JPS6186075A - Build-up welding method of composite alloy and welding torch - Google Patents
Build-up welding method of composite alloy and welding torchInfo
- Publication number
- JPS6186075A JPS6186075A JP59208842A JP20884284A JPS6186075A JP S6186075 A JPS6186075 A JP S6186075A JP 59208842 A JP59208842 A JP 59208842A JP 20884284 A JP20884284 A JP 20884284A JP S6186075 A JPS6186075 A JP S6186075A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- metal
- nozzle
- welding
- metallic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K9/00—Arc welding or cutting
- B23K9/04—Welding for other purposes than joining, e.g. built-up welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/16—Composite materials, e.g. fibre reinforced
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Arc Welding In General (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、非金属の粉末と金属線材を溶接(オ料とし、
プラズマアークを熱源として溶接を行う技術に関するも
ので、複合合金すなわち金属と非金属が共存する組織を
呈する合金を肉盛するために利用されるものである。Detailed Description of the Invention (Industrial Field of Application) The present invention is directed to welding non-metallic powder and metal wire.
This technology relates to welding using a plasma arc as a heat source, and is used to build up composite alloys, that is, alloys that have a structure in which metals and non-metals coexist.
(従来の技術)
従来、金属の基地(以下、単に基地とよぶ)VC炭化物
等の非金属材料の粒(以下、非金属粒とよぶンが分散し
た形の、いわゆる複合合金を肉盛溶接により形成させる
方法が種々提案されでいる。(Prior art) Conventionally, so-called composite alloys in which metal bases (hereinafter simply referred to as bases) and grains of non-metallic materials such as VC carbide (hereinafter referred to as non-metallic grains) are dispersed are deposited by overlay welding. Various methods have been proposed.
その代表的をものおしては、PvllQ溶接法、或はプ
ラズマ粉体肉盛溶接法を応用し念ものであるが、いずれ
も肉盛溶接方法中の非金属粒の含有率について実際の値
と目標とする値の差が大きいという問題がありt。The most typical of these are the PvllQ welding method or the plasma powder overlay welding method, but in both cases, the actual value and target content of nonmetallic particles in the overlay welding method are There is a problem that there is a large difference between the values of t and t.
例え1r、第5図に・1−すものに1通常の1k−j
I G溶接法(/タルイナートカ”スアーク溶接/A
) k 適用し念もので、〜IIG溶接トーチ(イ)の
近傍に粉末材料の迷給lズル(口は配置し、溶接電源(
PN2)VCよって溶接線rtt何と溶接借財に)の間
を・ζφ弧され定MIGアーク1.t′Jによって形1
戊され、へIIGf8接トーチから供給さh念ンールド
−7゛ス(へ)VCよって保護された溶融金属Mtト)
lこ、溶接線トイの溶融によって’4兆rt溶滴+fJ
Iおよび、送給ノス°ルから非金属粉末材料(す)全投
入して溶接金薫図を形成する方法である。For example, 1r, Figure 5, 1-1 normal 1k-j
IG welding method (/Talinatka”sark welding/A
) k As a precaution, place the spout (opening) near the IIG welding torch (a) and remove the welding power source (
PN2) A constant MIG arc 1. Form 1 by t'J
The molten metal Mt supplied from the IIGf8 contact torch was drilled and protected by a VC.
4 trillion rt droplets + fJ due to the melting of the weld line
The second is a method in which the nonmetallic powder material is completely charged from the feed nozzle to form a weld metal smoke pattern.
4th、第6図に示すものは、bわゆるプラズマ粉体肉
盛溶接法ケもちいる方法で、非消耗電極(lりと母材(
ヲ)間にアーク拘束ノズル(ワ)を通じて点弧されたプ
ラズマアーク(fAによって形成され、/−ルドキャン
プ(ヨ)から供給された/−ルドガス(り)eでよって
保護された溶荊金に池(−に、金属粉末と非金属粉末の
混合粉末(ン)を投入して浴接金属(Δ全形成する方法
である。(以下、@者をNII C投入法、後者を混合
粉末式プラズマ法とよぶ。1次金炙基地を形成する定め
IC送給される金属桐材を一般VC基地財とよび、この
うち線材の形のものを金属線材。4th, the one shown in Fig. 6 is a method using the so-called plasma powder overlay welding method.
A plasma arc (fA) ignited through an arc restraint nozzle (W) between This is a method in which a mixed powder (n) of metal powder and non-metallic powder is poured into a pond (-) to form a bath-welded metal (Δ). The metal paulownia materials that are sent to the designated IC to form the primary kinro base are called general VC base goods, and those in the form of wire rods are metal wire rods.
粉末の形のものケ金属粉末、基地中に分散する非金属粒
を形成するために送給される非金属の粉末材料?非金属
粉末とよぶ。)
ところで、如何なる溶接法をとるにしても、基地材と非
金属粉末の各々の送給量の比率と、溶接後形成される溶
接金騙中での金属基地と非金属粒の実際の構成比率の差
を小さくfるこおが必要であり、このために次の3条件
が必要である。What about metal powders in powder form, non-metallic powder materials that are fed to form non-metallic particles that are dispersed throughout the base? It is called non-metallic powder. ) By the way, no matter which welding method is used, the ratio of the respective feeding amounts of the base material and non-metallic powder, and the actual composition ratio of the metal base and non-metallic particles in the weld metal mold formed after welding. It is necessary to reduce the difference in f, and for this purpose, the following three conditions are necessary.
〔1]溶溶接金属分の希釈による非金属粒含有率の低下
を抑制するため、母材への溶込率全最小限にとどめるこ
と。[1] In order to suppress the decrease in the non-metallic particle content due to dilution of the molten weld metal, the penetration rate into the base metal should be kept to a minimum.
し】非金属粉末がアーク熱によって溶融し、溶合金属/
1iIVCおいて合金化するのを防止するため、非金属
粉末がアークに曝される時間The小限にとどめるこ・
とっ
〔3〕飛来する非金F8扮末の粒を高い歩留で捕捉する
ため、基地財七母財の溶着によって形成される溶漕金属
池が充分な面積き深さを有することっこれらの条件を従
来の溶接法について考えてみるさ、ブす、MIG投入法
では一般に溶込率が人きく、このために所期の成分の複
合合金が出ることが難しく、筐た。溶造全小さくするた
めに入熱音生さくすると溶拳金嬉池の面積と深ざが小さ
くなる占いう問題点がある。 また、混合粉末式プラズ
マ法では溶込は生きいが、溶接中、つねに一定の酸分比
率(金属:非金属)の粉末を送給しつyけるKn金属粉
末と、非金属粉末の両者について比重1粒度分布1粒の
形状等についての複雑な関係を考慮しなけ九ばならず、
粉末材料の調整が繁雑であわ、また、金属粉末と非金属
粉末を一緒に供給するという条件下で、単一の熱源で全
組粉末を充分VC溶融させながら非金属粉末の浴塵?成
程度抑制せねばならないという相反する条件がつねに存
在するため、溶接条件の範囲が狭いという難点がある。] Non-metallic powder is melted by arc heat, forming molten metal/
1i In order to prevent alloying in IVC, the time during which the non-metallic powder is exposed to the arc must be kept to a minimum.
[3] In order to capture the flying non-gold F8 grains with a high yield, it is necessary that the weld metal pond formed by welding the seven base materials has a sufficient area and depth. Considering the conditions for conventional welding methods, the MIG injection method generally has a low penetration rate, which makes it difficult to produce a composite alloy with the desired composition. If the heat input sound is reduced in order to reduce the total size of the melt, there is a problem that the area and depth of the melt pond will become smaller. In addition, in the mixed powder plasma method, penetration is good, but during welding, powder with a constant acid content ratio (metal: non-metal) is always fed.For both Kn metal powder and non-metal powder, It is necessary to take into account the complex relationships between specific gravity, particle size distribution, shape of one particle, etc.
Adjustment of powder materials is complicated, and under the condition that metal powder and non-metal powder are supplied together, is it possible to melt the entire set of powders using a single heat source with sufficient VC while bathing the non-metal powder? Since there are always conflicting conditions that the degree of welding must be suppressed, there is a problem that the range of welding conditions is narrow.
また、プラズマアークを用いる方法では、この他に金
属粉末と非金属粉末材料?別個のノズIしから供給し、
単一アークで溶着する方法があるが、この方法では酸分
比率の問題は解決し得ても単一アークを用いるかぎり、
上記の溶融条件の問題は解決できない。Also, in the method using plasma arc, are there other metal powder and non-metal powder materials? feeding from a separate nozzle I;
There is a method of welding with a single arc, but although this method can solve the problem of acid content ratio, as long as a single arc is used,
The above problem of melting conditions cannot be solved.
なお、上記の目的に使用されている従来のプラズマアー
クトーチは、単一のプラズマアークをもちいるものであ
るから、上述し7tような問題点かあった。It should be noted that the conventional plasma arc torch used for the above purpose uses a single plasma arc, and therefore has the same problems as mentioned above.
(発明が解決しようとする問題点)
本発明方法は、上記した従来の問題点を改善するために
開発されたもので、複合合金の肉盛溶接に、いわゆるダ
ブルアークを応用することにより。(Problems to be Solved by the Invention) The method of the present invention was developed to improve the above-mentioned conventional problems by applying a so-called double arc to overlay welding of composite alloys.
肉盛された複合合金の成分ti成に精密(正確)K。Precise (accurate) K in the composition of the components of the overlaid composite alloy.
かつ、容易VC調整する方法を提供しようとするもので
ある。Moreover, the present invention aims to provide a method for easily adjusting VC.
ま念1本発明は、0合合金の肉盛溶接において。Note 1: The present invention relates to overlay welding of 0 alloy.
溶接金属中の非金属粒含有率?精密(正確)して。Nonmetal grain content in weld metal? Be precise (accurate).
かつ、容易に調整するための機構?有し、ま之。And a mechanism for easy adjustment? I have it.
少数の種類の非金額粉末ケ同時に送給する之めの機構全
有するプラズマアークトーチ?提供しようとするもので
ある。A plasma arc torch that has a mechanism for simultaneously feeding a few types of non-metallic powder? This is what we are trying to provide.
(問題点?解決する定めの手段)
本発明に係る複合合金の肉盛溶接方法は、非消耗電極と
溶接母材間、および非消耗電極と線材送給/ズル間?別
個の溶接電源に接続し、非消耗電@お溶接母材間、非消
耗電極と線材送給ノズル間の各々の間隙にプラズマアー
クを発生させつつ線材送給ノズルより金渾線材ケ、粉末
送給ノズルより炭化物等非金属の粉末?夫々送給しつつ
、金属基池中に非金属の粒か分散した組織より成る 複
合合金を溶接金属さして形成させることを特徴とするも
のである。(Problem? Determined means to solve the problem) Is the overlay welding method for composite alloys according to the present invention applicable between the non-consumable electrode and the welding base material, and between the non-consumable electrode and the wire feed/slip? By connecting to a separate welding power source, a non-consumable electric current is generated between the welding base metal and the gap between the non-consumable electrode and the wire feed nozzle, and the wire rod and powder are fed from the wire feed nozzle. Non-metallic powder such as carbide from the supply nozzle? This method is characterized by forming a composite alloy consisting of a structure in which non-metal particles are dispersed in a metal matrix while feeding the weld metal to the weld metal.
また1本発明方法に用いられる溶接トーチは、非消耗電
極およびアーク拘束ノズIしを中心部に配置すると共に
、この中心部の周囲に、金属11ililt111′を
送給するトー革本田から電気的に絶縁された線材送給ノ
ズルと、粉末と不活性カスまたは不活性力スのみ?送給
する所要本数の粉末−ガスノズIしとを所要間隔を保た
せて配置したことを特徴とするものである。In addition, the welding torch used in the method of the present invention has a non-consumable electrode and an arc restraint nozzle I arranged in the center, and around this center part, electrically connected Only an insulated wire feed nozzle, powder and inert scum or inert force? The device is characterized in that a required number of powder-gas nozzles I for feeding are arranged at required intervals.
(作用)
本発明方法は、2系統の各々独立に制御できるアーク全
もちいて基地材と母材の各々の溶融条件?相互に無関係
に制御することにより、複合合金肉盛層の品質と成分精
度を向上させるものであるつま念、本発明トーチは、異
つ之種類の非金属粉末、あるいは非金属粉末と金属粉末
をlノズルから1種類ずつ同時に送給することができ、
また。(Function) The method of the present invention uses arcs that can be independently controlled in two systems to adjust the melting conditions of the base material and base material. In summary, the torch of the present invention improves the quality and component accuracy of composite alloy overlay layers by controlling them independently of each other. One type can be fed at the same time from one nozzle.
Also.
各ノズルから噴出する不活性ガス流かアークにおよぼす
影響を均等にしてアークの偏心を防止するものである。This prevents eccentricity of the arc by equalizing the influence of the inert gas flow ejected from each nozzle on the arc.
(実箔例)
第1図は本発明の方法による溶接法の概略説明図であり
、各々独立に出力全制御できる2系統のアーク、いわゆ
るダブルアークをもちいて溶融金属池を形成し、これに
非金属粉末を投入して複合合金の溶接金属?形成するも
のである。(Example of Actual Foil) Figure 1 is a schematic explanatory diagram of the welding method according to the method of the present invention, in which a molten metal pool is formed using two arcs, so-called double arcs, each of which can fully control the output independently. Welding metal of composite alloy by adding non-metallic powder? It is something that forms.
即ち、非消耗電極1と母材B、および非消耗電極1と線
材送給ノズル3は各々溶接電源P1およびP2に図のよ
うに電気的に接続されており、ま之、金属線材5は線材
送給ノズル3によって給送される。この回路において非
消耗電極夏と母材Bの間、および非消耗電極!と全厚線
材5の間に。That is, the non-consumable electrode 1 and the base material B, and the non-consumable electrode 1 and the wire feeding nozzle 3 are electrically connected to the welding power sources P1 and P2, respectively, as shown in the figure, and the metal wire 5 is connected to the wire rod. It is fed by the feeding nozzle 3. In this circuit, between the non-consumable electrode Summer and the base material B, and the non-consumable electrode! and between the full thickness wire 5.
不活性力スを雰囲気さし、アーク拘束ノズル2を通じて
プラズマアークA1とプラズマアークA2?各々点弧し
た状態で金属線材5を送給し、該i属線材の溶融−でよ
って生じた溶滴12、および粉末送給ノズル6から圧送
さh之非金属粉末7?溶巖金属池8へ投入しつつトーチ
Ti矢印の方向へ移行させて溶接金If4!l形成する
。(溶帽金属池8はシールドキャップ10から送給され
る不活性のシールドガス1lVcよって保護されている
。)この場合、母材Bへの溶込率はプラズマアークA1
.したがって溶接電源PIの出力によって決定される。An inert force is introduced into the atmosphere, and plasma arc A1 and plasma arc A2 are generated through arc restraint nozzle 2. The metal wire 5 is fed in the ignited state, and the droplets 12 generated by the melting of the metal wire 5 and the non-metal powder 7 ? Transferring the torch Ti in the direction of the arrow while charging it into the molten metal pool 8, welding metal If4! l form. (The melting cap metal pond 8 is protected by an inert shielding gas 1lVc supplied from the shielding cap 10.) In this case, the penetration rate into the base metal B is the plasma arc A1
.. Therefore, it is determined by the output of the welding power source PI.
ま念、溶融金属池8の面積はプラズマアークAl。Just in case, the area of molten metal pool 8 is plasma arc Al.
したかつて溶接電源PIの出力とプラズマアークA2、
したかって溶接電源P2の出力の両者に依存する。(P
Iの出力によって溶融金属池8が加熱され、P2の出力
によって金属線材5の溶融速度、したがって単位時間に
溶融金属池8へ供給される溶融金属の量かほぼ決定され
る。)プラズマアークA2は母材Bに達しないのでプラ
ズマアークA1の出力、したがって溶接電源P1の出力
が一定であれば溶接電源P2の出力を調整して溶融金属
池8の面積を調整しても母材Bへの溶込率か変化するこ
とはない。このことから非金属粉末7の送給11tVC
応じて溶融金属池8の面積全精密(正確)VC調整する
ことが可能になり、複合合金溶接金絹中の非金属粒含有
率を高い精度で調整するこ七ができるのである。The output of the welding power source PI and the plasma arc A2,
Therefore, it depends on both the output of the welding power source P2. (P
The output of I heats the molten metal pool 8, and the output of P2 approximately determines the melting rate of the metal wire 5, and therefore the amount of molten metal supplied to the molten metal pool 8 per unit time. ) Since the plasma arc A2 does not reach the base metal B, if the output of the plasma arc A1, and therefore the output of the welding power source P1, is constant, even if the output of the welding power source P2 is adjusted and the area of the molten metal pool 8 is adjusted, the base metal will not reach the base metal B. The penetration rate into material B remains unchanged. From this, the supply of nonmetallic powder 7 is 11tVC.
Accordingly, it becomes possible to precisely (accurately) adjust the total area of the molten metal pool 8 (VC), and it is possible to adjust the nonmetallic particle content in the composite alloy welded gold silk with high precision.
なお、線材送給ノズル3と粉末送給ノズル6については
、これらのノズルのいずれかが、あるいは両者がプラズ
マアークトーチTVCM込1tていても1組込まれてい
なくてもさしつかえf″iない。As for the wire feed nozzle 3 and the powder feed nozzle 6, it does not matter if either or both of these nozzles include the plasma arc torch TVCM 1t or not.
第2図は上言eプラズマアークトーチの主要部を拡大し
て示し念ものであり、非消耗電極1(!:アーク拘拘束
/セル2中心孔に配置し、111財送給ノズル3お工び
粉末−ガスノズル(粉末材料と不活性ガスまたは不活性
ガスのみを送給するノズル)4はアーク拘束ノズル2の
周囲に配置する。Figure 2 is an enlarged illustration of the main parts of the e-plasma arc torch mentioned above, and shows the non-consumable electrode 1 (!: arc restraint/placed in the center hole of the cell 2, 111 goods feeding nozzle 3) A powder-gas nozzle 4 (a nozzle for delivering powder material and an inert gas or only an inert gas) is arranged around the arc restraint nozzle 2.
なお、#j財送給/ノズ3けトーキ本体から絶縁されて
いる。また、#財送給ノズル3の中心線は。In addition, it is insulated from the #j goods feeding/nozzle 3-piece talkie body. Also, the center line of #goods feeding nozzle 3 is.
アーク拘束ノズル2の下方においてトーチ中ノし・線と
交点PIにおいて45°の交差角をもって交り、粉末−
勺°スノズル4の中ICJ1+j、 アーク拘束ノズル
2の下方VC′F、−いてトーチ中ICr線と交点Pt
vcおいて45°の交差角をもって交わる。 また、上
記交点P。Below the arc restraint nozzle 2, it intersects the torch center nozzle line at an intersection point PI with an intersection angle of 45°, and the powder
Intersection point Pt with ICJ1+j in the middle of the nozzle 4, VC'F below the arc restraint nozzle 2, and the ICr line in the torch.
intersect at an intersection angle of 45° at vc. Also, the above intersection point P.
け交点P2より上方約10mK位置している。 トーチ
中心線と、粉末−ガスノズル4.或は線材送給ノズル3
の中心線の各延長線の交点P、、P、の位置関係?この
ように配置するの汀、この位置関係が逆であれば金属線
材5上のアーク陽極点およびその近傍に非金便粉末7が
接触、付着、溶融してアークA2を攪乱し、金属線材5
の正常な溶@を妨害するのでこれ全避けるためである。It is located approximately 10 mK above the intersection point P2. Torch centerline and powder-gas nozzle4. Or wire feeding nozzle 3
What is the positional relationship between the intersection points P, ,P, of each extension line of the center line? However, if this positional relationship is reversed, the non-metallic powder 7 will come into contact with, adhere to, and melt the arc anode point on the metal wire 5 and its vicinity, disturbing the arc A2 and causing the metal wire 5
This is to be completely avoided since it interferes with the normal dissolution of the water.
また、粉末−ガスノズル4はトーチ内部において非金
属粉末の送給経路4Iと接続される七共に0口金’hV
cより外部の送給水−ス43Vc接続されている。粉末
−ガスノズル4から送給された不活性ガス流l−1/−
ルドノズル(キャップ10)から流出し、7−ルドガス
11として機能し、金属線材5の溶融から溶融金属池8
の形成、凝固に至る範囲にわたって溶融金属および非金
属粉末7を保護する。Moreover, the powder-gas nozzle 4 is connected to the non-metallic powder feeding path 4I inside the torch, and both of the powder-gas nozzles 4 have 0 base 'hV'.
c is connected to an external water supply source 43Vc. Powder - inert gas flow l-1/- delivered from gas nozzle 4
It flows out from the molten metal nozzle (cap 10), functions as a 7-metal gas 11, and melts the metal wire 5 into a molten metal pool 8.
The molten metal and non-metal powder 7 are protected over a range from formation to solidification.
第3図はト記トーチ端面におけるノズルの配置状態を示
すものであり、同図中、符号20・3゜ゆ4゜は、プラ
ズマアーク拘束ノズル2・線材送給ノズル3・粉末−ガ
スノズル4の開口部である。Figure 3 shows the arrangement of the nozzles on the end face of the torch. It is an opening.
ナオ、上記粉末−ガスノズル4の数は1本実施例(第3
図)では6本を、上記ノズル2の周囲に所要の間隔を保
って配置して、溶接時には必要な数の粉末−ガスノズル
からタングステン炭化物粉末全不活性ガスにより圧送し
、非金属粉末の送給に使用しない粉末−ガスノズルから
は単に不活性力°スのみ全送給した。また、各粉末−ガ
スノズルにおける不活性ガスの流量は全ノズルについて
等量とした。Nao, the number of powder gas nozzles 4 is one in the embodiment (third example).
In Figure), 6 nozzles are arranged at the required intervals around the nozzle 2, and during welding, the tungsten carbide powder is fed under pressure from the required number of powder-gas nozzles using completely inert gas, and the non-metallic powder is fed. Powder-gas nozzles that were not used for this purpose simply delivered all of the inert gas. Further, the flow rate of the inert gas in each powder-gas nozzle was made equal for all nozzles.
上記実施例において、粉末−ガスノズル4を複数とした
のけ、上述したように、異なった種類の非金属粉末、あ
るいけ非金属粉末上金属粉末?Iノズルかも1種類ずつ
同時に送給すること全も可能にするためである。 また
、ノズル数については。In the above embodiment, although there are a plurality of powder gas nozzles 4, different kinds of non-metal powders, or maybe non-metal powder or metal powder? This is to make it possible to simultaneously feed one type of ink using the I nozzle. Also, regarding the number of nozzles.
1本でも差支えないが、複数本が好ましく、その場合は
、各ノズルから噴出する不活性ガス流がアークにおよぼ
す影Vを均等にしてアークの偏心全防止する友め、全ノ
ズルから等量の不活性ガス?送給する必要があり1通常
必要とされるノズル1本当りの粉末搬送ガス流量(3乃
至617分)と。One can be used, but it is preferable to have multiple. In that case, an equal amount of gas is removed from all the nozzles to equalize the shadow V cast on the arc by the inert gas flow ejected from each nozzle and completely prevent eccentricity of the arc. Inert gas? The powder carrier gas flow rate per nozzle (3 to 617 minutes) that needs to be delivered is typically required.
/−ルドガス全流量(15乃至201 /分)七のかね
あいから、粉末搬送ガスを基準にとれば、2本ではシー
ルドガスとしてのvtfl[が不足し、7本ではシール
ドガスとしての流量が過多になって不経済であるという
ことから3乃至6本?用いるのが最も好ましい。/- Total flow rate of the shield gas (15 to 201/min) 7 If the powder carrier gas is taken as the standard, 2 pipes will not have enough vtfl as a shielding gas, and 7 pipes will have an excessive flow rate as a shielding gas. 3 to 6 bottles because it is uneconomical? Most preferably, it is used.
′:X4図は溶接7ステムの概略を示すものであり溶接
室′#、Pl、溶接電源P2け各々プラズマアークトー
チTの非消耗電極1b母材B、および非消耗電極1と?
fM材送給/ズノズに接続されている。Figure ':
Connected to fM material feed/zunozu.
不活性力°ス供給装@13汀トーキTおよび粉末送給装
置14iで配管により接続きれている。 iた、粉末送
給装置14はトーチT(粉末送給ノズル6)K配管によ
って接続されており、この配管を通じて非金椙粉末(7
)はトーチTIc供給される。The inert force supply device @ 13 is connected to the pipe T and the powder feed device 14i by piping. In addition, the powder feeding device 14 is connected to the torch T (powder feeding nozzle 6) by K piping, and through this piping non-Kanasu powder (7
) is supplied with torch TIc.
」−記ンステムにより、厚さ50間の炭素鋼(825C
) ノ母1tiiMi+c、 JIS規格Y308該
当化学li分の溶接用に6A FAと、タングステンカ
ーバイド粉末(粒度一部++45ツノ7ユ)全溶接材料
とし1表Nて示すような2種類の溶接条件により肉盛溶
接を実施し、各条件について巾100fi、長さ200
yrsの溶接金属を形成させた。 なお、肉盛層数は
1層とした。- The stem is made of carbon steel (825C) with a thickness of between 50
) 6A FA and tungsten carbide powder (particle size part ++45 horn 7U) for welding of 1tiiMi+c, JIS standard Y308 applicable chemical, and tungsten carbide powder (particle size part ++45 horns 7U) were used as total welding materials. Perform welding, width 100fi, length 200fi for each condition
A weld metal of yrs was formed. Note that the number of overlay layers was one.
表1 タングステン炭化物肉盛溶接条件上記の試験で得
られ念複合合金中のタングステンカーバイド含有率を調
査するため、肉盛層を放電加工により切出して比重を測
定した。その結果を表2に示す。Table 1 Tungsten carbide build-up welding conditions In order to investigate the tungsten carbide content in the composite alloy obtained in the above test, the build-up layer was cut out by electrical discharge machining and its specific gravity was measured. The results are shown in Table 2.
表2肉盛層比重測定結果
なお、溶接試験は表2の各含有率目標値について3回行
い、各回につき5個の比重試験片(lcfn平方)を抽
出して測定した。比重側定値はその平均値(各目標値に
つきデータ数15)である。Table 2 Result of Specific Gravity Measurement of Overlay Layer The welding test was performed three times for each target content value in Table 2, and five specific gravity test pieces (lcfn square) were extracted and measured each time. The fixed value on the specific gravity side is the average value (the number of data for each target value is 15).
比重から換算(下記換算式参照)設定りンク゛ステンカ
ーバイド含有率は目標値と4〜5%の誤差全示している
が、前述の従来技術による場合の誤差はlO〜20係で
あるので、これに比較すれば格段に小さく、実用的VC
(’i問題にならない程度のものである。Converted from specific gravity (refer to the conversion formula below) The set carbon steel carbide content shows a total error of 4 to 5% from the target value, but since the error in the case of the conventional technology mentioned above is 10 to 20, A much smaller and practical VC in comparison.
(This is not a problem.
(換算式)
P:タングステンカーバイド含有率(%)t:複合合金
肉盛溶接金属比重
量:基地材比重(79)
C:タングステンカーバイド比重(16,8)(発明の
効果)
不発明方1Pによれば、肉盛された複合合金の成分溝[
戊k fi’7密(正5i )にかつ容易に調整するこ
とができる優れ念効果を奏するものである。(Conversion formula) P: Tungsten carbide content (%) t: Specific weight of composite alloy overlay weld metal: Specific gravity of base material (79) C: Specific gravity of tungsten carbide (16,8) (Effect of invention) For those who did not invent 1P According to the composition groove of the overlaid composite alloy [
It produces an excellent mental effect that can be easily adjusted.
1次1本発明方法に用いらねる溶接トーチは。1. The welding torch used in the method of the present invention.
溶接金属中の非金属粒含有率全精密(正確)Kかつ容易
に調整することができると共に、複数の種類の非金属粉
末(或は、非金属粉末と金属粉末)?同時に送給するこ
とができ、更しで、各ノズルから噴出する不活性ガス流
がアークにおよぼす影響を均等−にして該アークの偏心
を防止できる笛の優れた効果?奏するものである。The content of non-metallic particles in the weld metal can be precisely and easily adjusted, as well as multiple types of non-metallic powder (or non-metallic powder and metallic powder)? What is the excellent effect of a whistle that can simultaneously feed the gas and prevent eccentricity of the arc by equalizing the influence of the inert gas flow ejected from each nozzle on the arc? It is something to play.
第1図乃至第4図は本発明の実施例図を示すものであり
、第1図は本発明方法の概略説明図、第2図は本発明方
法に用いられる溶接トー拳の要部拡大端面図、第3図は
該トーチ要部の1部省略底面図、第4図は本発明方法の
溶接システム?示す概略説明図である。
第5図及びff16図は従来のMIG溶接法及びプラズ
マ8体肉盛溶接法の概略説明図である。
I・・・非消耗電極、 2・・アーク拘束ノズ/l/
43・・・線ケ送給ノズル、 4・・・粉末−ガスノ
ズル。
5・金属線材、 6・・・粉末送給ノズル、 7・
・非金属粉末、10・・・/−ルドキャンプ、T トー
チ、 PI・・・Ill P2 ・電源。Figures 1 to 4 show examples of the present invention, Figure 1 is a schematic explanatory diagram of the method of the present invention, and Figure 2 is an enlarged end view of the main part of the welding toe fist used in the method of the present invention. Figure 3 is a partially omitted bottom view of the main parts of the torch, and Figure 4 is the welding system of the present invention method. FIG. FIG. 5 and FIG. ff16 are schematic explanatory diagrams of the conventional MIG welding method and the plasma 8-body overlay welding method. I...Non-consumable electrode, 2...Arc restraint nozzle/l/
43... Line feeding nozzle, 4... Powder-gas nozzle. 5. Metal wire, 6. Powder feeding nozzle, 7.
・Nonmetal powder, 10.../- Rudcamp, T torch, PI...Ill P2 ・Power source.
Claims (2)
材送給ノズル間を別個の溶接電源に接続し、非消耗電極
と溶接母材間、非消耗電極と線材送給ノズル間の各々の
間隙にプラズマアークを発生させつつ線材送給ノズルよ
り金属線材を、粉末送給ノズルより炭化物等非金属の粉
末を送給しつつ、金属基地中に非金属の粒が分散した組
織より成る、複合合金を溶接金属として形成させること
を特徴とする複合合金の肉盛溶接方法。(1) Connect the areas between the non-consumable electrode and the welding base material and between the non-consumable electrode and the wire feeding nozzle to separate welding power sources, and It consists of a structure in which non-metallic particles are dispersed in a metal base while generating a plasma arc in each gap while feeding metal wire from the wire feeding nozzle and feeding non-metallic powder such as carbide from the powder feeding nozzle. , a method for overlaying a composite alloy, characterized by forming a composite alloy as a weld metal.
置すると共に、この中心部の周囲に、金属線材を送給す
るトーチ本体から電気的に絶縁された線材送給ノズルと
、粉末と不活性ガスまたは不活性ガスのみを送給する所
要本数の粉末−ガスノズルとを所要間隔を保たせて配置
したことを特徴とする複合合金の肉盛溶接トーチ。(2) A non-consumable electrode and an arc restraint nozzle are placed in the center, and around this center are a wire feed nozzle that is electrically insulated from the torch body that feeds the metal wire, and a wire feed nozzle that feeds the metal wire and an inert A composite alloy overlay welding torch characterized in that a required number of powder-gas nozzles for feeding only gas or inert gas are arranged at a required interval.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59208842A JPS6186075A (en) | 1984-10-03 | 1984-10-03 | Build-up welding method of composite alloy and welding torch |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59208842A JPS6186075A (en) | 1984-10-03 | 1984-10-03 | Build-up welding method of composite alloy and welding torch |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6186075A true JPS6186075A (en) | 1986-05-01 |
JPS6241836B2 JPS6241836B2 (en) | 1987-09-04 |
Family
ID=16563002
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59208842A Granted JPS6186075A (en) | 1984-10-03 | 1984-10-03 | Build-up welding method of composite alloy and welding torch |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6186075A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6397362A (en) * | 1986-10-13 | 1988-04-28 | Kawasaki Steel Corp | Surface hardening build-up welding method |
JP2016193457A (en) * | 2011-03-31 | 2016-11-17 | ノルスク・チタニウム・コンポーネンツ・アーエスNorsk Titanium Components As | System for organizing metal body by solid freeform fabrication, and method for producing three-dimensional object of metal material by solid freeform fabrication |
CN108788406A (en) * | 2018-07-04 | 2018-11-13 | 西南交通大学 | A kind of light metal-based composite element and preparation method thereof |
KR20190111558A (en) * | 2018-03-23 | 2019-10-02 | 한양대학교 산학협력단 | Plasma generator |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63183207A (en) * | 1987-01-23 | 1988-07-28 | Honda Motor Co Ltd | Variable displacement type turbine |
CN110548961A (en) * | 2019-10-15 | 2019-12-10 | 湖北汽车工业学院 | metal-based layered composite material and electric arc additive manufacturing method thereof |
CN111112794A (en) * | 2020-01-14 | 2020-05-08 | 三峡大学 | Third-phase reinforced metal matrix composite material arc additive manufacturing method and equipment |
-
1984
- 1984-10-03 JP JP59208842A patent/JPS6186075A/en active Granted
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6397362A (en) * | 1986-10-13 | 1988-04-28 | Kawasaki Steel Corp | Surface hardening build-up welding method |
JP2016193457A (en) * | 2011-03-31 | 2016-11-17 | ノルスク・チタニウム・コンポーネンツ・アーエスNorsk Titanium Components As | System for organizing metal body by solid freeform fabrication, and method for producing three-dimensional object of metal material by solid freeform fabrication |
US10421142B2 (en) | 2011-03-31 | 2019-09-24 | Norsk Titanium As | Method and arrangement for building metallic objects by solid freeform fabrication using plasma transferred arc (PTA) torches |
US11213920B2 (en) | 2011-03-31 | 2022-01-04 | Norsk Titanium As | Method and arrangement for building metallic objects by solid freeform fabrication |
KR20190111558A (en) * | 2018-03-23 | 2019-10-02 | 한양대학교 산학협력단 | Plasma generator |
CN108788406A (en) * | 2018-07-04 | 2018-11-13 | 西南交通大学 | A kind of light metal-based composite element and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPS6241836B2 (en) | 1987-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3071678A (en) | Arc welding process and apparatus | |
EP0234848B1 (en) | A method for applying a weld bead to a thin section of a substrate | |
US5043548A (en) | Axial flow laser plasma spraying | |
US5004886A (en) | Method of applying wear-resistant layer and consumable electrode for carrying out the method | |
US11738400B2 (en) | Additive manufacturing system and additive manufacturing method | |
US4689463A (en) | Welding apparatus method for depositing wear surfacing material and a substrate having a weld bead thereon | |
WO2006133034A1 (en) | Direct metal deposition using laser radiation and electric arc | |
JP6227808B2 (en) | Thermal spray assembly and method using thermal spray assembly | |
US4745256A (en) | Narrow substrate having weld bead of powdered metal | |
US2847555A (en) | High pressure arc process and apparatus | |
CN108608126B (en) | Plasma shunting consumable electrode arc welding device and welding method | |
CN212330013U (en) | Additive manufacturing system | |
JPH0647168B2 (en) | Method for producing metal substrate having surface abrasion material deposited thereon | |
DE2748519A1 (en) | HARD COATING WELDING DEVICE AND METHOD OF USING THE SAME | |
EP3670061A1 (en) | Hybrid electroslag cladding | |
JPS6186075A (en) | Build-up welding method of composite alloy and welding torch | |
RU2350441C2 (en) | Process of receiving of metal coating by overlaying welding method with ultra-fine grained structure and reinforced particles in nanoscale range | |
US5441554A (en) | Alloy coating for aluminum bronze parts, such as molds | |
CN108637256A (en) | The electric arc fuse increasing material manufacturing method of porous material | |
JPH0675792B2 (en) | Plasma arc welding method | |
EP1147844B1 (en) | Method of plasma powder brazing | |
CA3175022A1 (en) | Welding electrode with functional coatings | |
WO2012113019A1 (en) | Method of forming durable working surfaces | |
Bai et al. | Research on microstructure and properties of 304 stainless steel made by MIG filler additive manufacturing | |
EP1570939B1 (en) | Submerged arc welding process |