JPS6183947A - Evaluation of deterioration of high-molecular material - Google Patents

Evaluation of deterioration of high-molecular material

Info

Publication number
JPS6183947A
JPS6183947A JP20513484A JP20513484A JPS6183947A JP S6183947 A JPS6183947 A JP S6183947A JP 20513484 A JP20513484 A JP 20513484A JP 20513484 A JP20513484 A JP 20513484A JP S6183947 A JPS6183947 A JP S6183947A
Authority
JP
Japan
Prior art keywords
specimen
tube
gas
oxygen
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20513484A
Other languages
Japanese (ja)
Inventor
Masahiro Kono
雅弘 河野
Hiroto Kikuchi
博人 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Nissan Motor Co Ltd
Original Assignee
Jeol Ltd
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd, Nissan Motor Co Ltd filed Critical Jeol Ltd
Priority to JP20513484A priority Critical patent/JPS6183947A/en
Publication of JPS6183947A publication Critical patent/JPS6183947A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/30Sample handling arrangements, e.g. sample cells, spinning mechanisms

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PURPOSE:To effect rapid and accurate evaluation of a high-molecular material, by irradiating a beam of light to a specimen while gas containing oxygen is allowed to flow and measuring, with an electronic spin resonance apparatus, a radical amount generated by oxidization of the specimen. CONSTITUTION:A quartz glass tube 3 transmitting temperature controlled air penetrates through a hollow resonator 1 and a quartz test specimen tube 5 containing a specimen 4 is inserted inside. Oxygen gas generated by an oxygen pump 9 is fed to a pump 10 for proper pressurization and the gas is led to the tube 5 through a gas tube 11 to be blown to a surface of the specimen 4. Further, an ultraviolet ray emitted from a source 6 of ultraviolet rays is admitted into a hollow resonator 1 through lens 7 and light inlet port 8 for projection onto the specimen 4. Thus, by measuring a radical amount generated by oxidation of the specimen 4 by an electronic spin resonator, rapid and accurate evaluation of a high-molecular material can be performed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、高分子材料例えばポリウレタン樹脂の劣化を
、電子スピン共鳴装置(ESR装置)を利用して短時間
で評価することのできる方法に関するものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for evaluating the deterioration of polymeric materials such as polyurethane resins in a short time using an electron spin resonance apparatus (ESR apparatus). It is something.

[従来の技術] 8分子材料は日常生活に広く陪及しているが、特に屋外
で使用されるものについては耐候性が求められでおり、
耐候性の面ですぐれた材料の開発や改良が進められてい
る。従来、耐候性の評価には、サンシャインウエザオメ
ータや紫外線カーボンウエザオメータ等が用いられてい
る。これらの装置は、材料を規定の温度及び湿度の中に
首くと共に、紫外線や自然光に近い光を照射して劣化さ
せるもので、規定時間経過後の材料表面の色や光沢変化
あるいは強度変化等の物性変化を測定して劣化の程度を
知り、評価を行ってい、8゜[発明が解決しようとする
問題点] ところが、ウニ1Fオメータを用いる従来の評価方法で
は、数百時間から数千時間経過しな番プれば評価を行う
ことができず、材料の開発や改良に長期間を要する大き
な原因になっていた。
[Prior Art] Eight-molecular materials are widely used in daily life, but weather resistance is particularly required for those used outdoors.
Progress is being made in developing and improving materials with excellent weather resistance. Conventionally, a sunshine weatherometer, an ultraviolet carbon weatherometer, and the like have been used to evaluate weather resistance. These devices expose the material to a specified temperature and humidity and irradiate it with ultraviolet rays or light similar to natural light to degrade the material. After a specified period of time, the material surface changes in color, gloss, or strength. [Problem to be solved by the invention] However, the conventional evaluation method using a sea urchin 1F meter takes hundreds to thousands of hours. Evaluation could not be carried out until the time had passed, which was a major reason why it took a long time to develop and improve materials.

本発明は上述した従来の問題点に鑑みてなされたもので
あり、短時間で正確に材料の評価を行うことのできる方
法を提供することを目的としている。
The present invention has been made in view of the above-mentioned conventional problems, and it is an object of the present invention to provide a method that can accurately evaluate materials in a short time.

[問題点を解決するための手段] この目的を達成するため、本発明は、酸素を含むガスが
流通する状態で被検試料に光を照射し、被検試料が酸化
されて生成するラジカル量をESR共鳴装置によって測
定することを特徴としている。
[Means for Solving the Problem] In order to achieve this object, the present invention irradiates a test sample with light in a state where a gas containing oxygen flows, and reduces the amount of radicals generated when the test sample is oxidized. is characterized in that it is measured by an ESR resonance device.

[発明の行頭] 高分子材料の劣化の中で大きな比重を占めるのは酸化劣
化であり、そのメカニズムとしては、例えば次式に示す
ように、高分子材料(P 1」)中の水系涼’i’ (
l−1)が長時間にわたる紫外線の照射や温度変化等に
よって取れ、そこに酸素(02)が結合づるしのど考え
られる。
[Beginning of the invention] Oxidative deterioration accounts for a large proportion of the deterioration of polymeric materials, and the mechanism for this is, for example, as shown in the following formula: i' (
It is thought that l-1) is removed by long-term ultraviolet irradiation, temperature changes, etc., and oxygen (02) is bonded thereto.

P H−→ P・ → POO・ 十一式中のPOO・はラジカル(Ti1基)であり、こ
の反応式から、酸化反応が進み劣化が進むにつれてラジ
カルのΦが増すことが分る。そこで、本発明者は従来の
ウェナオメータによって劣化させた高分子材料(ポリウ
レタン樹脂)A、Bについて、L、 S RR置を用い
てラジカル量を測定した。
P H-→P・→POO・ POO・ in Formula 11 is a radical (Ti group 1), and from this reaction formula, it can be seen that the Φ of the radical increases as the oxidation reaction progresses and deterioration progresses. Therefore, the present inventor measured the amount of radicals in polymer materials (polyurethane resins) A and B that had been degraded using a conventional Wenaometer using L and S RR settings.

第2図はその測定結果をウェザオメータによる劣化時間
を横軸に、ラジカル量を縦軸にとって示した図である。
FIG. 2 is a diagram showing the measurement results using a weatherometer, with the horizontal axis representing the deterioration time and the vertical axis representing the amount of radicals.

この図から、時間が経過するにつれてラジカルmが増加
しており、このラジカル量の増加曲線が従来の光沢や物
性試験で知られている劣化進行曲線と一致することが確
認された。
From this figure, it was confirmed that the amount of radicals m increases as time passes, and that the curve of increase in the amount of radicals matches the deterioration progression curve known from conventional gloss and physical property tests.

このようにして、ESR装置を用いてラジカル量を測定
することにより、材料の劣化の程度を正確に知ることが
可能であることが判明したが、つ1ザオメータによる劣
化時間には何等変わりはなく、このままでは依然として
評1ilFlするのに長時間が必要である。
In this way, it has been found that it is possible to accurately determine the degree of material deterioration by measuring the amount of radicals using an ESR device, but there is no difference in the deterioration time measured by a diode meter. However, as it is, it still takes a long time to perform an evaluation.

そこで、本発明者は劣化時間を短縮づる方法を求めて考
察及び実験を繰返した結果、酸素を含むガスが流通づる
状態で被検試料に光を照射し、被検試料が酸化されて生
成するラジカル量をESR装置を用いて測定することに
より、評価に要部る時間を従来の数百時間〜数千時間か
ら数分〜数十分へと、茗しく短縮づることが可能である
ことを見出した。以下に本発明の実施例及び試験例を示
す。
Therefore, the inventor of the present invention repeatedly considered and experimented in search of a method to shorten the deterioration time, and found that by irradiating the test sample with light while oxygen-containing gas is flowing, the test sample is oxidized and produced. By measuring the amount of radicals using an ESR device, it is possible to dramatically shorten the time required for evaluation from the conventional hundreds to thousands of hours to several minutes to several tens of minutes. I found it. Examples and test examples of the present invention are shown below.

[実施例] 第1図は、本発明にかかる方法を実施するために用いら
れるヒSR装置の要部断面図を示す。図において′1は
導波管2からマイクロ波が供給される空1シ1共娠器で
、紙面に垂直な方向の均一な静磁場内に配置されている
。空胴共振器1内は温度調節されIこ空気を通す石英ガ
ラス管3が貫通し、更にその中に被検試料4を収容した
石英試料管5が挿入される。6は紫外線光源ぐ、発生し
た紫外線(よレンズ7、光入射口8を介して空胴共振器
1内へ導入され、試料4へ照射される。9は酸素ボンベ
で、発生した酸素ガスはポンプ10へ送られて適宜な圧
力が与えられ、送気管11を介して試料管5内へ導かれ
、試料表向に吹付けられる。試料管5内に吹込まれたM
素ガスは試料管5の衿12に聞けられている排気口13
を介して外部に排出される。14は前記ガラス管3に空
気を送るための送風機、15はその空気の温度を調節す
るための温度調11i1器、16は排気口である。
[Example] FIG. 1 shows a cross-sectional view of essential parts of a HSR device used to implement the method according to the present invention. In the figure, reference numeral '1 denotes an empty 1/1 co-container to which microwaves are supplied from the waveguide 2, and is placed in a uniform static magnetic field in a direction perpendicular to the plane of the paper. A quartz glass tube 3 through which temperature-controlled air passes passes through the cavity resonator 1, and a quartz sample tube 5 containing a test sample 4 is inserted into the tube. 6 is an ultraviolet light source, the generated ultraviolet light is introduced into the cavity resonator 1 through a lens 7 and a light entrance 8, and is irradiated onto the sample 4. 9 is an oxygen cylinder, and the generated oxygen gas is pumped 10, where appropriate pressure is applied, and guided into the sample tube 5 through the air pipe 11, where it is blown onto the surface of the sample.M blown into the sample tube 5
The elementary gas is discharged from the exhaust port 13 located in the collar 12 of the sample tube 5.
is discharged to the outside through the 14 is a blower for sending air to the glass tube 3, 15 is a temperature controller 11i1 for adjusting the temperature of the air, and 16 is an exhaust port.

試験例1 被検試料として2 mmx 2 m1nx 30+11
111の大きさのポリウレタン樹脂A、B(先に第2図
の実験で使用したものと同じもの)を用意し、試料管5
に入れ、温度60°Cのもとで酸素ガスの吹((りと紫
外線照射を行いつつ適宜な時間間隔で26分間に11回
のESR測定を行い、第3図に示1ようなESRスペク
トルを得た。第3図は、試料Aについて11回の測定で
得られたESRスペクトルS1〜311を同一ヂ(!−
ト上に重ねて+i t) I−iたちのである。スペク
トル中のシグナル1(は標準試料によるもので、3つの
シグナルUl 、 tJ2 、 tJ3が酸化反応によ
り生成されたNoラジカルによるシグナルである。時間
と共にシグナルjJ1.U2゜U3の強度が高まり、ラ
ジカル量が増加して劣化が進んでいることが分る。
Test example 1 Test sample: 2 mmx 2 m1nx 30+11
Prepare polyurethane resins A and B (the same as those used in the experiment shown in Figure 2 earlier) with a size of 111, and put them in sample tube 5.
The ESR spectrum was measured 11 times in 26 minutes at appropriate time intervals while blowing oxygen gas and irradiating with ultraviolet rays at a temperature of 60°C. Figure 3 shows the ESR spectra S1 to S311 obtained in 11 measurements for sample A.
+i t) I-i's. Signal 1 (signal 1 in the spectrum is from the standard sample, and the three signals Ul, tJ2, and tJ3 are signals due to No radicals generated by the oxidation reaction. As time passes, the intensity of the signal jJ1.U2゜U3 increases, and the amount of radicals increases. increases, indicating that deterioration is progressing.

第4図は、このようにして得られたESRスペクトル中
のシグナルU2の相対強度(U2のピーク・ピーク値と
一定である標準試料のシグナルRのピーク・ピーク値と
の比)の変化をプロットしたものである。この第4図と
先に説明した第2図とを比べれば、両者がほとんど同一
の変化を示すことが分る。このことは、従来であれば3
00時問かり(劣化さl! ’l I!7られるのと略
同−のり二一タを、本発明ではわずか26分間の酸素ガ
ス吹付は及び紫外線照射を行いながらの測定で得ること
が可能であることを示しており、評価に要する時間を桁
違いに短縮することが可能である。
Figure 4 plots the change in the relative intensity of signal U2 (the ratio of the peak-to-peak value of U2 to the constant peak-to-peak value of signal R of the standard sample) in the ESR spectrum obtained in this way. This is what I did. Comparing this FIG. 4 with FIG. 2 described above, it can be seen that both show almost the same changes. Conventionally, this would be 3
According to the present invention, it is possible to obtain approximately the same amount of adhesive as that obtained at 00 hours (deterioration l! 'l I!7) by spraying oxygen gas for only 26 minutes and by measuring while irradiating ultraviolet rays. This shows that the time required for evaluation can be reduced by an order of magnitude.

試験例2 第1図の′gArfの酸素ガスボンベを取外し、ポンプ
10により空気が試料管5へ送られて試料に吹付けられ
るようにしておき、被検試料として試験例1と同じポリ
ウレタン樹脂A、Bを用意し、試料管5に入れ、温度2
5°Cのもとで空気の吹付けと紫外線照射を行いつつ適
宜な時間間隔で26分間に11回のESR測定を行い、
第3図と同様のESRスペクトルを得た。
Test Example 2 The oxygen gas cylinder 'gArf in FIG. Prepare B, put it in sample tube 5, and set it to temperature 2.
ESR measurements were performed 11 times in 26 minutes at appropriate time intervals while blowing air and irradiating ultraviolet rays at 5°C.
An ESR spectrum similar to that shown in FIG. 3 was obtained.

第5図は、第4図と同様に、このようにして得られたE
SRスペクトル中のシグナルU2の相対強度の変化をプ
ロットしたものである。この第5図と第4図とを比べれ
ば、吹付けられる気体に含まれる酸索淵度の違いから、
試料へのカーブと試料Bのカーブの分離が第5図では多
少少なくなっているらのの、2つのカーブは両図で略同
 の変化を示すことが分る。従って、空気を吹込むよう
にした試験例2では、測定期間を多少延長することによ
り、測定例1と同様に試料へのカーブと試料Bのカーブ
が十分に分離したデータを得ることができる。
Figure 5 shows the E obtained in this way, similar to Figure 4.
The change in relative intensity of signal U2 in the SR spectrum is plotted. Comparing Figure 5 and Figure 4, we can see that due to the difference in acid depth contained in the blown gas,
Although the separation between the curve for the sample and the curve for sample B is somewhat reduced in FIG. 5, it can be seen that the two curves show approximately the same changes in both figures. Therefore, in Test Example 2 in which air was blown, by slightly extending the measurement period, it is possible to obtain data in which the curve for the sample and the curve for Sample B are sufficiently separated, as in Measurement Example 1.

第6図は試験例1と同じ条f1で測定したポリウレタン
樹脂Cの改良過程を示すグラフである。第6図において
カーブC1は最初に製作されたものについての測定結果
であり、カーフC2,03はその結果に基づいて成分や
製法を改良して得られたものについての測定結果である
。採用されるのは、当然ながら劣化の遅いカーブC3を
承りものであり、本発明によれば、極めて短時間で正確
に凸分子44FIの評価を行えるため、このような改良
やより良い材料の開発を短い期間で行うことが可能とな
る。
FIG. 6 is a graph showing the improvement process of polyurethane resin C measured on the same strip f1 as in Test Example 1. In FIG. 6, curve C1 is the measurement result for the first manufactured one, and curve C2,03 is the measurement result for the one obtained by improving the ingredients and manufacturing method based on the result. Naturally, the curve C3, which exhibits slow deterioration, is adopted, and according to the present invention, the convex molecule 44FI can be evaluated accurately in a very short time, so it is possible to make such improvements and develop better materials. can be done in a short period of time.

尚、本発明はポリウレタン樹脂に限らず、酸化によりラ
ジカルを生成するすべての高分子材料について適用でき
ることはtうまでもない。
It goes without saying that the present invention is applicable not only to polyurethane resins but also to all polymeric materials that generate radicals through oxidation.

r発明の効果1 以上詳述した如く、本発明によれば、短時間で正確に高
分子材料の評価を行うことができる。
Effect 1 of the Invention As detailed above, according to the present invention, polymer materials can be evaluated accurately in a short time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる方法を実施するためのESR装
dの要部所面図、第2図は従来のウェザオメータによっ
て劣化させた被検試料A、Bについて]二SR装置を用
いてラジカル量を測定した結果を示す−図、第3図は試
料△について11回の測定で得られたESRスペクトル
を同一チ1!−ト上に巾ねr、記録した図、第4図は試
験例1において11回の測定′c得られたESRスペク
トル中のジグノールU2の相対強度の変化をプロットし
た図、第5図は試験例2において11回の測定で得られ
たESRスペクトル中のシグナルU2の相対強度の変化
をプロットした図、第6図は試験例1と同じ条件で測定
したポリウレタン樹脂Cの改良過程を示リグラフである
。 1:空胴共振器  2:導波管
Fig. 1 is a plan view of the main parts of the ESR device d for carrying out the method according to the present invention, and Fig. 2 is for test samples A and B degraded by a conventional weatherometer. Fig. 3 shows the ESR spectra obtained in 11 measurements for sample △ using the same sample. - Figure 4 is a diagram plotting the change in relative intensity of Signol U2 in the ESR spectrum obtained in the 11 measurements in Test Example 1, Figure 5 is a diagram recorded on the test example. Figure 6 is a graph plotting the change in relative intensity of signal U2 in the ESR spectrum obtained in 11 measurements in Example 2, and shows the improvement process of polyurethane resin C measured under the same conditions as Test Example 1. be. 1: Cavity resonator 2: Waveguide

Claims (2)

【特許請求の範囲】[Claims] (1)酸素を含むガスが流通する状態で被検試料に光を
照射し、被検試料が酸化されて生成するラジカル量を電
子スピン共鳴装置によつて測定することを特徴とする高
分子材料の劣化評価方法。
(1) A polymer material characterized by irradiating a test sample with light in a state where a gas containing oxygen is flowing, and measuring the amount of radicals generated when the test sample is oxidized using an electron spin resonance device. Deterioration evaluation method.
(2)前記光は紫外線である特許請求の範囲第1項記載
の評価方法。
(2) The evaluation method according to claim 1, wherein the light is ultraviolet light.
JP20513484A 1984-09-29 1984-09-29 Evaluation of deterioration of high-molecular material Pending JPS6183947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20513484A JPS6183947A (en) 1984-09-29 1984-09-29 Evaluation of deterioration of high-molecular material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20513484A JPS6183947A (en) 1984-09-29 1984-09-29 Evaluation of deterioration of high-molecular material

Publications (1)

Publication Number Publication Date
JPS6183947A true JPS6183947A (en) 1986-04-28

Family

ID=16501988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20513484A Pending JPS6183947A (en) 1984-09-29 1984-09-29 Evaluation of deterioration of high-molecular material

Country Status (1)

Country Link
JP (1) JPS6183947A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227944A (en) * 1988-03-08 1989-09-12 Suga Shikenki Kk Sample holder for accelerated light fastness testing machine
DE19945917C2 (en) * 1998-09-24 2003-06-18 Toyota Chuo Kenkyusho Aichi Kk Weather resistance test method and device for carrying out this method
JP2008107107A (en) * 2006-10-23 2008-05-08 Hoyu Co Ltd Evaluation device and evaluation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5985942A (en) * 1982-11-09 1984-05-18 Nippon Oil & Fats Co Ltd Method for measuring deterioration of painted film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5985942A (en) * 1982-11-09 1984-05-18 Nippon Oil & Fats Co Ltd Method for measuring deterioration of painted film

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01227944A (en) * 1988-03-08 1989-09-12 Suga Shikenki Kk Sample holder for accelerated light fastness testing machine
DE19945917C2 (en) * 1998-09-24 2003-06-18 Toyota Chuo Kenkyusho Aichi Kk Weather resistance test method and device for carrying out this method
US6682932B2 (en) 1998-09-24 2004-01-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Weathering test method
US6709631B2 (en) 1998-09-24 2004-03-23 Kabushiki Kaisha Toyota Chuo Kenkyusho Weathering test apparatus
US7018586B2 (en) 1998-09-24 2006-03-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Weathering test apparatus
JP2008107107A (en) * 2006-10-23 2008-05-08 Hoyu Co Ltd Evaluation device and evaluation method

Similar Documents

Publication Publication Date Title
JP3662953B2 (en) Method for measuring the concentration and distribution of carbon black in rubber compounds and other materials including carbon black and apparatus for carrying out this method
US20170199123A1 (en) Detection method of heavy metal ions and sensor using the same
CN110441274A (en) A kind of measuring method of bisphenol S concentration
JPS6183947A (en) Evaluation of deterioration of high-molecular material
US20050062972A1 (en) System and method for cavity ring-down spectroscopy using continuously varying continuous wave excitation
US4116564A (en) Apparatus for the study of plasmas
US4135816A (en) Method and apparatus for determining the total protein content or individual amino acids
US3582282A (en) Process and an apparatus for the accelerated weathering of pigmented vehicle systems
US7251987B2 (en) Scanning probe microscope and measuring method by means of the same
JP4406702B2 (en) Formaldehyde detection method and detection apparatus
Charvát et al. Optimization of etching characteristics for cellulose nitrate and CR-39 track detectors
Becker et al. Determination of the rate constants for the gas phase reactions of NO3 with H, OH and HO2 radicals at 298 K
ATE194425T1 (en) METHOD AND DEVICE FOR GAS ANALYSIS
Carter III et al. Photoacoustic infrared spectroscopy for evaluation of an ABS as an automotive interior material
US1850909A (en) Recording method and apparatus
CN103344618A (en) Fluorescence excitation testing device
Murakami et al. Vibrational analysis of the SO+ (A2Π− χ2Πr) emission system by an isotopic study
US3863490A (en) Method of and apparatus for avoiding erroneous indications as a result of the properties of the paper in apparatus which use a paper tape as measuring means
KR100547279B1 (en) 실시간 Real-time Curing Degree Measuring System
JP2005031076A (en) Method for quantitatively determining durability of synthetic fused quartz to pulsed laser
CN113008783B (en) Device and method for improving long-period grating detection sensitivity through non-film coating
CN115508560A (en) Calibration strip and preparation method and application thereof
JP2513094B2 (en) X-ray fluorescence intensity correction method in X-ray fluorescence analysis method
RU1783390C (en) Of checking egg quality
JPS6362693B2 (en)