」定を行
うためにはガス分析計10によって示されろこの差′重
圧が有意の大きさになっていなければならない。全炭素
a度が政小であると、試料水1aを短時間燃焼炉3に導
入しただけでは差電圧E d−E cは分析計10の最
小感度以下であるため弁別できないか、上記のような方
法によって全炭素量が積算されるようにするとEd−E
cは弁別可能な大きさとなる。m2図に示した時間ΔT
あるいは前述した総流量q・ΔTは、差電圧Ed−Ec
が弁別可能な大きさになるように設定した所定の時間で
あり所定の総元量である。第1図における演算器25は
、第2図における出力電圧hi cのような、燃焼炉3
に試料水1aを導入しない時のガス分析計10の出力信
号を記憶しておぎ、この信号と、第2図における出力電
圧Edのような、燃焼炉3に試料水1aを導入した時の
ガス分析計10の出力信号との差F、d Ecを算出す
る演算器である。第1図においては弁17.18.20
およびポンプ2.19および演算器25をそれぞれ手動
操作するようにしたが、これらは制御装置によってシー
ケンス制御されても差し支えない。27は、容器28に
貯蔵した酸浴g、29をドレンボッ)8tC溜った水に
注入してこの水のpt−tを低下させ、この結果燃焼炉
3で生じたC(J、ガスがドレンポット8の凝縮水に溶
解することのないようにして、もって全炭素濃度の測定
に誤差が発生しないようにした溶液ポンプで、30は第
1図に示した上述の各部からなる水中炭素渓度測足装置
である。測定装置30では上記のようにしてEd−Ec
の演算が行われて一連の濃度測定動作が完了すると、弁
18を閉じ弁17゜20を開いてポンプ19で外気14
を環状流路23に導入1−ることにより次の濃度測定サ
イクルが開始されろ。外気弁20は上記のように使用さ
れるものであるから環状流路23に外気14を導入する
給気機構である。
As mentioned above, in order to perform the determination using the differential voltage Ed-Ec, the differential pressure indicated by the gas analyzer 10 must be of a significant magnitude. If the sample water 1a is simply introduced into the short-time combustion furnace 3, the differential voltage E d - E c is less than the minimum sensitivity of the analyzer 10, so it cannot be discriminated, or the total carbon Ed-E if the amount is integrated
c becomes a distinguishable size. Time ΔT shown in m2 diagram
Alternatively, the total flow rate q・ΔT mentioned above is the difference voltage Ed−Ec
It is a predetermined time set such that the value becomes a distinguishable size, and is a predetermined total amount of elements. The computing unit 25 in FIG. 1 calculates the output voltage h i c of the combustion furnace 3 in FIG.
The output signal of the gas analyzer 10 when the sample water 1a is not introduced into the combustion furnace 3 is memorized, and this signal and the gas when the sample water 1a is introduced into the combustion furnace 3, such as the output voltage Ed in FIG. This is an arithmetic unit that calculates the difference F, dEc from the output signal of the analyzer 10. In Figure 1, valves 17, 18, 20
Although the pump 2.19 and the computing unit 25 are each manually operated, they may also be sequentially controlled by a control device. 27 injects the acid bath g, 29 stored in the container 28 into the drain pot) 8tC accumulated water to lower the pt-t of this water, and as a result, the C(J, gas generated in the combustion furnace 3) is poured into the drain pot. 8 is a solution pump that does not dissolve in the condensed water, thereby preventing errors in measuring the total carbon concentration, and 30 is an underwater carbon concentration meter consisting of the above-mentioned parts shown in Figure 1. The measuring device 30 performs the Ed-Ec test as described above.
When the calculation is completed and a series of concentration measurement operations are completed, the valve 18 is closed, the valves 17 and 20 are opened, and the pump 19 pumps outside air 14.
The next concentration measurement cycle is started by introducing 1- into the annular channel 23. Since the outside air valve 20 is used as described above, it is an air supply mechanism that introduces the outside air 14 into the annular flow path 23.

第3図は本発明の稟2実施例の構成図で、図の第1図と
異なる主な所は、ドレンポット8に、凝縮水のレベルが
所定位置に違すると以後凝縮する水をすべて自動的に排
出するドレン排出管31を設けたことで、また図示した
ように弁18.20は第1図と異なり燃焼炉3と凝縮器
7どの間の第1管路21に設けるようにしても差し支え
ないものである。32は環状流路23内のガスを外気1
4で冒換する際に使用する排気弁である。
Fig. 3 is a block diagram of the second embodiment of the present invention.The main difference from Fig. 1 is that when the level of condensed water is not at a predetermined position, all condensed water is automatically removed from the drain pot 8. By providing the drain discharge pipe 31 for discharging water, and as shown in the figure, the valves 18 and 20 are provided in the first pipe line 21 between the combustion furnace 3 and the condenser 7, unlike in FIG. There is no problem. 32 converts the gas in the annular flow path 23 to outside air 1
This is the exhaust valve used when ventilating at 4.

試料水la中の無機炭素を予め除去して2くことによっ
て全有様炭素(TQC)のに4度を第1図、第3L■の
測定装fitによって測定することができることは、第
4図に示した従来の全炭素濃度)j+lj定裂イルiの
場合と同様である。また上述した各実施例では外気14
として空気を例示したが、この外気14は純酸素であっ
ても差し支えないものである。さらにまた上記において
は炭素濃度測定装置について詳述したが、本発明が燃焼
炉3において酸化可能な窒素のような被酸化性成分に対
しても適用できるものであることは特に説明するまでも
なく明らかである。窒素濃度測定装置の場合ガス分析計
10として窒素酸化物分析計が使用されることは当然で
ある。
Figure 4 shows that by removing inorganic carbon in the sample water in advance, it is possible to measure 4 degrees of total qualitative carbon (TQC) using the measurement equipment shown in Figures 1 and 3L. This is the same as the case of the conventional total carbon concentration) j + lj constant fission i shown in . Furthermore, in each of the embodiments described above, the outside air 14
Although air is shown as an example, the outside air 14 may be pure oxygen. Furthermore, although the carbon concentration measuring device has been described in detail above, it goes without saying that the present invention is also applicable to oxidizable components such as nitrogen that can be oxidized in the combustion furnace 3. it is obvious. In the case of a nitrogen concentration measuring device, a nitrogen oxide analyzer is naturally used as the gas analyzer 10.

〔発明の効果〕〔Effect of the invention〕

上述したように、本発明においては、試料水を燃焼させ
る燃焼炉と;この燃焼炉に試料水な導入する試料水導入
機構と;導入されたガス中の目的成分の濃度な測定する
ガス分析計と;燃焼炉から流出するガスをガス分析計に
導入する第1管路と;ガス分析計から流出するガスを燃
焼炉に導入する第2管路と;燃焼炉と第1管路とガス分
析計と第2管路とからなる環状流路をガスを循環させる
ガス循環機構と;環状流路に外気を導入する給気機構と
;燃焼炉に試料水を導入しない時のガス分析計の出力信
号と燃焼炉に試料水を導入した時のガス分析計の出力信
号との差を演算する演算器と;で水中被酸化性成分濃度
測定装置を構成し、演算器の出力信号によって試料水中
の被酸化性成分00度を測定するようにしたので、この
ように構成することによって、燃焼炉に試料水が導入さ
れるごとにガス分析計に流入するガス中の目的成分が環
状流路内に蓄積されて該成分の濃度が上昇する結果、従
来広く使用されている比較的低感度のガス分析計を用い
ても極(微量の水中被酸化性成分濃度を測定でさる測定
装置が得られる効果がある。
As described above, the present invention includes a combustion furnace that burns sample water; a sample water introduction mechanism that introduces the sample water into the combustion furnace; and a gas analyzer that measures the concentration of the target component in the introduced gas. A first pipe line that introduces the gas flowing out from the combustion furnace into the gas analyzer; A second pipe line introducing the gas flowing out from the gas analyzer into the combustion furnace; The combustion furnace, the first pipe line, and the gas analysis a gas circulation mechanism that circulates gas through an annular flow path consisting of a meter and a second pipe; an air supply mechanism that introduces outside air into the annular flow path; and an output of the gas analyzer when no sample water is introduced into the combustion furnace. An arithmetic unit that calculates the difference between the signal and the output signal of the gas analyzer when the sample water is introduced into the combustion furnace constitutes an apparatus for measuring the concentration of oxidizable components in water. Since the oxidizable components are measured at 00 degrees, this configuration ensures that the target components in the gas flowing into the gas analyzer enter the annular flow path every time sample water is introduced into the combustion furnace. As a result of the accumulation and increase in the concentration of these components, it is possible to obtain a measuring device that can measure the concentration of extremely small amounts of oxidizable components in water, even using relatively low-sensitivity gas analyzers that have been widely used in the past. There is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第3図は本発明のそれぞれ異なる実施例の
構成図、第2図は第1図におけるガス分析計の出力電圧
の経時変化説明図、第4図は従来の水中炭素濃度測定装
置の構成図である。 1a・・・・・・試料水、3・・・・・・燃焼炉、4・
・・・・・試料水導入機構、10・・・・・・ガス分析
計、14・・・・・・外気、20・・・・・・給気機構
としての外気弁、21・・・・・・第1管路、22・・
・・・・第2管路、23・・・・・・環状流路、24・
・・・・・ガス循環機構、25・・・・・・演算器。 鴎1図 12  図 第3図 14図
Figures 1 and 3 are configuration diagrams of different embodiments of the present invention, Figure 2 is an explanatory diagram of changes over time in the output voltage of the gas analyzer in Figure 1, and Figure 4 is a conventional water carbon concentration measuring device. FIG. 1a...Sample water, 3...Combustion furnace, 4.
... Sample water introduction mechanism, 10 ... Gas analyzer, 14 ... Outside air, 20 ... Outside air valve as air supply mechanism, 21 ...・・First conduit, 22・・
...Second pipe line, 23...Annular flow path, 24.
...Gas circulation mechanism, 25...Arithmetic unit. Seagull 1 Figure 12 Figure 3 Figure 14

Claims (1)

【特許請求の範囲】[Claims] 1)導入された試料水を燃焼させる燃焼炉と;前記燃焼
炉に前記試料水を導入する試料水導入機構と;導入され
たガス中の目的成分濃度を測定するガス分析計と;前記
燃焼炉から流出するガスを前記ガス分析計に導入する第
1管路と;前記ガス分析計から流出するガスを前記燃焼
炉に導入する第2管路と;前記燃焼炉と前記第1管路と
前記ガス分析計と前記第2管路とからなる環状流路にガ
スを循環させるガス循環機構と;前記環状流路に外気を
導入する給気機構と;前記燃焼炉に前記試料水を導入し
ない時の前記ガス分析計の出力信号と前記燃焼炉に前記
試料水を導入した時の前記ガス分析計の出力信号との差
を演算する演算器と;を備え、前記演算器の出力信号に
より前記試料水中の被酸化性成分濃度を測定することを
特徴とする水中被酸化性成分濃度測定装置。
1) A combustion furnace that burns the introduced sample water; A sample water introduction mechanism that introduces the sample water into the combustion furnace; A gas analyzer that measures the concentration of a target component in the introduced gas; The combustion furnace a first pipe line for introducing gas flowing out from the gas analyzer into the gas analyzer; a second pipe line introducing gas flowing out from the gas analyzer into the combustion furnace; the combustion furnace, the first pipe line, and the a gas circulation mechanism that circulates gas through an annular flow path consisting of a gas analyzer and the second pipe; an air supply mechanism that introduces outside air into the annular flow path; and when the sample water is not introduced into the combustion furnace. a calculator for calculating the difference between the output signal of the gas analyzer and the output signal of the gas analyzer when the sample water is introduced into the combustion furnace; An apparatus for measuring the concentration of oxidizable components in water, which measures the concentration of oxidizable components in water.
JP21022084A 1984-10-06 1984-10-06 Instrument for measuring concentration of component to be oxidized in water Pending JPS6188150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21022084A JPS6188150A (en) 1984-10-06 1984-10-06 Instrument for measuring concentration of component to be oxidized in water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21022084A JPS6188150A (en) 1984-10-06 1984-10-06 Instrument for measuring concentration of component to be oxidized in water

Publications (1)

Publication Number Publication Date
JPS6188150A true JPS6188150A (en) 1986-05-06

Family

ID=16585771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21022084A Pending JPS6188150A (en) 1984-10-06 1984-10-06 Instrument for measuring concentration of component to be oxidized in water

Country Status (1)

Country Link
JP (1) JPS6188150A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010523938A (en) * 2006-12-07 2010-07-15 エンドレス ウント ハウザー コンダクタ ゲゼルシャフト フューア メス‐ ウント レーゲルテヒニック エムベーハー ウント コンパニー コマンディートゲゼルシャフト Method for monitoring the concentration of dissolved substances in aqueous media

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010523938A (en) * 2006-12-07 2010-07-15 エンドレス ウント ハウザー コンダクタ ゲゼルシャフト フューア メス‐ ウント レーゲルテヒニック エムベーハー ウント コンパニー コマンディートゲゼルシャフト Method for monitoring the concentration of dissolved substances in aqueous media
US8932873B2 (en) 2006-12-07 2015-01-13 Endress + Hauser Conducta Gesellschaft Fur Mess- Und Regeltechnik Mbh + Co. Kg Method for monitoring concentration of water borne substance in an aqueous medium

Similar Documents

Publication Publication Date Title
CA1143842A (en) Apparatus for control and monitoring of the carbon potential of an atmosphere in a heat-processing furnace
US7029920B2 (en) Method and system for monitoring combustion source emissions
US3985505A (en) Combustion system
Perry et al. Rate constants for the reactions OH+ H2S→ H2O+ SH and OH+ NH3→ H2O+ NH2 over the temperature range 297–427 K
Sigsby et al. Chemiluminescent method for analysis of nitrogen compounds in mobile source emissions nitric oxide, nitrogen dioxide, and ammonia
JPH07318555A (en) Total organic carbon meter
EP0431025A4 (en) Smog monitor
JP5096485B2 (en) Method for monitoring the concentration of dissolved substances in aqueous media
US3205045A (en) Apparatus for continuous measurement of organic matter in water
US3969626A (en) Method and apparatus for detecting total reduced sulfur
JPS6188150A (en) Instrument for measuring concentration of component to be oxidized in water
JPS628040A (en) Washing apparatus
US4272249A (en) Method of monitoring oxygen concentrations in gas streams
DE2261456A1 (en) PYROLYTIC ANALYSIS OF LIQUIDS
CN112229946A (en) Intelligent SO3Standard gas preparation method and system
CN207248580U (en) One kind is based on flue-gas temperature and thermostat water bath coolant controlled SO3Sampling system
Fahey et al. A calibrated source of N2O5
Fried et al. Laser photoacoustic detection of nitrogen dioxide in the gas-phase titration of nitric oxide with ozone
JP4400841B2 (en) Soil gas emission measuring device and measuring method
JP2002031628A (en) Element analyzer
JPS60143767A (en) Total carbon measurement
CN219417394U (en) Automatic calibration system for flue gas on-line monitoring system
CN209460233U (en) A kind of oxidizing capacity indicator detection device
JP3931602B2 (en) Calibration method for concentration measuring device
JPS61265554A (en) Gas analyser