JPS6187774A - Thermal energy storage material composition - Google Patents

Thermal energy storage material composition

Info

Publication number
JPS6187774A
JPS6187774A JP21020284A JP21020284A JPS6187774A JP S6187774 A JPS6187774 A JP S6187774A JP 21020284 A JP21020284 A JP 21020284A JP 21020284 A JP21020284 A JP 21020284A JP S6187774 A JPS6187774 A JP S6187774A
Authority
JP
Japan
Prior art keywords
freezing point
storage material
material composition
heat storage
supercooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21020284A
Other languages
Japanese (ja)
Other versions
JPH0134553B2 (en
Inventor
Naotatsu Yano
直達 矢野
Chuji Ueno
上野 忠次
Shigeru Tsuboi
茂 壷井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP21020284A priority Critical patent/JPS6187774A/en
Publication of JPS6187774A publication Critical patent/JPS6187774A/en
Publication of JPH0134553B2 publication Critical patent/JPH0134553B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To provide the titled compsn. whose solidifying point can be controlled over a wide range and which can prevent supercooling, containing CaCl2.6H2O, a solidifying point modifier composed of a specified amount of ZnCl2 and a nucleation accelerator composed of CaHPO4.2H2O and BaS. CONSTITUTION:CaCl2.6H2O, nor more than 40wt% (based on the total amount of compsn.; the same shall apply hereinbelow) ZnCl2 as a solidifying agent, a nucleation accelerator composed of 0.005-10wt% CaHPO4 and 0.005-10wt% BaS, and optionally an appropriate amount of a thickener (e.g. 5wt% glycerol) are blended together to obtain the titled compsn. in which latent heat-utilizing temp. can be controlled over a temp. range of 30-10 deg.C and supercooling can be inhibited to 2 deg.C or below.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は塩化カルシウム6水塩を主成分とする蓄熱材組
成物に関し、特に凝固点を広い範囲に亘って任意に調整
し得ると共に凝固時の過冷却を防止し、蓄熱材としての
性能を高める技術に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a heat storage material composition containing calcium chloride hexahydrate as a main component, and in particular, the freezing point can be arbitrarily adjusted over a wide range, and the This relates to technology that prevents overcooling and improves the performance of heat storage materials.

〔従来の技術〕[Conventional technology]

塩化カルシウム6水塩は水和物特有の大きな凝固−融解
を有しておシ、且つ凝固点が常温付近(約30℃)であ
るところから、施設園芸、栽培用温室や住宅暖房或はケ
ミカルヒートポンプ、更にはソー2用蓄熱タンク、工業
用排熱回収設備等に広く実用化されはじめている。但し
塩化カルシウム6水塩単独では潜熱発生温度がその凝固
点(及び融点)である約30℃の1点に特定されるので
、利用環境に応じて潜熱発生温度を調整し得る様な改良
研究も進められている。この種の技術としては、塩化カ
ルシウム6水塩中に適量の凝固点調節剤(例えば臭化カ
ルシウム6水塩、塩化第2鉄6水塩、塩化コバルト6水
塩、塩化第2銅2水塩、塩化マグネシウム6水塩等)を
加えて任意の凝固点となる様にする方法がある。
Calcium chloride hexahydrate has a large solidification-melting characteristic unique to hydrates, and its freezing point is around room temperature (approximately 30°C), so it is useful for greenhouse horticulture, cultivation greenhouses, home heating, and chemical heat pumps. Furthermore, it is beginning to be widely put into practical use in heat storage tanks for saw 2, industrial waste heat recovery equipment, etc. However, when using calcium chloride hexahydrate alone, the latent heat generation temperature is specific to one point, which is its freezing point (and melting point) of approximately 30°C, so research is also underway to improve the latent heat generation temperature so that it can be adjusted according to the usage environment. It is being This type of technology involves adding an appropriate amount of a freezing point regulator (for example, calcium bromide hexahydrate, ferric chloride hexahydrate, cobalt chloride hexahydrate, cupric chloride dihydrate, There is a method of adjusting the freezing point to an arbitrary value by adding magnesium chloride hexahydrate (magnesium chloride hexahydrate, etc.).

一方塩化カルシウム6水塩を凝固点よりも低温側から昇
温しで行くと、凝固点で融解潜熱を奪いながら液状にな
る。この相変化はほぼ理論通シに進行するので問題はな
いが、逆の相変化については次の様な問題がある。即ち
凝固点よシも高温側から温度を下げて行くと、理論的に
は凝固点温度で相変化し固体になっていくはずであるが
、実際には過冷却現象が起と)凝固点よ)もかなシ低い
20〜10℃程度まで冷えても液体状態を継続すること
がある為、凝固潜熱を利用する場合の大きな障害となっ
てbた。こうした過冷却を防止する方法として、塩化カ
ルシウム6水塩中に凝固核生成促進剤を配合する方法が
知られておシ、例えば5rC1,−6H,0、Sr(O
H)2・8H,0、Ba(OR)28H20等の核生成
促進剤が使用され一定の成果を得ている。
On the other hand, when calcium chloride hexahydrate is heated from a temperature lower than its freezing point, it becomes liquid while absorbing latent heat of fusion at the freezing point. This phase change progresses almost according to theory, so there is no problem; however, the following problems arise regarding the reverse phase change. In other words, if you lower the temperature from the high temperature side of the freezing point, theoretically it should undergo a phase change and become solid at the freezing point temperature, but in reality, a supercooling phenomenon occurs (the freezing point). Since it may remain in a liquid state even when cooled to a low temperature of 20 to 10 degrees Celsius, this becomes a major obstacle when utilizing the latent heat of solidification. As a method for preventing such supercooling, a method is known in which a coagulation nucleation accelerator is blended into calcium chloride hexahydrate.
Nucleation accelerators such as H)2.8H,0 and Ba(OR)28H20 have been used and have achieved certain results.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら従来から知られている凝固点調節剤は、「
凝固点を少々い添加量で広い範囲に亘り調整可能とし、
且つ潜熱量を低減させない」といった要求特性を十分に
満足するものとは言えず、また核生成促進剤にしても従
来のものは高価であシ、この種の蓄熱材組成物の用途を
拡大して行くうえで大きな障害となっている。本発明は
こうした状況のもとで、要求特性を備えた新たな凝固点
調節剤及び核生成促進剤を検索し、性能及び経済性の優
れた蓄熱材組成物を提供しようとするものである。
However, conventionally known freezing point regulators are
The freezing point can be adjusted over a wide range with a small addition amount,
It cannot be said that it fully satisfies the required properties such as "and does not reduce the amount of latent heat," and conventional nucleation accelerators are expensive, so it is necessary to expand the use of this type of heat storage material composition. This is a big obstacle to getting there. Under these circumstances, the present invention seeks to find a new freezing point regulator and nucleation promoter that have the required properties, and provides a heat storage material composition with excellent performance and economy.

〔問題を解決する為の手段〕[Means to solve the problem]

本発明紘、塩化カルシウム6水塩を主成分とする蓄熱材
組成物において、全組成物中に40チ(重量%:以下同
じ)以下の塩化亜鉛を凝固点調節剤として含有させる他
、核生成促進剤として燐酸1水素カルシウム及び硫化バ
リウムを含有させてなるところに要旨を有するものであ
る。
In the heat storage material composition of the present invention, which contains calcium chloride hexahydrate as a main component, zinc chloride of 40% or less (weight %: the same hereinafter) is contained in the entire composition as a freezing point regulator, and also promotes nucleation. The gist is that it contains calcium monohydrogen phosphate and barium sulfide as agents.

〔作用〕[Effect]

本発明における第1の特徴は、塩化カルシウム6水塩の
凝固点調節剤として塩化亜鉛を選択した点にあシ、それ
によって比較的少ない凝固点調節剤の配合量で凝固点を
任意に調整することができる。即ち第1図は、塩化カル
シウム6水塩を主成分とする蓄熱材組成物に対し、凝固
点調節剤として塩化亜鉛を配合した場合における塩化亜
鉛の含有率〔組成物全量中の重量%(以下同じ)〕と凝
固点の関係を示した実験結果のグラフであシ、公知の代
表的な凝固点降下剤である塩化第2鉄6水塩及び臭化カ
ルシウム6水塩を用いた場合の実験結果も併記している
。この図からも明らかな様に、塩化第2鉄6水塩では含
有率の増大に伴う凝固点の降下勾配が小さく、潜熱発生
温度を低下させるには相当多量含有させなければならな
い。しかもこの2成分系組成物では、該組成物中に約6
0チの塩化第2鉄6水塩を配合させることによってはじ
めて最低の凝固点(10℃)を示す。こうした傾向は塩
化第2銅2水塩、塩化マグネシウム6水塩、塩化コバル
ト6水塩等についても殆んど同様でちる。これに対し臭
化カルシウム6水塩は含有率の増大による凝固点の降下
勾配が大きく、比較的少ない含有率でも凝固点を低温側
へ移行させることができる。そして含有率が50%のと
きに最低の凝固点を示すが、その温度はせいぜい15〜
16℃までであシ、潜熱発生温度を15℃未満の低温に
設定するととはできない。これらに対し塩化亜鉛を配合
した場合の含有率増大による凝固点の降下勾配は相当大
きく、又約35〜40%の含有率のときに得られる最低
の凝固点は約10℃まで降下している。即ち塩化亜鉛の
含有率を40%以下の範囲で調整してやれば、潜熱利用
温度を約30℃から約10℃という広い範囲の任意の温
度に設定することができる。
The first feature of the present invention is that zinc chloride is selected as the freezing point regulator for calcium chloride hexahydrate, thereby making it possible to arbitrarily adjust the freezing point with a relatively small amount of freezing point regulator. . That is, FIG. 1 shows the zinc chloride content [wt% of the total composition (the same applies hereinafter) when zinc chloride is blended as a freezing point regulator into a heat storage material composition containing calcium chloride hexahydrate as a main component. )] and freezing point, and also includes experimental results using ferric chloride hexahydrate and calcium bromide hexahydrate, which are known representative freezing point depressants. are doing. As is clear from this figure, the gradient of descent of the freezing point of ferric chloride hexahydrate as the content increases is small, and a considerably large amount must be contained in order to lower the latent heat generation temperature. Moreover, in this two-component composition, about 6
It shows the lowest freezing point (10°C) only when 0% ferric chloride hexahydrate is blended. This tendency is almost the same for cupric chloride dihydrate, magnesium chloride hexahydrate, cobalt chloride hexahydrate, and the like. On the other hand, calcium bromide hexahydrate has a large downward slope of the freezing point as the content increases, and the freezing point can be shifted to the lower temperature side even with a relatively small content. The lowest freezing point is reached when the content is 50%, but the temperature is at most 15~15%.
It is not possible to set the latent heat generation temperature to a low temperature below 15°C. On the other hand, when zinc chloride is added, the gradient of decrease in the freezing point due to the increase in the content is considerably large, and the lowest freezing point obtained when the content is about 35 to 40% falls to about 10°C. That is, by adjusting the content of zinc chloride within a range of 40% or less, the latent heat utilization temperature can be set to any temperature within a wide range of about 30°C to about 10°C.

この様に塩化カルシウム6水塩に適量の塩化亜鉛を含有
させることによって凝固点を任意に調整することができ
る。しかし降温時の過冷却現象については未解決である
。過冷却防止の為の核生成促進剤としては前述の如<5
rC1t・6H20や5r(OH)z・8H20等が知
られておシ、これらは塩化カルシウム6水塩−塩化亜鉛
系の蓄熱材組成物についても同様の過冷却防止効果を発
揮するが、前述の如く高価であるという難点がある。そ
こで上記2成分系の蓄熱材組成物を対象として、過冷却
を効果的に防止することのできる安価な核生成促進剤を
求めて研究を進めた結果、後記実施例でも明らかにする
様に燐酸1水素カルシウム2水塩と硫化バリウムを併用
すれば、5rC12・6H20等の核生成促進剤に比べ
て何ら遜色のない過冷却防止効果を発揮することが確認
された。そしてこうした効果を有効に発揮させる為の好
ましい含有率〔同じく組成物全量中の含有率っけ、燐酸
1水素カルシウム2水塩(Ca HP 04 ・2 H
zO)が0.005〜10チ(よ)好ましくは0.5〜
5チ)、硫化バリウム(BaS)が0.005〜10%
(よシ好みしくけ0.01〜lOチ)であシ、この範囲
で両者を併用することによシ過冷却を2℃程度以下に抑
えることができる。尚含有率が上記範囲未満では過冷却
防止効果が十分に発揮されず、一方上記範囲を超えると
、塩化カルシウム6水塩の絶対量が少なくなる為蓄熱量
が不足気味となる。
In this way, the freezing point can be arbitrarily adjusted by incorporating an appropriate amount of zinc chloride into calcium chloride hexahydrate. However, the supercooling phenomenon during temperature drop remains unresolved. Nucleation accelerators for preventing supercooling include <5 as described above.
rC1t・6H20, 5r(OH)z・8H20, etc. are known, and these exhibit the same supercooling prevention effect on calcium chloride hexahydrate-zinc chloride based heat storage material compositions, but the above-mentioned The disadvantage is that it is expensive. Therefore, as a result of conducting research in search of an inexpensive nucleation accelerator that can effectively prevent supercooling for the above-mentioned two-component heat storage material composition, we found that phosphoric acid It has been confirmed that when calcium monohydrogen dihydrate and barium sulfide are used together, the effect of preventing supercooling is comparable to that of nucleation promoters such as 5rC12.6H20. In order to effectively exhibit these effects, the preferred content [also the content in the total amount of the composition, calcium monohydrogen phosphate dihydrate (Ca HP 04 ・2 H
zO) is 0.005 to 10, preferably 0.5 to 10
5), barium sulfide (BaS) 0.005-10%
(The preferred setting is 0.01 to 10°C.) By using both in this range, supercooling can be suppressed to about 2°C or less. If the content is less than the above range, the supercooling prevention effect will not be sufficiently exhibited, while if it exceeds the above range, the absolute amount of calcium chloride hexahydrate will decrease, resulting in a lack of heat storage.

本発明の蓄熱材組成物は、前述の如く塩化カルシウム6
水塩を主成分とし、これに凝固点調節剤として塩化亜鉛
を、又過冷却防止用の核生成促進剤として燐酸1水素カ
ルシウム及び硫化バリウムを必須成分として含むもので
あるが、この他必要によシ適量の増粘剤を配合すること
もできる。即ち増粘剤は、液状の蓄熱材組成物中で核生
成促進剤等を安定な分散状態に保持すると共に、固体−
液体の比重差によって生ずる相分離を防止する作用があ
)、代表的な増粘剤はグリセリンである。
As mentioned above, the heat storage material composition of the present invention has calcium chloride 6
The main component is aqueous salt, which also contains zinc chloride as a freezing point regulator, and calcium monohydrogen phosphate and barium sulfide as nucleation promoters to prevent supercooling, as well as appropriate amounts as necessary. A thickener may also be added. That is, the thickener maintains the nucleation accelerator etc. in a stable dispersion state in the liquid heat storage material composition, and also maintains the solid state.
Glycerin is a typical thickener that acts to prevent phase separation caused by differences in specific gravity of liquids.

また前述の核生成促進剤と共に燐酸2水素ナトリウムや
燐酸水素2ナトリウム等を併用することも可能である。
Further, it is also possible to use sodium dihydrogen phosphate, disodium hydrogen phosphate, etc. together with the above-mentioned nucleation promoter.

〔実施例〕〔Example〕

以下、本発明に係る蓄熱材組成物の実際の配合例とその
特性を示す。
Hereinafter, actual formulation examples of the heat storage material composition according to the present invention and their characteristics will be shown.

(1)凝固点が約20℃の蓄熱材組成物第1表に示す蓄
熱材組成物のうち代表的なものについての放熱曲線を第
2図に示す。尚第2図には参考の為核生成促進剤未添加
のものの放熱曲線も併記している。
(1) Heat storage material composition having a freezing point of about 20° C. Heat release curves for typical heat storage material compositions shown in Table 1 are shown in FIG. 2. For reference, FIG. 2 also shows the heat release curve of the sample without the addition of a nucleation accelerator.

第2図からも明らかな様に、核生成促進剤未添加では著
しい過冷却現象が観察されるのに対し、本発明の蓄熱材
組成物では過冷却現象は殆んど見られない。
As is clear from FIG. 2, a significant supercooling phenomenon is observed when no nucleation accelerator is added, whereas the supercooling phenomenon is hardly observed with the heat storage material composition of the present invention.

(2)第2表に示した本発明例の基本配合において、B
aS配合率を種々変更した場合における繰返し使用時の
過冷却温度(’C)及び蓄熱性能を調べたところ第3表
の結果が得られた。
(2) In the basic formulation of the invention example shown in Table 2, B
The results shown in Table 3 were obtained when the supercooling temperature ('C) and heat storage performance during repeated use were investigated when the aS blending ratio was variously changed.

第2表 第3表の結果から導かれるBaSの好適配合率flo、
01〜10%である。
The preferred blending ratio flo of BaS derived from the results in Table 2 and Table 3,
01-10%.

(3)第4表は本発明に係る他の蓄熱材組成物を例示す
るものであシ、夫々の放熱曲線は第3図に示した通)で
ある。
(3) Table 4 illustrates other heat storage material compositions according to the present invention, and their heat release curves are as shown in FIG. 3.

この実験結果からも明らかな様に本発明で゛は、Ca 
HP 04 ” 2HtO及びBaSと共にNa2HP
O4・12H20やNaH2PO4・2H,Ot−併用
することも可能である。
As is clear from this experimental result, in the present invention, Ca
HP 04 ” Na2HP with 2HtO and BaS
It is also possible to use O4.12H20, NaH2PO4.2H, and Ot- in combination.

〔発明の効果〕〔Effect of the invention〕

本発明は以上の様に構成されておシ、潜熱発生温度を広
い範囲の任意の点に調整し得ると共に過冷却現象を著し
く抑制することができ、繰返し安定性の優れた蓄熱材組
成物を提供し得ることになった。しかも使用する凝固点
降下剤や核生成促進剤は従来剤に比べて安価に入手する
ことができ、優れた性能の蓄熱材組成物を安価に提供す
ることができる。
The present invention is constructed as described above, and provides a heat storage material composition which can adjust the latent heat generation temperature to any point within a wide range, can significantly suppress the supercooling phenomenon, and has excellent cyclic stability. I was able to provide it. Furthermore, the freezing point depressant and nucleation promoter used can be obtained at a lower cost than conventional agents, making it possible to provide a heat storage material composition with excellent performance at a low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は凝固点調節剤の配合率と凝固点の関係を示すグ
27、第2.3図は蓄熱材組成物の放熱曲線を示すグラ
フである。
FIG. 1 is a graph 27 showing the relationship between the blending ratio of the freezing point regulator and the freezing point, and FIG. 2.3 is a graph showing the heat release curve of the heat storage material composition.

Claims (1)

【特許請求の範囲】[Claims] 塩化カルシウム6水塩を主成分とする蓄熱材組成物にお
いて、全組成物中に40%(重量%:以下同じ)以下の
塩化亜鉛を凝固点調節剤として含有させる他、核生成促
進剤として燐酸1水素カルシウム及び硫化バリウムを含
有させてなることを特徴とする蓄熱材組成物。
In a heat storage material composition containing calcium chloride hexahydrate as a main component, not more than 40% (weight %: the same applies hereinafter) of zinc chloride is contained in the entire composition as a freezing point regulator, and phosphoric acid 1 is contained as a nucleation promoter. A heat storage material composition containing calcium hydrogen and barium sulfide.
JP21020284A 1984-10-05 1984-10-05 Thermal energy storage material composition Granted JPS6187774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21020284A JPS6187774A (en) 1984-10-05 1984-10-05 Thermal energy storage material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21020284A JPS6187774A (en) 1984-10-05 1984-10-05 Thermal energy storage material composition

Publications (2)

Publication Number Publication Date
JPS6187774A true JPS6187774A (en) 1986-05-06
JPH0134553B2 JPH0134553B2 (en) 1989-07-19

Family

ID=16585478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21020284A Granted JPS6187774A (en) 1984-10-05 1984-10-05 Thermal energy storage material composition

Country Status (1)

Country Link
JP (1) JPS6187774A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58185679A (en) * 1982-04-23 1983-10-29 Hitachi Ltd Heat storage material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58185679A (en) * 1982-04-23 1983-10-29 Hitachi Ltd Heat storage material

Also Published As

Publication number Publication date
JPH0134553B2 (en) 1989-07-19

Similar Documents

Publication Publication Date Title
TW201506142A (en) Paraffin latent heat storage material composition and use of paraffin composition as latent heat storage material
JPH0292986A (en) Heat accumulating composition
US4272392A (en) Hydrated Mg(NO3)2 /MgCl2 reversible phase change compositions
US4329242A (en) Hydrated Mg(NO3)2 /MgCl2 reversible phase change compositions
US4272391A (en) Hydrated Mg(NO3)2 reversible phase change compositions
US4283298A (en) Hydrated Mg(NO3)2 /NH4 NO3 reversible phase change compositions
US4273666A (en) Hydrated Mg(NO3)2 reversible phase change compositions
JPS6189284A (en) Heat storage material composition
KR20160045780A (en) Strontium bromide phase change material
JPS6187774A (en) Thermal energy storage material composition
JP3442155B2 (en) Heat storage material composition
JPH07188648A (en) Heat storage composition
US4406805A (en) Hydrated MgCl2 reversible phase change compositions
JPS6185486A (en) Heat-accumulating material composition
JPS6410032B2 (en)
US4271029A (en) Hydrated Mg(NO3)2 reversible phase change compositions
KR860000011B1 (en) Reversible phase change compositions
JPS6241281A (en) Heat storing material composition
JPS6187775A (en) Thermal energy storage material composition
JP3880677B2 (en) Latent heat storage material composition
JPS6067583A (en) Heat storage material composition
JPS61271380A (en) Composition for thermal energy storage material
JPH0450357B2 (en)
JPS61185583A (en) Heat storage material composition
JPH0554518B2 (en)