JPS6183893A - Heat exchanger having fin - Google Patents

Heat exchanger having fin

Info

Publication number
JPS6183893A
JPS6183893A JP20344984A JP20344984A JPS6183893A JP S6183893 A JPS6183893 A JP S6183893A JP 20344984 A JP20344984 A JP 20344984A JP 20344984 A JP20344984 A JP 20344984A JP S6183893 A JPS6183893 A JP S6183893A
Authority
JP
Japan
Prior art keywords
airflow
cut
raised
slit
fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20344984A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Tsuda
善行 津田
Hiroyoshi Tanaka
博由 田中
Masaaki Adachi
安立 正明
Shigeo Aoyama
繁男 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co, Matsushita Electric Industrial Co Ltd filed Critical Matsushita Refrigeration Co
Priority to JP20344984A priority Critical patent/JPS6183893A/en
Publication of JPS6183893A publication Critical patent/JPS6183893A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To improve the gas side heat transmission efficiency to provide a compact, high performance device by reducing the area of dead water in a downstream part of a heat transmission pipe, and by reducing the thickness of the temperature boundary layer on the fin heating surface. CONSTITUTION:As two sides 17a, 17b of a slit-like cut and raised parts 14a-14c are at an angle relative to the airflow, the airflow 23 enters into the downstream part of the airflow in heat transmission pipe, and so, the area of dead water in the downstream part of the airflow in the heat transmission pipe is reduced. The airflow 24 overflowing the side 17a moves like clinging to the central part 19 and flat fin 10 to disturb the temperature boundary layer grown on their surfaces so as to reduce the thickness of the boundary layer. When the airflow 25 flows out of an opening 20, it mixes with the airflow moving on the central part 19. After overflowing the side 17b, a turning component is induced in the airflow 25 just like in the airflow 24 to reduce the thickness of the temperature boundary layer grown on the flat fin 10 to reduce the dead water area. By the action of the turning component of the airflow 26 in addition to said airflow 25, the mixing effect of the airflows and the leading edge effect of boundary layer, the gas side heat transmission rate of the fin is improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は空調機器分野の蒸発器や凝縮器等に広く用いら
れている気体対気液2相流(または液体)用のフィン付
熱交換器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a finned heat exchanger for gas-gas-liquid two-phase flow (or liquid), which is widely used in evaporators, condensers, etc. in the field of air conditioning equipment. It is something.

従来例の構成とその問題点 従来の熱交換器は第1図の斜視図に示すように一定間隔
で平行に並べられた平板フィン群1と、このフィン群1
に垂直に挿入された伝熱管群2から構成され、気体はフ
ィン間を矢印3方向に流動して管内流体と熱交換を行う
。フィン群1のフィン間の気体の流動は、第2図に示す
ようになり、伝熱管5とその周囲に設けたフィンカラー
60気流後流部に斜線で示す死水成子、8が生ずる。そ
のため、この死水域でのフィンの気体側熱伝達率が著し
く低下し、伝熱性能が悪いという欠点を有していた。
Structure of the conventional example and its problems As shown in the perspective view of FIG.
It consists of a group of heat transfer tubes 2 inserted perpendicularly to the fins, and gas flows between the fins in the direction of the arrow 3 to exchange heat with the fluid inside the tubes. The flow of gas between the fins of the fin group 1 is as shown in FIG. 2, and dead water 8 is generated as shown by diagonal lines in the air flow downstream of the heat transfer tube 5 and the fin collar 60 provided around it. Therefore, the gas-side heat transfer coefficient of the fins in this dead zone is significantly lowered, resulting in poor heat transfer performance.

また、平板フィン4の伝熱面上の温度境界層は第3図の
斜線部分9で示すように平板フィン4の気流上流側端面
(フィン前縁)からの距離が犬きくなると、その厚さが
増加し、そのために気体側熱伝達率はフィン前縁からの
距離が増加すると共に著しく低下し、伝熱性能が悪いと
いう欠点を有していた。
In addition, as shown by the shaded area 9 in FIG. 3, the temperature boundary layer on the heat transfer surface of the flat fin 4 increases in thickness as the distance from the airflow upstream end surface (fin leading edge) of the flat fin 4 increases. increases, and as a result, the gas side heat transfer coefficient decreases significantly as the distance from the leading edge of the fin increases, resulting in a disadvantage of poor heat transfer performance.

発明の目的 本発明は以上のような従来のフィン付熱交換器の欠点を
除去するもので、特に伝熱管後流部の死水域全減少させ
、またフィン伝熱面上の温度境界層厚さを減少させるこ
とにより、気体側熱伝達率の著しい向上を実現させ、フ
ィン付熱交換器の小型高性能化を図ることを目的とする
Purpose of the Invention The present invention eliminates the above-mentioned drawbacks of the conventional finned heat exchanger. In particular, it completely reduces the dead area at the downstream part of the heat transfer tube, and also reduces the thickness of the temperature boundary layer on the fin heat transfer surface. The objective is to realize a significant improvement in the gas-side heat transfer coefficient by reducing , and to achieve a smaller size and higher performance of a finned heat exchanger.

発明の構成 本発明のフィン付熱交換器は、所定間隔で平行に配され
た平板フィン群と、この平板フィン群に垂直に挿入され
内部を流体が流動する伝熱管から構成され、伝熱管間の
気流上流側領域すなわち伝熱管中心を結ぶ直線と気流上
流側のフィン端面(フィン前縁)の間の領域において、
気流の流動方向に傾斜させて複数個のスリット状切り起
こしAi平板ワイン上に設け、伝熱管間の気流下流側領
域すなわち伝熱管中心を結ぶ直線よシ気流下流側の領域
においては前記スリット状切り起こしAとは逆の方向に
傾斜させて複数個のスリット状切り起こしBを平板フィ
ン上に設置し、また前記スリット状切り起こしBの下流
側にスリット状切り起こしCまたは立壁りを気流の流動
方向に傾斜させて設けたものにおいて、前記スリット状
切り起こしA、B、Cの中央部を前記平板フィンと接続
している切り起こしの2側辺部よりも低くし、前記切り
起こし中央部に開口Sを設けたものである。
Structure of the Invention The finned heat exchanger of the present invention is composed of a group of flat plate fins arranged in parallel at predetermined intervals, and heat transfer tubes inserted perpendicularly into the group of flat plate fins and through which a fluid flows. In the upstream region of the airflow, that is, the region between the straight line connecting the centers of the heat exchanger tubes and the fin end face (fin leading edge) on the upstream side of the airflow,
A plurality of slit-like cuts are provided on the Ai flat plate at an angle in the flow direction of the airflow, and the slit-like cuts are provided on the airflow downstream region between the heat transfer tubes, that is, in the airflow downstream region from the straight line connecting the centers of the heat transfer tubes. A plurality of slit-like cut-and-raised parts B are installed on the flat plate fins so as to be inclined in the opposite direction to the raised slit-like raised part A, and a slit-shaped cut-and-raised part C or a vertical wall is provided on the downstream side of the slit-shaped cut and raised parts B to direct the flow of airflow. In the case where the slit-shaped cut-and-raised portions A, B, and C are provided at an angle, the central portions of the slit-like cut-and-raised portions A, B, and C are lower than the two side portions of the cut-and-raised portions that connect to the flat plate fin, and the cut-and-raised central portions are An opening S is provided.

実施例の説明 以下、本発明の一実施例のフィン付熱交換器を図面と共
に説明する。第4図aは本発明による一実施例の平板フ
ィンの平面図、第4図すは第4図aのAA’面断面図で
ある。また、第6図a、bはそれぞれ第4図aのス’J
 y )状切り起こしのBB’面断面図、CC’面断面
図である。
DESCRIPTION OF EMBODIMENTS A finned heat exchanger according to an embodiment of the present invention will be described below with reference to the drawings. FIG. 4a is a plan view of a flat fin according to an embodiment of the present invention, and FIG. 4 is a sectional view taken along line AA' of FIG. 4a. Also, Figures 6a and b are respectively S'J of Figure 4a.
y )-shaped cut and raised sectional view on the BB' plane and a sectional view on the CC' plane.

平板フィン10に一定間隔でバーリングされたフィンカ
ラ一部11に伝熱管12が挿入されており、気流は矢印
13方向に流動する。平板フィン1oの伝熱管間の気流
上流領域(第4図aに領域1で示した領域)には気流の
流動方向13と傾斜させたスリット状切り起こしA (
14a〜14C)を設置し、伝熱管間の気流下流側領域
(第4図aに領域■で示した)には気流13に対して前
記スリット状切り起こしA (14a〜14C〕と逆の
方向に傾斜させたスリット状切り起こしB (16a。
Heat transfer tubes 12 are inserted into fin collar portions 11 that are barred at regular intervals on the flat plate fins 10, and the airflow flows in the direction of the arrow 13. In the airflow upstream region between the heat transfer tubes of the flat plate fin 1o (the region shown as region 1 in FIG. 4a), there is a slit-shaped cut and raised A (
14a to 14C) are installed, and the slit-like cut and raised A (14a to 14C) is installed in the downstream region of the airflow between the heat transfer tubes (indicated by region ■ in FIG. 4a) with respect to the airflow 13 in the opposite direction. Slit-shaped cut-and-raise B (16a).

15b)を設置しである。これらのスリット状切り起こ
しA(14a 〜14c )、B(15a。
15b) is installed. These slit-like cut-and-raised parts A (14a to 14c) and B (15a).

15b)の形状は第5図に示すように、切り起こし中央
部19を切り起こし2側辺部17a、17bよりも低く
し、切り起こし中央部19には平板フィン開口部22に
つながる開口部2oを設けた形状である。
15b), as shown in FIG. It has a shape with .

また、前記スリット状切り起こしB(15a 。In addition, the slit-shaped cut and raised B (15a).

15b)の気流下流側に気流13の流動方向に傾斜させ
て立壁16a、16b’iz設け、立壁16a。
Standing walls 16a and 16b'iz are provided on the downstream side of the airflow 15b) so as to be inclined in the flow direction of the airflow 13, and the standing wall 16a is provided.

18bの気流下流側に開口部21′Jr、設けである。An opening 21'Jr is provided on the downstream side of the airflow of 18b.

次に作用と効果を、本発明のフィンでの気流の流動状態
を示した第6図と共に説明する。
Next, the functions and effects will be explained with reference to FIG. 6, which shows the state of airflow in the fins of the present invention.

伝熱管間の気流上流側領域には気流13と傾斜させてス
リット状切り起こしA(14a〜14Cンが設置されて
いるので、このスリット状切り起こしA(14a〜14
C)に衝突する気流または切り起こし近傍を流動する気
流は第6図に示したような流動状態になる。スリット状
切り起こしA(14a〜14C)近傍の気流は大別して
以下の40にの気流になり、おのおのの作用と効果を述
べる。
In the airflow upstream region between the heat transfer tubes, slit-like cut-and-raised A (14a-14C) are installed at an angle with the airflow 13.
The airflow that collides with C) or the airflow that flows near the cut and raised portion will be in a flow state as shown in FIG. The airflow in the vicinity of the slit-like cut and raised portions A (14a to 14C) can be roughly divided into the following 40 types of airflow, and the functions and effects of each will be described.

(1)スリット状切り起こしA (14a〜14c )
の2側辺部1了a、1了すの気流13に対向する面に沿
う気流23は、2側辺部17a、17bが気流に傾斜し
ているので、伝熱管の気流後流部(死水域)へ流入する
。そのため、伝熱管の気流後流部での死水域は従来の平
板フィンに比べて小さくなり、伝熱管の気体後流部での
熱伝達率は犬きくなる。
(1) Slit-shaped cut and raise A (14a to 14c)
Since the two sides 17a and 17b are inclined to the airflow, the airflow 23 along the surface facing the airflow 13 at the two sides 17a and 17b of the heat exchanger tube is water bodies). Therefore, the dead area in the air flow downstream part of the heat exchanger tube is smaller than that of conventional flat fins, and the heat transfer coefficient in the gas flow downstream part of the heat exchanger tube becomes higher.

(匂 側辺部17aを乗り越える気流24は、側辺部が
前記のように気流13に対して傾斜しているので、側辺
部17aを乗り越えた後、旋回成分をもつようになる。
(The airflow 24 that crosses the side part 17a has a swirling component after passing over the side part 17a because the side part is inclined with respect to the airflow 13 as described above.

また、側辺部17aの平板フィン10からの高さは切り
起こし中央部19の高さより大きいので、気流24は中
央部19さらには平板フィン10へ再び付着するように
流動する。気流24がこのように流動すると、平板フィ
ン1oや切り起こし中央部19の面上に発達した温度境
界層を乱し、境界層厚さを薄くするので、フィンの気体
側熱伝達率の著しい向上が実現される。      −
(3)平板フィン10とスリット状切り起こしの中央部
190間へ流入する気流25は、この平板フィンと隣り
合う下側の同様の平板フィンに設置されたスリット状切
り起こしの影響を受け、中央部19に設けられた開口部
20から流出し、側辺部17bを2側辺連結部18を介
して乗り越えて下流側へ流動する。気流25が開口部2
0から流出する際、中央部19の上を流動してきた気流
と混合し、いわゆる気流の混合効果が期待される。また
開口部2oの気流後流側の切シ起こし中央部での境界層
前縁効果もある。側辺部1γb1乗り越えた後、気流2
6には気流24と同様に旋回成分が誘起され、この旋回
成分が平板フィン1oに発達する温度境界層厚さを薄く
するように作用する。さらに、スリット状切り起こしA
(14a、14b)では、気流24と共に気流26は気
流23と同様に伝熱管後流部の方向に流動するので、死
水域の減少にも効果があるっ以上のように、気流25の
旋回成分による作用、気流の混合効果および境界層前縁
効果によりフィンの気体側熱伝達率は向上する。
Further, since the height of the side portions 17a from the flat fins 10 is greater than the height of the cut and raised central portion 19, the airflow 24 flows so as to adhere to the central portion 19 and further to the flat fins 10 again. When the airflow 24 flows in this way, it disturbs the temperature boundary layer that has developed on the surface of the flat plate fin 1o and the raised central part 19, and reduces the thickness of the boundary layer, resulting in a significant improvement in the heat transfer coefficient on the gas side of the fin. is realized. −
(3) The airflow 25 flowing between the flat fin 10 and the central part 190 of the slit-like cut-and-raised part is influenced by the slit-like cut-and-raised part installed on the lower similar flat fin adjacent to this flat fin, and It flows out from the opening 20 provided in the portion 19, crosses the side portion 17b via the two side connecting portions 18, and flows to the downstream side. Airflow 25 is connected to opening 2
When flowing out from 0, it mixes with the airflow that has flowed above the central portion 19, and a so-called airflow mixing effect is expected. There is also a boundary layer leading edge effect at the center of the cut-up on the downstream side of the airflow of the opening 2o. After getting over the side part 1γb1, airflow 2
Similar to the air flow 24, a swirling component is induced in the airflow 6, and this swirling component acts to reduce the thickness of the temperature boundary layer developed in the flat fin 1o. Furthermore, slit-shaped cut and raised A
In (14a, 14b), the airflow 26 as well as the airflow 24 flows in the direction of the downstream part of the heat exchanger tube like the airflow 23, so it is effective in reducing the dead area.As described above, the swirling component of the airflow 25 The heat transfer coefficient on the gas side of the fins is improved due to the effect of air flow, the mixing effect of the air flow, and the leading edge effect of the boundary layer.

(4)2側辺部17a、17bの気流上流側端面の近傍
を流動する流れには前記の気流23の他に、2側辺部1
7a、17bの気流13に対向する面の背面における気
流26がある。この気流26ば、2側辺部17a 、 
17bの気流上流側端面の影響を受けて旋回成分を有す
るようになる。気流26の旋回成分は前記の気流25.
26と同様の作用により、平板フィン10の温度境界層
厚さを薄くするので、フィンの気体側熱伝達率は向上す
る 次に、伝熱管間の気流下流側領域(領域II)にはスリ
ット状切り起こしA (14z、〜14C)と逆の方向
に気流13に傾斜させてスリット抜切9起こしB(15
a、15b)が設置されており、その作用と効果は以下
の通りである。
(4) In addition to the above-mentioned airflow 23, the flow flowing near the airflow upstream side end surfaces of the second side sides 17a and 17b includes the second side side 1
There is an airflow 26 on the back side of the surface facing the airflow 13 of 7a, 17b. This airflow 26, two side parts 17a,
The airflow has a swirling component under the influence of the upstream end face of the airflow 17b. The swirling component of the airflow 26 is the same as the above-mentioned airflow 25.
26, the thickness of the temperature boundary layer of the flat plate fin 10 is reduced, so the heat transfer coefficient on the gas side of the fin is improved. Cut and raise A (14z, ~14C) and tilt the airflow 13 in the opposite direction to raise the slit 9 and raise B (15
a, 15b) are installed, and their functions and effects are as follows.

スリット状切り起こしB(16a、15b)の形状はス
リット状切り起こしA (14a〜14C〕と同様であ
るので、スリット状切り起こしB(16a。
The shape of the slit-like cut-and-raise B (16a, 15b) is the same as the slit-like cut-and-raise A (14a to 14C), so the slit-like cut and raise B (16a).

15b)の作用と効果は前記の切り起こしA(14a〜
14C)の場合と同様であるが、切り起こしB(15a
、15b)には切り起こしA(14a〜14C)で誘起
された旋回成分をもつ気流が衝突するので、さらに多様
な旋回成分を有する気流が誘起され、温度境界層厚さを
薄くする作用が著しく、フィンの気体側熱伝達率は著し
く向上する。
The action and effect of 15b) are as follows:
14C), but cut and raise B (15a
, 15b) are collided with airflows with swirling components induced by cut-and-raise A (14a to 14C), so airflows with even more diverse swirling components are induced, which significantly reduces the thickness of the temperature boundary layer. , the gas side heat transfer coefficient of the fins is significantly improved.

次に、前記切り起こしB(15a、15b)の気流下流
側に設置した立壁16a、16bの作用と効果を説明す
る。立壁16a 、 16bも前記切り起こしA(14
a 〜14c)、B(15a。
Next, the function and effect of the standing walls 16a, 16b installed on the airflow downstream side of the cut and raised B (15a, 15b) will be explained. The vertical walls 16a and 16b are also cut and raised A (14
a to 14c), B (15a.

15b)と同様に気流13の流動方向に傾斜させて設置
されているので、立壁16a、16bにより誘起される
気流は大別して以下の3種になる。
Similar to 15b), since they are installed to be inclined in the flow direction of the airflow 13, the airflow induced by the vertical walls 16a and 16b can be roughly classified into the following three types.

(1)立壁16a、16bに沿う気流27は前記の気流
23と同様に、伝熱管の気流後流部へ偏向する流れであ
るので、死水域の減少に効果があり、伝熱管後流部での
フィンの伝熱性能を向上させる。
(1) Similar to the airflow 23 described above, the airflow 27 along the vertical walls 16a and 16b is a flow that is deflected toward the downstream part of the heat exchanger tube, so it is effective in reducing dead areas, and improves the heat transfer performance of the fins.

(2)立壁16a 、 1 abff、乗り越える気流
28は前記の気流24と同様に、立壁16a、16bを
乗り越えると、旋回成分が誘起され、これによる温度境
界層を薄くする作用は、フィンの気体側熱伝達率を向上
させる。さらに、気流28は平板フィン1oに再び付着
する様に流動するので、気流28の再付着点でのフィン
の気体側熱伝達率は大きい。
(2) When the airflow 28 that overcomes the vertical walls 16a, 1 abff and overcomes the vertical walls 16a and 16b, a swirling component is induced when the airflow 28 overcomes the vertical walls 16a and 16b. Improve heat transfer coefficient. Furthermore, since the airflow 28 flows so as to reattach to the flat plate fin 1o, the heat transfer coefficient on the gas side of the fin at the reattachment point of the airflow 28 is large.

(3)立壁16a、16bの気流下流側に開口部21が
設置されている場合は、この開口部21全通して気流2
9が流動する。この気流29にも旋回成分が誘起されて
おり、平板フィン上の温度境界層厚さを薄くして気体側
熱伝達率を向上させている他に、開口部21での境界層
前縁効果もあり、平板フィンの気体側熱伝達率の向上は
著しい。
(3) When the opening 21 is installed on the airflow downstream side of the vertical walls 16a, 16b, the airflow 2
9 flows. A swirling component is also induced in this airflow 29, and in addition to reducing the thickness of the temperature boundary layer on the flat plate fin and improving the gas side heat transfer coefficient, the leading edge effect of the boundary layer at the opening 21 is also induced. Yes, the improvement in the gas side heat transfer coefficient of the flat fin is remarkable.

発明の効果 以上のように本発明のフィン付熱交換器は、伝熱管の気
流後流部の死水域を減少させ、気流の旋回成分による平
板フィン上の温度境界層厚さを薄くする効果と共に気体
の混合効果および境界層前縁効果を利用することにより
、平板フィンの気体側熱伝達率を著しく向上させ、フィ
ン付熱交換器の小型高性能化を達成させる。
Effects of the Invention As described above, the finned heat exchanger of the present invention has the effect of reducing the dead zone in the air flow trailing part of the heat transfer tube, and reducing the thickness of the temperature boundary layer on the flat plate fins due to the swirling component of the air flow. By utilizing the gas mixing effect and the leading edge effect of the boundary layer, the gas side heat transfer coefficient of flat fins is significantly improved, and a finned heat exchanger is made smaller and has higher performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来例のフィン付熱交換器の斜視図、第2図お
よび第3図は第1図における平板フィンでの気流の流動
状態の説明図、第4図aは本発明の一実施例のフィン付
熱交換器におけるフィンのCC’面断面図、第6図は第
4図のフィンにおける気流の流動状態の説明図である。 10・・・・・・平板フィン、11・・・・・・フィン
カラー、12・・・・・・伝熱管、13・・・・・・気
流、14・・・・・・スリ。 ト状切り起こし、15・・・・・・スリット状切り起こ
し、16a、16b・・・・・立壁、17・・・・・・
スリット状切り起こしの側辺部、18・・・・・・2側
辺連絡部、19・・・・・・スリット状切り起こし中央
部、20・・・・中央部の開口部、21・・・・・・立
壁16の開口部、22・・・・・平板フィン開口部、2
3〜29・・・・・気流。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
4 図 (O−) 第5図 (勾 ?ど (b)
FIG. 1 is a perspective view of a conventional heat exchanger with fins, FIGS. 2 and 3 are explanatory diagrams of the state of air flow in the flat fins in FIG. 1, and FIG. 4a is an embodiment of the present invention. FIG. 6 is a sectional view taken along the CC' plane of the fins in the example heat exchanger with fins, and is an explanatory diagram of the state of airflow in the fins of FIG. 4. 10... Flat fin, 11... Fin collar, 12... Heat exchanger tube, 13... Air flow, 14... Pickpocket. T-shaped cut and raised, 15... Slit-shaped cut and raised, 16a, 16b... Standing wall, 17...
Side part of slit-shaped cut and raised part, 18... 2 side connecting part, 19...... Slit-shaped cut and raised central part, 20... Central opening, 21... ... Opening of standing wall 16, 22 ... Flat plate fin opening, 2
3-29...Airflow. Name of agent: Patent attorney Toshio Nakao and 1 other person
4 Figure (O-) Figure 5 (Grade (b)

Claims (4)

【特許請求の範囲】[Claims] (1)一定間隔で平行に並べられ、その間を気流が流動
する平板フィンと、前記平板フィンに垂直に挿入され内
部を流体が流動する伝熱管から構成され、前記平板フィ
ンの前記伝熱管に対する前記気流の上流側領域に前記気
流の流動方向に傾斜させて設けた複数のスリット状切り
起こしAおよび前記気流の下流側領域に前記スリット状
切り起こしAとは逆の方向へ前記気流の流動方向に傾斜
させて設けたスリット状切り起こしBを設け、前記切り
起こしA、Bの中央部を前記平板フィンと接続している
前記切り起こしA、Bの2側辺部より低くしたフィン付
熱交換器。
(1) Consisting of flat plate fins that are arranged in parallel at regular intervals and through which air flows, and heat transfer tubes that are inserted perpendicularly into the flat plate fins and through which fluid flows, A plurality of slit-like cut-and-raised portions A provided in an upstream region of the airflow so as to be inclined in the flow direction of the airflow, and a plurality of slit-like cut-and-raised portions A that are provided in a downstream region of the airflow in a direction opposite to the slit-like cut-and-raised portions A in the flow direction of the airflow. A heat exchanger with fins in which a slit-like cut and raised B is provided at an angle, and the center portion of the cut and raised A and B is lower than the two side portions of the cut and raised A and B that are connected to the flat plate fin. .
(2)スリット状切り起こしBの気流の下流側に、前記
気流の流動方向に傾斜させて設けたスリット状切り起こ
しCの中央部を、平板フィンと接続している2側辺部よ
り低くした特許請求の範囲第1項記載のフィン付熱交換
器。
(2) The central part of the slit-shaped cut-and-raised C, which is provided on the downstream side of the airflow of the slit-shaped cut-and-raised B and inclined in the flow direction of the airflow, is lower than the two side parts connected to the flat plate fin. A finned heat exchanger according to claim 1.
(3)スリット状切り起こしA、B、Cの切り起こし中
央部に開口部を設けた特許請求の範囲第2項記載のフィ
ン付熱交換器。
(3) The finned heat exchanger according to claim 2, wherein an opening is provided in the center of the cut and raised slits A, B, and C.
(4)スリット状切り起こしCに代えて立壁Dを設けた
特許請求の範囲第2項記載のフィン付熱交換器。
(4) The finned heat exchanger according to claim 2, wherein a standing wall D is provided in place of the slit-like cut and raised portion C.
JP20344984A 1984-09-28 1984-09-28 Heat exchanger having fin Pending JPS6183893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20344984A JPS6183893A (en) 1984-09-28 1984-09-28 Heat exchanger having fin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20344984A JPS6183893A (en) 1984-09-28 1984-09-28 Heat exchanger having fin

Publications (1)

Publication Number Publication Date
JPS6183893A true JPS6183893A (en) 1986-04-28

Family

ID=16474301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20344984A Pending JPS6183893A (en) 1984-09-28 1984-09-28 Heat exchanger having fin

Country Status (1)

Country Link
JP (1) JPS6183893A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6349761B1 (en) * 2000-12-27 2002-02-26 Industrial Technology Research Institute Fin-tube heat exchanger with vortex generator
US7337831B2 (en) * 2001-08-10 2008-03-04 Yokohama Tlo Company Ltd. Heat transfer device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6349761B1 (en) * 2000-12-27 2002-02-26 Industrial Technology Research Institute Fin-tube heat exchanger with vortex generator
US7337831B2 (en) * 2001-08-10 2008-03-04 Yokohama Tlo Company Ltd. Heat transfer device

Similar Documents

Publication Publication Date Title
JP3048549B2 (en) Air conditioner heat exchanger
JPS63183391A (en) Heat exchanger of fin tube type
JPH08291988A (en) Structure of heat exchanger
KR0127598Y1 (en) Heat exchanger
JP2966825B2 (en) Air conditioner heat exchanger
JPH0278896A (en) Heat exchanger
JPH0229597A (en) Heat exchanger
JPS6183893A (en) Heat exchanger having fin
JPS633183A (en) Finned heat exchanger
JPS633185A (en) Finned heat exchanger
JPS6199097A (en) Finned heat exchanger
JPS616592A (en) Finned heat exchanger
JPS6226494A (en) Finned heat exchanger
JPS616591A (en) Finned heat exchanger
JPH0471154B2 (en)
JPS61235693A (en) Finned tube type heat exchanger
JPS58158497A (en) Finned-tube type heat exchanger
JPS6191495A (en) Finned heat exchanger
JPS6141893A (en) Heat exchanger with fin
JPS61202092A (en) Finned heat exchanger
JPS6155595A (en) Heat exchanger with fin
JPS62172193A (en) Heat exchanger
KR0127599Y1 (en) Heat exchanger
JPS6082783A (en) Heat exchanger with fin
JPH01212894A (en) Heat exchanger