JPS6186048A - Device for removing casting mold in investment casting method - Google Patents

Device for removing casting mold in investment casting method

Info

Publication number
JPS6186048A
JPS6186048A JP20602684A JP20602684A JPS6186048A JP S6186048 A JPS6186048 A JP S6186048A JP 20602684 A JP20602684 A JP 20602684A JP 20602684 A JP20602684 A JP 20602684A JP S6186048 A JPS6186048 A JP S6186048A
Authority
JP
Japan
Prior art keywords
mold
microwave
fugitive
model
successively
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20602684A
Other languages
Japanese (ja)
Inventor
Yoshiro Hayashi
芳郎 林
Yoshio Ekino
浴野 芳夫
Isamu Yuki
勇 結城
Masahiro Taguchi
田口 正浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP20602684A priority Critical patent/JPS6186048A/en
Publication of JPS6186048A publication Critical patent/JPS6186048A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • B22C9/043Removing the consumable pattern

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To provide a titled removing device which removes successively and satisfactorily expendable patterns from the lower part by carrying and transferring casting molds contg. the expendable patterns into a shielding box while rotating said molds, irradiating microwaves thereto and raising successively the bottom end of a shielding part. CONSTITUTION:The casting molds 3 contg. the expendable patterns by an investment casting method are carried and transferred into the shielding box 1 while the molds are rotated by revolving shafts 7. The microwaves are irradiated through irradiation ports 4 of the box 1 into said box and the bottom end of the microwave shielding member 2 is successively raised. The expendable patterns are successively and successively heated from the lower part to melt and flow out. The casting molds contg. the patterns are thus satisfactorily removed and ejected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はインベストメント鋳造法(精密鋳造法)におけ
る鋳型の脱型装置に関し、特にマイクロ波を利用するイ
ンベストメント鋳造法における鋳型の脱型装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a mold removal device for an investment casting method (precision casting method), and particularly to a mold removal device for an investment casting method using microwaves.

〔従来の技術〕[Conventional technology]

インベストメント鋳造法で鋳型を作製するには、周知の
ように、ろう、パラフィン、尿素樹脂(ユリア樹脂)、
ポリスチレン等の熱や水によって溶出可能な消失性物質
より作られた製品模型を、1個あるいは多数個用意し、
これを同じ材質よりなり鋳型の湯道部となる鋳造方案部
に接合させる。
To make a mold using the investment casting method, wax, paraffin, urea resin (urea resin),
Prepare one or more product models made from fugitive substances such as polystyrene that can be eluted by heat or water.
This is joined to a casting plan part made of the same material and serving as the runner part of the mold.

このように、多数の製品模型を湯道部に付けたものをツ
リーと称している。このツリーの表面に、周知の方法で
耐火物泥漿(スラリー)と耐火砂で被覆層を形成させて
鋳型をつくる。次いで、ツリー表面に形成した被ri層
(鋳型)を十分乾燥させた後、熱や水を用いて消失性模
型を除去し、脱型を行う。この脱型法には多(の種類が
あり、加熱蒸気を用いるオートクレーブ脱型法、高温の
加熱炉で一気に行う熱1#撃法等は広く知られているが
、マイクロ波を用いるのもその一つである。
In this way, a large number of product models attached to a runner is called a tree. A mold is made by forming a coating layer on the surface of this tree using refractory slurry and refractory sand using a well-known method. Next, after sufficiently drying the ri-covered layer (mold) formed on the tree surface, the fugitive model is removed using heat or water, and the mold is removed. There are many types of demolding methods, including the autoclave demolding method that uses heated steam, and the heat 1# bombardment method that uses a high-temperature heating furnace. There is one.

マイクロ波脱型法の原理は、マイクロ波が通常の方法で
作られた鋳型の内側にある誘電体物質を含む消失性物質
に作用して発熱させ、その熱によって消失性物質を溶か
し出すことにある。この方法は、比較的WIRな装置で
、消失性物質を劣化させずに回収することができ、模型
等が融解する際に発生するガスも少なく、また発生した
ガスも常温、常圧下なので簗めやずいという利点がある
ほか、設備が簡単で小型化することができ、回収した消
失性物質の劣化が少ないので再生利用も可能である等、
コスト的なメリットも大きい。
The principle of microwave demolding is that microwaves act on fugitive substances, including dielectric materials, inside a mold made using a conventional method, generating heat, and the heat dissolves the fugitive substances. be. This method uses a relatively WIR device and can recover fugitive substances without degrading them, generates little gas when the model melts, and the gas generated is at room temperature and pressure, so it is easy to use. In addition to having the advantage of being yazui, the equipment is simple and compact, and the recovered fugitive substances do not deteriorate much, so they can be recycled.
There are also great cost advantages.

しかしながら、このマイクロ波脱型法は、オートクレー
ブ脱型法、熱衝撃法に比べJBi!型時に鋳型が割れや
すいという欠点をもっており、特にツリーのような形状
の脱型には不適当である。その原因の一つとして、熱出
力が小さい場合が多く、常温、常圧下では消失性物質が
徐々に昇温しでいく過程で膨張により外側の鋳型を割っ
てしまうことが挙げられる。他の原因としては、消失性
物質より発生する蒸気やガスが、鋳型内部から速やかに
抜は出ることができず、これら蒸気やガスの圧力で鋳型
が割れるものと考えられる。
However, compared to the autoclave demolding method and the thermal shock method, this microwave demolding method has JBi! It has the disadvantage that the mold easily breaks during molding, making it particularly unsuitable for demolding a tree-like shape. One of the reasons for this is that the thermal output is often small, and at room temperature and pressure, the fugitive substance expands and cracks the outer mold as it gradually heats up. Another reason is that steam and gas generated by fugitive substances cannot be quickly extracted from the inside of the mold, and the mold cracks due to the pressure of these steam and gas.

上記のような原因により生じる鋳型の割れを防ぐには、
鋳造方案の設計に当たって、インベストメント鋳造法で
いう押湯口をまず最初に、次いで湯道部、頭部、そして
製品模型の順に熔かし出すように、形状、肉厚に工夫を
こらす必要があった。
To prevent mold cracks caused by the causes mentioned above,
When designing the casting method, it was necessary to consider the shape and wall thickness so that the feeder in the investment casting method would be melted first, then the runner, the head, and then the product model. .

しかしながら、多くの場合、湯道部や製品模型の形状で
溶出の仕方が異なる場合が多く、全てのものを健全な状
態で脱型させるには多くの試験と試行錯誤が必要である
。このため、マイクロ波を利用した脱型には高度の熟練
技術を要し、しかもその手間と労力は多大であり、その
利用は限られていた。
However, in many cases, the way of elution differs depending on the shape of the runner and product model, and it takes many tests and trial and error to remove everything from the mold in a healthy state. For this reason, demolding using microwaves requires a highly skilled technique and requires a great deal of time and effort, so its use has been limited.

そこで、本件出願人は、先にマイクロ波を利用した脱型
法において生じる鋳型割れの問題を、鋳造方案の設計に
頼ることなく、鋳型内の消失性物質のマイクロ波照射個
所を時間と共に変えてツリーの溶出を速やかに行わせる
ことにより解決すべく、脱型すべき消失性物質を内蔵す
る鋳型をテーブル上に載置し、この鋳型をマイクロ波遮
蔽物で′5tい、遮蔽物またはテーブルのいずれか一方
もしくは両方を移動させてマイクロ波を照射する方法を
提案した(特公昭59−5382号、特公昭59−53
83号)。
Therefore, the present applicant solved the problem of mold cracking that occurs in the demolding method using microwaves by changing the microwave irradiation point of the fugitive substance in the mold over time, without relying on the design of the casting method. In order to solve the problem by causing the elution of the tree to occur quickly, a mold containing a fugitive substance to be demolded is placed on a table, the mold is covered with a microwave shield, and the mold is placed between the shield and the table. He proposed a method of moving one or both of them and irradiating them with microwaves (Special Publication No. 59-5382, Special Publication No. 59-53
No. 83).

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記特公昭59−5382号および特公昭59−538
3号によれば、従来のオートクレーブ脱型法または熱衝
撃法に比べ、当該明細書に記載した如く種々の利点を有
している。
The above-mentioned Special Publication No. 59-5382 and Special Publication No. 59-538
According to No. 3, it has various advantages over the conventional autoclave demolding method or thermal shock method as described in the specification.

しかしながら、この方法は、ハツチ処理で利用するとき
は問題がないが、量産を目的とする場合には通さないと
いう問題がある。
However, although this method has no problems when used in hatch processing, it has the problem that it cannot be used for mass production.

本発明は上記従来技術の問題を解決するために ゛なさ
れたもので、本発明の技術的課題は、連続的な脱型を可
能とすることにある。
The present invention has been made to solve the problems of the prior art described above, and the technical problem of the present invention is to enable continuous demolding.

〔問題点を解決するための手段〕[Means for solving problems]

かかる技術的課題は、次のインベストメント鋳造法にお
ける鋳型の脱型装置によって達成される。
This technical problem is achieved by a mold removal device in the following investment casting method.

即ち、本発明のインベストメント鋳造法における鋳型の
成型装置は、脱型すべき消失性模型を内蔵する鋳型の搬
入、搬出が行われると共に、この鋳型の搬入、搬出の間
にマイクロ波による脱型を行つタメのマイクロ波照射口
を備えたシールド箱と、このシールド箱内に装着され、
鋳型の搬送方向に沿って遮蔽部下端が上がり、遮蔽面積
が徐々に小さくなっているマイクロ波遮蔽部材と、前記
鋳型を回転可能に載置したターンテーブルと、このター
ンテーブルを鋳型搬送方向に移動させる駆動手段とを有
することを特徴としている。
That is, the mold forming apparatus in the investment casting method of the present invention carries in and out a mold containing a fugitive model to be demolded, and also performs demolding using microwaves between the loading and unloading of the mold. A shield box equipped with a microwave irradiation port for heating, and a shield box installed inside this shield box,
A microwave shielding member whose lower end of the shield rises along the mold transport direction and whose shielding area gradually decreases, a turntable on which the mold is rotatably mounted, and the turntable is moved in the mold transport direction. The invention is characterized in that it has a driving means for driving.

〔作用〕[Effect]

本発明のインベストメント鋳造法における鋳型の脱型装
置によれば、回転するターンテーブル上に載置された鋳
型がシールド箱内を搬送される間にマイクロ波が照射さ
れて鋳型の成型が行われる。
According to the mold demolding device for the investment casting method of the present invention, the mold placed on the rotating turntable is irradiated with microwaves and molded while the mold is being transported within the shield box.

このとき、マイクロ波遮蔽部材が、鋳型の搬送方向に向
かって遮蔽部下端が徐々にまたは段階的に上がるように
形成されているため、搬送されるにつれて鋳型のマイク
ロ波遮蔽部材から露出される部分が増え、露出される順
序に従って、鋳型内の消失性模型は押湯口部から湯道部
、頭部、製品部と順次はぼ最大効率で熔融、除去される
At this time, since the microwave shielding member is formed so that the lower end of the shielding gradually or stepwise rises in the conveying direction of the mold, the portion of the mold that is exposed from the microwave shielding member as it is conveyed. The fugitive model in the mold increases and is exposed in the order in which it is melted and removed from the feeder mouth, runner, head, and product in order at almost maximum efficiency.

〔発明の効果〕〔Effect of the invention〕

以上より、本発明のインベストメント鋳造法における鋳
型の脱型装置によれば、以下の効果を奏する。
As described above, according to the mold removing device in the investment casting method of the present invention, the following effects are achieved.

(イ)鋳型がシールド箱内を搬送されるにつれて、鋳型
へのマイクロ波照射面積が増え、鋳型内の消失性模型は
下方より順次溶出されることになる。
(a) As the mold is transported through the shield box, the microwave irradiation area of the mold increases, and the fugitive models in the mold are sequentially eluted from below.

従って、鋳型をシールド箱内をマイクロ波を照射しつつ
搬送するだけで自動的に消失性模型の溶出が効率よく行
われるため、連続的に生産ができ、大量生産が可能とな
る。
Therefore, simply by transporting the mold inside the shield box while irradiating it with microwaves, the fugitive model is automatically and efficiently eluted, allowing continuous production and mass production.

(ロ)鋳型に作用する電界密度の部分的不均一が生じな
いため、消失性模型は押湯口部、湯道部、頭部、製品部
と順次はぼ同一の速度でスムーズに鋳型外に溶は出る。
(b) Since local non-uniformity of the electric field density acting on the mold does not occur, the fugitive model melts smoothly out of the mold at approximately the same speed in the feeder mouth, runner, head, and product parts. comes out.

従って、鋳型に無理な力が加わらず、クラック等が発生
しない。また、消失性模型の劣化も少なく、再利用しゃ
すい状態となる。
Therefore, no excessive force is applied to the mold, and no cracks or the like occur. Furthermore, the deterioration of the disappearing model is minimal, making it easy to reuse.

〔実施例〕〔Example〕

次に、本発明の実施例を図面を参考にして説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

ここで、第1図は本発明の実施例に係るインベストメン
ト鋳造法における鋳型の脱型装置を示す概略構成図、第
2図は第1図のII−n線断面図である。
Here, FIG. 1 is a schematic configuration diagram showing a mold removing device in an investment casting method according to an embodiment of the present invention, and FIG. 2 is a sectional view taken along the line II-n in FIG. 1.

図中、1は断面矩形のシールド箱であり、細長いトンネ
ル形状をしている。このシールド箱lの上壁面には断面
コ字形のマイクロ波遮蔽部材2が下方に開口部を向けた
形で取り付けられている。
In the figure, 1 is a shield box with a rectangular cross section, and is in the shape of an elongated tunnel. A microwave shielding member 2 having a U-shaped cross section is attached to the upper wall surface of the shielding box l with its opening facing downward.

このマイクロ波遮蔽部材2はシールド箱1内を長手方向
に延在して設けられ、鋳型3の搬送方向(第1図の矢印
A方向)に沿って、鋳型3を覆うマイクロ波遮蔽部材2
の下端が段階的に高くなり、鋳型3を覆う面積が徐々に
少なくなるように形成されている。また、シールド箱l
の側部には、マイクロ波照射口4が長手方向に等間隔で
取り付けられており、シールド箱lの底部には、長手方
向に細長い孔5が形成されている。
This microwave shielding member 2 is provided to extend in the longitudinal direction inside the shield box 1, and covers the mold 3 along the transport direction of the mold 3 (direction of arrow A in FIG. 1).
The lower end of the mold 3 becomes higher in stages, and the area covering the mold 3 gradually decreases. Also, shield box l
Microwave irradiation ports 4 are installed at equal intervals in the longitudinal direction on the side of the shield box 1, and elongated holes 5 are formed in the bottom of the shield box 1 in the longitudinal direction.

6はマイクロ波遮蔽性物質で形成されたターンテーブル
であり、このターンテーブル6上に鋳型3が載置されて
いる。このターンテーブル6は回転軸7により支持され
ており、回転軸7は図示しない駆動手段により、回転し
つつ鋳型3の搬送方向に、シールド箱lの底部に設けら
れた孔5にガイドされて移動する。
6 is a turntable made of a microwave shielding material, and the mold 3 is placed on this turntable 6. This turntable 6 is supported by a rotating shaft 7, and the rotating shaft 7 is rotated by a drive means (not shown) and moved in the conveying direction of the mold 3 while being guided by a hole 5 provided at the bottom of the shield box l. do.

ターンテーブル6上に載置される消失性模型を内蔵した
鋳型3は、第2図に示す構成を有する。
The mold 3 containing the fugitive model placed on the turntable 6 has the configuration shown in FIG. 2.

叩ち、第2図において、8はマイクロ波を吸収して発熱
する誘電体物質で形成されたツリー(消失性模型)であ
り、多数の製品模型9を頭部10を介して湯道部IIに
取付け、湯道部11の一端には押湯口部12が取り付け
られている。この消失“性模型8の周囲にはマイクロ波
透過性の耐火物質からなる鋳型3が形成されている。
In FIG. 2, 8 is a tree (disappearing model) formed of a dielectric material that absorbs microwaves and generates heat, and a large number of product models 9 are passed through the head 10 to the runner section II A feeder opening 12 is attached to one end of the runner 11. A mold 3 made of a microwave-transparent refractory material is formed around this disappearing model 8.

この消失性模型8を内蔵した鋳型3を、シールド箱lに
設けたターンテーブル6上に押湯口部12を下にして載
置する。
The mold 3 containing the fugitive model 8 is placed on the turntable 6 provided in the shield box 1 with the feeder mouth 12 facing down.

次に、作動を説明する。Next, the operation will be explained.

まず、ターンテーブル6上に消失性模型8を内蔵した鋳
型3を押湯口部11を下にして載置した後、回転軸7を
回転させながら、一定間隔で順次鋳型3をシールド箱1
内に搬入する。同時に、シールド箱l内ではマイクロ波
照射口4からマイクロ波が鋳型3に向けて照射される。
First, the mold 3 containing the fugitive model 8 is placed on the turntable 6 with the riser mouth 11 facing down, and then the mold 3 is placed one after another at regular intervals into the shield box 1 while rotating the rotary shaft 7.
be brought inside. At the same time, microwaves are irradiated toward the mold 3 from the microwave irradiation port 4 inside the shield box l.

シールド箱1内に搬入された鋳型3は、マイクロ波遮蔽
部材2でその一部を遮蔽され、マイクロ波を照射されつ
つ第1図の矢印A方向に搬送される。このとき、シール
ド箱内に搬入された直後(第1図のX。
The mold 3 carried into the shield box 1 is partially shielded by the microwave shielding member 2, and transported in the direction of arrow A in FIG. 1 while being irradiated with microwaves. At this time, immediately after being carried into the shield box (X in Figure 1).

の領域)は、消失性模型8の押湯口部12の部分を除き
、他の部分はマイクロ波遮蔽部材2で遮蔽されているた
め、押湯口gr<r2のみがマイクロ波を吸収して発熱
し溶出する。続いて、鋳型3が搬送されるに従い、マイ
クロ波を集中して受ける部分が拡大し、押湯口部12か
ら湯道部11、頭部10、製品模型9が順次溶は出す。
2), except for the feeder port 12 of the fugitive model 8, the other parts are shielded by the microwave shielding member 2, so only the feeder port gr<r2 absorbs microwaves and generates heat. Elute. Subsequently, as the mold 3 is conveyed, the area receiving concentrated microwaves expands, and melt is sequentially emitted from the feeder opening 12 to the runner 11, the head 10, and the product model 9.

そして、シールド箱1の最終端近傍(第1図のXiの領
域)に近づくと、鋳型3全体がマイクロ波遮蔽部材2で
覆われる部分がなくなり、鋳型3内部の消失性模型8の
最上端にマイクロ波が吸収され溶出が完了する。
Then, when approaching the final end of the shield box 1 (area Xi in FIG. 1), the entire mold 3 is no longer covered with the microwave shielding member 2, and the top end of the fugitive model 8 inside the mold 3 disappears. The microwave is absorbed and the elution is completed.

本実施例では、マイクロ波に2450MHz、5KWの
出力のものを用い、消失性模型としては1.2 kgの
ユリア樹脂を使用したところ、約12分間で完全に消失
した。
In this example, a microwave with an output of 2450 MHz and 5 KW was used, and 1.2 kg of urea resin was used as the disappearing model, which completely disappeared in about 12 minutes.

なお、熔は出した消失性物質は、図示していないが、例
えば、ターンテーブル6の押湯口部12と接する部分に
孔や溝を設けたり、また回転軸7を中空にして、この回
転軸7がら外部に取り出すようにしてもよい。
Although not shown, the melted fugitive substance may be removed by, for example, providing holes or grooves in the part of the turntable 6 that contacts the feeder port 12, or making the rotating shaft 7 hollow. 7 may be taken out to the outside.

以上から明らかなように、本実hfi−例の脱型装置1
は、マイクロ波遮蔽部祠の鋳型を覆う面積が、鋳型が進
行するにつれて段階的に減少するように形成されている
ため、消失性模型を内蔵した鋳型をシールド箱内を通過
させるだけで、消失性模型を下方から順次溶出すること
ができるので、溶は出した模型材料がスムーズに下側へ
抜ける。このため、ガスが鋳型内に充満してその圧力で
鋳型を割ることもなく、またマイクロ波のエネルギが順
次消失性模型に吸収されるので、消失性模型材料の熱膨
張が大きくならないうちに鋳型から熔出させることがで
きる。従って、鋳型の割れ等が発生しない。
As is clear from the above, the demolding device 1 of the actual HFI-example
The area of the microwave shielding part that covers the mold is formed so that it gradually decreases as the mold progresses, so just by passing the mold containing the evanescent model through the shield box, it will disappear. Since the model material can be eluted sequentially from the bottom, the model material that has been eluted can smoothly flow downward. For this reason, gas does not fill the mold and the mold is not cracked by the pressure, and the microwave energy is gradually absorbed by the fugitive model, so the mold can be molded before the thermal expansion of the fugitive model material increases. It can be melted from. Therefore, cracks in the mold do not occur.

また、本実施例の脱型装置によれば、マイクロ波を照射
しつつシールド箱内を消失性模型を内蔵した鋳型を搬送
するだけでよいため、従来と異なり連続的に鋳型の成型
処理ができ量産に敵する。
Furthermore, according to the demolding device of this embodiment, it is only necessary to transport the mold containing the fugitive model inside the shield box while irradiating microwaves, so unlike the conventional method, the mold can be continuously molded. Compatible with mass production.

このため、生産性が大幅に向上する。Therefore, productivity is greatly improved.

以上、本発明の特定の実施例について説明したが、本発
明は、この実施例に限定されるものではなく、特許請求
の範囲に記載の範囲内で種々の実施態様が包含されるも
のである。
Although specific embodiments of the present invention have been described above, the present invention is not limited to these embodiments, and includes various embodiments within the scope of the claims. .

例えば、実施例においては、鋳型の搬送速度はほぼ一定
と考えて説明したが、消失性模型の湯口や模型本体のよ
うな厚肉部を溶出する場合は、移動速度を遅くする等、
非連続的に移動を行ってもよいし、マイクロ波遮蔽部材
の遮蔽面8!1減少率を変えてもよい。
For example, in the examples, the conveyance speed of the mold is assumed to be approximately constant, but when eluating thick parts such as the sprue or the model body of a fugitive model, the movement speed may be slowed down, etc.
The movement may be performed discontinuously, or the reduction rate of the shielding surface 8!1 of the microwave shielding member may be changed.

また、実施例では、マイクロ波遮蔽部材の遮蔽面積減少
率を段階的に変えたが、このig蔽面積減少率は第3図
に示すように徐々に変えてもよい。
Further, in the embodiment, the rate of decrease in the shielding area of the microwave shielding member was changed in stages, but the rate of decrease in the shielding area of the microwave shielding member may be changed gradually as shown in FIG.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例に係るインベストメント鋳造法
における鋳型の脱型装置を示す概略構成図、 第2図は第1図のn−n線断面図、 第3図は本発明に使用するマイクロ波遮蔽部材の他の実
施例を示す概略構成図である。 1・・・・−シールド箱 2・・・−・・マイクロ波遮蔽部材 3−・−・・〜鋳型 4−−−〜−−マイクロ波照射口 5・・−一一一孔 6−・・・ターンテーブル 7−−−−回転軸 8−・・−消失性模型(ツリー) 9・・・−製品模型 10−一一〜−−頭部 1 i −−−−/A道部 12・・・・−押湯口部
Fig. 1 is a schematic configuration diagram showing a mold demolding device in an investment casting method according to an embodiment of the present invention, Fig. 2 is a sectional view taken along line nn of Fig. 1, and Fig. 3 is used in the present invention. FIG. 3 is a schematic configuration diagram showing another example of a microwave shielding member. 1...-Shield box 2--Microwave shielding member 3--Mold 4--Microwave irradiation port 5--111 hole 6--・Turntable 7---Rotation shaft 8---Disappearance model (tree) 9---Product model 10-11~---Head 1 i---/A road part 12...・・− riser mouth part

Claims (1)

【特許請求の範囲】[Claims] (1)脱型すべき消失性模型を内蔵する鋳型の搬入、搬
出が行われると共に、この鋳型の搬入、搬出の間にマイ
クロ波による脱型を行うためのマイクロ波照射口を備え
たシールド箱と、このシールド箱内に装着され、鋳型の
搬送方向に沿って遮蔽部下端が上がり、遮蔽面積が徐々
に小さくなっているマイクロ波遮蔽部材と、前記鋳型を
回転可能に載置したターンテーブルと、このターンテー
ブルを鋳型搬送方向に移動させる駆動手段とを有するこ
とを特徴とするインベストメント鋳造法における鋳型の
脱型装置。
(1) A shield box equipped with a microwave irradiation port for loading and unloading a mold containing a fugitive model to be demolded, and for demolding using microwaves during loading and unloading of the mold. a microwave shielding member that is installed in the shield box and whose lower end of the shield rises along the conveying direction of the mold and whose shielding area gradually decreases; and a turntable on which the mold is rotatably mounted. 1. A mold demolding device for an investment casting method, comprising: a drive means for moving the turntable in a mold transport direction.
JP20602684A 1984-10-01 1984-10-01 Device for removing casting mold in investment casting method Pending JPS6186048A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20602684A JPS6186048A (en) 1984-10-01 1984-10-01 Device for removing casting mold in investment casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20602684A JPS6186048A (en) 1984-10-01 1984-10-01 Device for removing casting mold in investment casting method

Publications (1)

Publication Number Publication Date
JPS6186048A true JPS6186048A (en) 1986-05-01

Family

ID=16516663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20602684A Pending JPS6186048A (en) 1984-10-01 1984-10-01 Device for removing casting mold in investment casting method

Country Status (1)

Country Link
JP (1) JPS6186048A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008035993A (en) * 2006-08-03 2008-02-21 Kokuyo Furniture Co Ltd Furniture with top board and furniture system with top board
ES2519990A1 (en) * 2013-05-07 2014-11-07 Universidad De La Laguna Microwave oven and microwave assisted wax molding process (Machine-translation by Google Translate, not legally binding)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008035993A (en) * 2006-08-03 2008-02-21 Kokuyo Furniture Co Ltd Furniture with top board and furniture system with top board
ES2519990A1 (en) * 2013-05-07 2014-11-07 Universidad De La Laguna Microwave oven and microwave assisted wax molding process (Machine-translation by Google Translate, not legally binding)

Similar Documents

Publication Publication Date Title
AU2002239968B2 (en) Integrated metal processing facility
US20050145362A1 (en) Methods and apparatus for heat treatment and sand removal for castings
KR100699389B1 (en) Furnace Apparatus, Method of heat treating a Casting, and Method of Processing Castings and Reclaiming Sand from Sand cores and Molds found in the Castings
EP0649691B1 (en) Method for fabrication of an investment pattern
US6336809B1 (en) Combination conduction/convection furnace
CA2495514C (en) Methods and apparatus for heat treatment and sand removal for castings
US4728531A (en) Method of drying refractory coated foam patterns
US3222738A (en) Methods of removing expendable plastic patterns
JPS6186048A (en) Device for removing casting mold in investment casting method
US3958619A (en) Method for the separation of castings from casting moulds or similar material and a foundry machine for carrying out this method
US2976589A (en) Method of making hollow shell cores
JPS6130257A (en) Removing method of casting mold in investment casting method
JPS595382B2 (en) How to remove the mold
US3277538A (en) Automatic core blowing machine
GB1457046A (en) Dewaxing of moulds
US3605864A (en) Turntable shell moulding machine with pivotally interconnected mould parts
JPS6149743A (en) Method and device for removing casting mold
JPS595383B2 (en) How to remove the mold
JPS62289344A (en) Dewaxing method in production of precision casting mold
JPS5732846A (en) Method for coating which seals clearance between mold
JPS60154850A (en) Removing method of consumable pattern in investment casting
JPH0243577B2 (en)
CN102794401A (en) Precision investment casting production device and process
JPS60247460A (en) Method for melt-cutting of gate of casting
WO2003061873A1 (en) A method of treating sand