JPS6183642A - Production of parent material of optical fiber - Google Patents

Production of parent material of optical fiber

Info

Publication number
JPS6183642A
JPS6183642A JP20521484A JP20521484A JPS6183642A JP S6183642 A JPS6183642 A JP S6183642A JP 20521484 A JP20521484 A JP 20521484A JP 20521484 A JP20521484 A JP 20521484A JP S6183642 A JPS6183642 A JP S6183642A
Authority
JP
Japan
Prior art keywords
optical fiber
hydrogen
target
manufacturing
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20521484A
Other languages
Japanese (ja)
Inventor
Masaharu Niizawa
新沢 正治
Tsutomu Yabuki
矢吹 勉
Yoshihiro Narita
芳大 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP20521484A priority Critical patent/JPS6183642A/en
Publication of JPS6183642A publication Critical patent/JPS6183642A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:In production of a parent material for optical fiber by vapor phase axial deposition method, to produce optical fiber of multimode graded wide-band in high yield in high reproducibility, by changing periodically a composition of raw material to be fed to a target. CONSTITUTION:Glass fine powder formed by flame hydrolysis method from the quartz burner 8 is sprayed and piled on the target 1 which is pulled up while being rotated, to form the porous parent material 3 for optical fiber. In the above-mentioned device (the winder 5 for measuring reaction temperature of the porous parent material 3), amounts of oxygen and hydrogen to be fed to the outer pipe of the burner 8 is controlled by the electrical signal from the oscillator 11 and the infrared temperature measuring device 6, so that the maximum temperature in the glass powder piled layer is changed periodically in a given range.

Description

【発明の詳細な説明】 [発明の背景と目的] 本発明は、気相軸付(VAD)法による光ファイバ母材
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Background and Objects of the Invention] The present invention relates to a method for manufacturing an optical fiber preform by a vapor deposition (VAD) method.

一般に、VAD法による光ファイバ母材の製造方法は最
産性において著しくすぐれている。そして、ベースガラ
スとなる塩化珪素(Si Cf14)等の原料ガスと、
屈折率を制御するための塩化ゲルマニウム(GeCJa
)、塩化酸化燐(POC)3)等の原料ガスを酸水素炎
等の熱により反応させている。この反応により生成され
たガラス微粉末をターゲット先端に順次堆積させ、その
最先端の温度分布により最終ガラスの半径方向の屈折率
分布を制御している。このため、最先端部分の温度の制
御は、その光ファイバ母材から製作される光ファイバの
伝送特性、特に、マルチモードグレーディト型光ファイ
バの伝送帯域特性に大きな影響を及ぼすことになる。
In general, the VAD method for manufacturing optical fiber preforms is extremely superior in terms of productivity. Then, raw material gas such as silicon chloride (Si Cf14) that becomes the base glass,
Germanium chloride (GeCJa) to control refractive index
), phosphorous chloride oxide (POC) 3), etc. are reacted using heat such as an oxyhydrogen flame. The glass fine powder produced by this reaction is sequentially deposited at the tip of the target, and the radial refractive index distribution of the final glass is controlled by the temperature distribution at the tip. Therefore, controlling the temperature at the leading edge has a large effect on the transmission characteristics of the optical fiber manufactured from the optical fiber base material, particularly on the transmission band characteristics of the multimode graded optical fiber.

従来、この最先端部分の温度を一定に調節する方法は各
秤提案され、現在、±1〜2°Cの範囲に調節する技術
はほぼ確立し、特性の再現性もよくなってきている。し
かし、帯域特性の再現性向上、広帯域ファイバの歩留り
向上と云った点にはまだまだ問題点が多く必ずしも満足
の出来る状態にはなっていない。
Conventionally, methods for adjusting the temperature of the leading edge portion to a constant level have been proposed for each scale, and at present, the technology for adjusting the temperature within the range of ±1 to 2°C has been almost established, and the reproducibility of the characteristics has improved. However, there are still many problems in improving the reproducibility of band characteristics and improving the yield of broadband fibers, and the situation is not necessarily satisfactory.

本発明は上記の状況に鑑みなされたものであり、マルチ
モードグレーディト型光ファイバの帯域特性の再現性、
広帯域ファイバの歩留りを大幅に向上できる光ファイバ
母材の製造方法を提供することを目的としたものである
The present invention was made in view of the above-mentioned situation, and aims to improve the reproducibility of the band characteristics of a multimode graded optical fiber,
The object of the present invention is to provide a method for manufacturing an optical fiber preform that can significantly improve the yield of broadband fiber.

E発明の概要〕 本発明の光ファイバ母材の製造方法は、酸素及び水素を
酸水素バーナに送入し燃焼する酸水素炎中で塩化珪素及
び塩化ゲルマニウム等の原料ガスを反応させてガラス微
粉末を生成し、該ガラス微粉末をターゲット先端に堆積
させて多孔質母材を形成し、該多孔質母材を加熱透明化
し光ファイバ母材を製造する場合に、上記酸素あるいは
水素などの流量を周期的に変動させ上記ターゲット先端
の上記ガラス微粉末の堆積条件を変化させることにより
、上記透明化後の光ファイバ母材の屈折率分布指数αを
長手方向に変化さげる方法である。
E. Summary of the Invention] The method for producing an optical fiber preform of the present invention involves reacting raw material gases such as silicon chloride and germanium chloride in an oxyhydrogen flame in which oxygen and hydrogen are fed into an oxyhydrogen burner and burned. When producing a powder, depositing the fine glass powder on the tip of a target to form a porous base material, and heating and transparentizing the porous base material to manufacture an optical fiber base material, the flow rate of the oxygen or hydrogen, etc. In this method, the refractive index distribution index α of the optical fiber preform after being made transparent is varied in the longitudinal direction by periodically varying the deposition conditions of the fine glass powder at the tip of the target.

[実施例] 以下本発明の光ファイバ母材の製造方法を実施例を用い
第1図により説明する。第1図は実施装置の縦断面図で
ある。図において、1はターゲット、2はチャンバ、3
は堆積したガラス微粉末からなる多孔質母材(スート)
、4は堆積したガラス微粉末層の多孔質母材線端部であ
り、最高温度点である。5は多孔質母材3の反応温度測
定用窓、6は赤外線温度測定機、7は酸水素ガス流向調
節8!である。8は石英管バーナ、9はチャンバ台、1
0は排気口、11は目標温度を一定周期、振幅で変化さ
せる発振器である。また、石英バーナ8はその中心部バ
ーナから原料ガスの3iC1a ・Ge C1!a ・
POCf3等を送入し、外管のバーナからは酸素及び水
素、あるいはAr 、N2等を送入する複合バーナ構造
となっている。
[Example] The method for manufacturing an optical fiber preform of the present invention will be explained below using an example and FIG. 1. FIG. 1 is a longitudinal sectional view of the implementation device. In the figure, 1 is the target, 2 is the chamber, and 3
is a porous matrix (soot) consisting of deposited fine glass powder
, 4 is the end of the porous base material wire of the deposited glass fine powder layer, and is the highest temperature point. 5 is a window for measuring the reaction temperature of the porous base material 3, 6 is an infrared temperature measuring device, and 7 is an oxyhydrogen gas flow direction adjustment 8! It is. 8 is a quartz tube burner, 9 is a chamber stand, 1
0 is an exhaust port, and 11 is an oscillator that changes the target temperature with a constant cycle and amplitude. In addition, the quartz burner 8 discharges raw material gas 3iC1a .Ge C1! from its central burner. a・
It has a composite burner structure in which POCf3, etc. is fed in, and oxygen and hydrogen, or Ar, N2, etc. are fed in from the burner in the outer tube.

本実施例が、従来の光ファイバ母材の製造方法と異なる
ところは、石英管バーナ8の外管のバーナに挿入される
M累及び水素の酊を、発振器11、赤外1!i!副度測
定器6からの電気信号により調lし、ガラス微粉末堆積
中の最高温度をある一定範囲内で故意に周期変動させる
点である。
The difference between this embodiment and the conventional optical fiber preform manufacturing method is that the oscillator 11, the infrared ray 1! i! The point is that the maximum temperature during the deposition of fine glass powder is intentionally periodically varied within a certain range by adjusting it with an electric signal from the secondary temperature measuring device 6.

そして、石英管バーナ8により原料ガス並びに、酸素及
び水素、その他のガスを送入しから酸水素炎中で高圧ガ
スを反応させ回転フるターゲット1の先端に順次ガラス
微粉末のitI積苦を生成させながら、徐々に引き上げ
て多孔質母材3を形成させる。一方、燃焼に用いられた
酸素及び水素、並びに反応調節に用いられたAr 、N
2等のガス、あるいは生成されたガラス微粉末の一部な
とは、排気口10から排出されてチャンバ2内は常に一
定の圧力に保たれる。
Then, the raw material gas, oxygen, hydrogen, and other gases are fed into the quartz tube burner 8, and the high-pressure gas is reacted in an oxyhydrogen flame to sequentially deposit glass fine powder onto the tip of the rotating target 1. While generating, the porous base material 3 is gradually pulled up to form the porous base material 3. On the other hand, oxygen and hydrogen used for combustion, and Ar and N used for reaction control.
The second gas or a part of the generated glass fine powder is exhausted from the exhaust port 10, and the pressure inside the chamber 2 is always maintained at a constant pressure.

通常の条件では、M索は8.5.1!/min 、水素
は4.5I!/min程度の流量で用いられる。この場
合、水素の流量は、ターゲット1に堆積されるカラス微
粒子の多孔質母材線端部4の最適温度点の温度が102
0℃になるように調節され、この流量を、10cc、、
’min変化さ虻ると約1℃の温度変化を生じ、屈折率
分tri指数αにJ′3いては約0.03変化すること
が本発明者らの実験によって確認されている。
Under normal conditions, the M chord is 8.5.1! /min, hydrogen is 4.5I! It is used at a flow rate of about /min. In this case, the flow rate of hydrogen is such that the temperature at the optimum temperature point of the porous base material wire end 4 of the crow fine particles deposited on the target 1 is 102
The flow rate was adjusted to 0℃, and the flow rate was 10cc.
It has been confirmed through experiments by the present inventors that a change in 'min' causes a temperature change of approximately 1° C., and that the refractive index component tri index α changes by approximately 0.03.

第2図は横軸に各波長における屈折率分布指数αをとり
、縦軸に帯域をとって両者の関係が示される日本電信電
話公社の研究実用化報告第29@第2号(1980年)
  11.3am ?jllftグレーティド型光ファ
イバの製作技術」に発表された理論計算式から導かれた
グラフである。第2図において、実線の曲線はo、82
μm波長、点線の曲線は1.27μmの波長である。図
からもわかるように、各波長で広帯域となる屈折率分布
指数αの範囲は著しく狭く、さらに、短波長と長波長と
のオブテイマム値が少しくずれているため、それぞれの
波長帯での広帯域化は勿論、両波共広帯域をねらういわ
ゆるダブルウィンドウタイプの製造の再現性向上がいか
に困難であるか推察できる。
Figure 2 shows the relationship between the refractive index distribution index α at each wavelength on the horizontal axis and the band on the vertical axis. Nippon Telegraph and Telephone Public Corporation Research and Application Report No. 29 @ No. 2 (1980)
11.3am? This is a graph derived from a theoretical calculation formula published in JLLFT Grated Optical Fiber Manufacturing Technology. In Figure 2, the solid curve is o, 82
μm wavelength, the dotted curve is the wavelength of 1.27 μm. As can be seen from the figure, the range of the refractive index distribution index α that provides a wide band at each wavelength is extremely narrow, and furthermore, the obtemum values for short and long wavelengths are slightly different, so it is difficult to widen each wavelength band. Of course, it can be inferred how difficult it is to improve the reproducibility of so-called double-window type manufacturing, which aims to achieve a wide band for both waves.

本実施例では、発振器11からの電気信号を約2分周期
で振動させ、これを水素ガスの流向にフィードバックす
ることにより堆積中の対抗質母材先端部4のの最烏温度
点の温度を、士約3℃の範囲で変化させ、水素ガスの流
量変化は約±3Qcc/ minである。
In this embodiment, the electric signal from the oscillator 11 is oscillated at a period of approximately 2 minutes, and this is fed back to the flow direction of the hydrogen gas, thereby controlling the temperature at the extreme temperature point of the tip 4 of the opposing material base material during deposition. , and the flow rate of hydrogen gas is changed within a range of about 3°C, and the change in the flow rate of hydrogen gas is about ±3Qcc/min.

上記のようにして製造された多孔質母材3から製作され
た光ファイバは、約200〜300I11の周期で長手
方向に屈折率分布指数αが変化している筈であるが、こ
れを500m程度に切断して、長手方向の帯域特性変化
を調べたところ、変動幅も少さく、かつ、広帯域となる
割合も大幅に向上することが判明した。特に、長短両用
型のダブルウィンドタイプファイバの歩留りは大幅に向
上し、さらに、長距離伝送における帯域の劣化指数(γ
:0.5≦T≦1)も従来品より小さ目になり、長距離
伝送に好適であることが判明した。また、帯域特性以外
の各特性、例えば、接続時の損失特性、frf応力特性
、温度特性及び常温における損失特性等は従来品とはほ
とんど差のないことも確認されている。
The optical fiber manufactured from the porous base material 3 manufactured as described above should have a refractive index distribution index α changing in the longitudinal direction with a period of about 200 to 300I11, and this is about 500 m. When the band characteristics were examined in the longitudinal direction, it was found that the fluctuation range was small and the proportion of broadband characteristics was significantly improved. In particular, the yield of double-wind type fiber, which can be used for both long and short distances, has been significantly improved, and the band degradation index (γ
:0.5≦T≦1) was also smaller than the conventional product, and was found to be suitable for long-distance transmission. It has also been confirmed that there is almost no difference in characteristics other than band characteristics, such as connection loss characteristics, FRF stress characteristics, temperature characteristics, and loss characteristics at room temperature, from conventional products.

また、長手方向に屈折率分布指数αが変動しているマル
チモードグレーディト型光ファイバにおいては、各モー
ドを伝播する光ファイバが容易にカップリングを起こし
、トータル的なモード間の遅延時間差が縮少され、広帯
域化が計れることがよく知られている。しかし、ターゲ
ット先端部の温度等を精度よく一定にコントロールした
場合、その他の製造条件の微妙なに違いにより、却って
屈折率分布指数αを目標値とずれたところで一定にコン
トロールすることになり、極端に狭帯域なファイバとな
る場合がよくあった。また、長手方向の帯域特性のばら
つきも大きいものがあった。
In addition, in multimode graded optical fibers in which the refractive index distribution index α varies in the longitudinal direction, the optical fibers that propagate each mode easily cause coupling, reducing the total delay time difference between modes. It is well known that it is possible to increase the bandwidth by increasing the bandwidth. However, if the temperature at the tip of the target is precisely controlled to a constant value, due to subtle differences in other manufacturing conditions, the refractive index distribution index α may end up being controlled to a constant value at a point that deviates from the target value. In many cases, it was a narrowband fiber. In addition, there were also large variations in band characteristics in the longitudinal direction.

本実施例の方法によれば、屈折率分布指数αが一定にず
れることはなく、多少ずれた場合においてすら、屈折率
分布指数αが周期変動しているため、極端な狭帯域とな
ることはなくなる。
According to the method of this embodiment, the refractive index distribution index α does not deviate from a constant, and even when it deviates slightly, the refractive index distribution index α fluctuates periodically, so an extremely narrow band will not occur. It disappears.

このように本実施例の光ファイバ母材の製造方法におい
ては、ターゲット先端のガラス微粉末の堆積温度を、酸
素あるいは水素などの流量を周期的に変化させることに
より、透明化後の屈折率分布指数αを長手方向に変化さ
せることができ、帯域特性において広帯域となるファイ
バの歩留りが大幅に向上でき、また、帯域特性の長手方
向変化が少なくなる。特に、長短両用型のファイバの歩
留りが大幅に向上し、さらに、長尺伝送になるに従って
劣化する帯域特性の指数γが従来品より小さくなり長距
離伝送に好適である。
In this way, in the method for manufacturing the optical fiber preform of this example, the refractive index distribution after transparentization is controlled by periodically changing the deposition temperature of the fine glass powder at the tip of the target and the flow rate of oxygen or hydrogen. The index α can be changed in the longitudinal direction, and the yield of fibers with broadband characteristics can be greatly improved, and changes in the band characteristics in the longitudinal direction can be reduced. In particular, the yield of both long and short-purpose fibers is greatly improved, and the index γ of band characteristics, which deteriorates as the length of transmission increases, is smaller than that of conventional products, making it suitable for long-distance transmission.

[発明の効果] 以上記述した如く本発明の光ファイバ母材の製造方法に
よれば、マルチモードグレーディト型光ファイバの帯域
特性の再現性及び広帯域ファイバの歩留りを大幅に向上
できる効果を有するものである。
[Effects of the Invention] As described above, the method for manufacturing an optical fiber preform of the present invention has the effect of significantly improving the reproducibility of band characteristics of multimode graded optical fibers and the yield of broadband fibers. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光ファイバ母材の製造方法を実施する
装置の断面図、第2図は日本電信電話公社の研究実用化
報告に発表された各波長における屈折率分布指数αと帯
域との関係を表わす理論計算式のグラフである。 1;ターゲット、 3:多孔質母材、 4:多孔質母材先端部、 7:酸水素ガス流量調整装置、 8:石英管バーナ、 冨 1 口 第 2図 1.7   +、8  1.q   2.o   2.
1屈jl’T牛亦今詣牧試 1事件の表示 2発明の名称 光ファイバ母材の製造方法
Figure 1 is a cross-sectional view of an apparatus for carrying out the optical fiber preform manufacturing method of the present invention, and Figure 2 shows the refractive index distribution index α and band at each wavelength published in the research and practical application report of Nippon Telegraph and Telephone Public Corporation. It is a graph of a theoretical calculation formula expressing the relationship. 1: Target, 3: Porous base material, 4: Tip of porous base material, 7: Oxygen hydrogen gas flow rate adjustment device, 8: Quartz tube burner, No. 2 Figure 1.7 +, 8 1. q 2. o2.
1. Representation of the incident 2. Name of the invention Method for manufacturing optical fiber base material

Claims (3)

【特許請求の範囲】[Claims] (1)酸素及び水素を酸水素バーナに送入し燃焼する酸
水素炎中で塩化珪素及び塩化ゲルマニウム等の原料ガス
を反応させてガラス微粉末を生成し、該ガラス微粉末を
ターゲット先端に堆積させ多孔質母材を形成し、該多孔
質母材を加熱透明化し光ファイバ母材を製造する方法に
おいて、上記酸素あるいは水素などの流量を周期的に変
動させ上記ターゲット先端の上記ガラス微粉末の堆積条
件を変化させることにより、上記透明化後の光ファイバ
母材の屈折率分布指数αを長手方向に変化させること特
徴とする光ファイバ母材の製造方法。
(1) Oxygen and hydrogen are fed into an oxy-hydrogen burner and reacted with raw material gases such as silicon chloride and germanium chloride in an oxy-hydrogen flame, which burns, to generate fine glass powder, and the fine glass powder is deposited on the tip of the target. In the method of manufacturing an optical fiber preform by forming a porous preform by heating and making the porous preform transparent, the flow rate of the oxygen or hydrogen is periodically varied to remove the fine glass powder at the tip of the target. A method for manufacturing an optical fiber preform, characterized in that the refractive index distribution index α of the optical fiber preform after being made transparent is changed in the longitudinal direction by changing the deposition conditions.
(2)上記酸素あるいは水素などの流量を変動させる周
期を、仕上りファイバ長さ換等で500m以下となるよ
うにする特許請求の範囲第1項記載の光ファイバ母材の
製造方法。
(2) The method for manufacturing an optical fiber preform according to claim 1, wherein the period of varying the flow rate of oxygen, hydrogen, etc. is 500 m or less in terms of finished fiber length, etc.
(3)上記屈折率分布指数αの変化させる範囲を、±0
.01〜±0.1とする特許請求の範囲第1項記載の光
ファイバ母材の製造方法。
(3) The range in which the refractive index distribution index α is changed is ±0.
.. 01 to ±0.1. The method for manufacturing an optical fiber preform according to claim 1.
JP20521484A 1984-09-28 1984-09-28 Production of parent material of optical fiber Pending JPS6183642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20521484A JPS6183642A (en) 1984-09-28 1984-09-28 Production of parent material of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20521484A JPS6183642A (en) 1984-09-28 1984-09-28 Production of parent material of optical fiber

Publications (1)

Publication Number Publication Date
JPS6183642A true JPS6183642A (en) 1986-04-28

Family

ID=16503291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20521484A Pending JPS6183642A (en) 1984-09-28 1984-09-28 Production of parent material of optical fiber

Country Status (1)

Country Link
JP (1) JPS6183642A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5203897A (en) * 1989-11-13 1993-04-20 Corning Incorporated Method for making a preform doped with a metal oxide
US8485518B2 (en) 2006-10-26 2013-07-16 Seiko Epson Corporation Sheet media feeding device, sheet media separation method, and sheet media processing device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5203897A (en) * 1989-11-13 1993-04-20 Corning Incorporated Method for making a preform doped with a metal oxide
US8485518B2 (en) 2006-10-26 2013-07-16 Seiko Epson Corporation Sheet media feeding device, sheet media separation method, and sheet media processing device

Similar Documents

Publication Publication Date Title
USRE30635E (en) Method of producing internally coated glass tubes for the drawing of fibre optic light conductors
US4145456A (en) Method of producing internally coated glass tubes for the drawing of fibre optic light conductors
US4145458A (en) Method of producing internally coated glass tubes for the drawing of fiber-optic light conductors
JPS5945609B2 (en) Optical fiber manufacturing method
JPH0196039A (en) Production of optical fiber preform
US5221308A (en) Low loss infrared transmitting hollow core optical fiber method of manufacture
JP5697065B2 (en) Manufacturing method of glass base material
US4423925A (en) Graded optical waveguides
JPS6183642A (en) Production of parent material of optical fiber
US5238479A (en) Method for producing porous glass preform for optical fiber
JP2695644B2 (en) Optical fiber manufacturing method
JPH0476936B2 (en)
JPS6186438A (en) Manufacture of optical fiber base material
JP3343079B2 (en) Optical fiber core member, optical fiber preform, and method of manufacturing the same
JPH09221335A (en) Production of precursor of optical fiber glass preform
JPS6186437A (en) Manufacture of optical fiber base material
JPS63248733A (en) Production of single-mode optical fiber base material
JPH0818843B2 (en) Method for manufacturing preform for optical fiber
JPS61183140A (en) Production of base material for optical fiber
JPS6183641A (en) Production of parent material of optical fiber
JPS61222936A (en) Plasma cvd process
JPS62162639A (en) Production of preform for w-type single mode optical fiber
JPS63123829A (en) Production of preform for optical fiber
KR20040049282A (en) Method of manufacturing an optical fibre
KR830002121B1 (en) Optical fiber